
Prof. Dr. Leif Döring Reinforcement Learning

André Ferdinand, Sara Klein 7. Solution Sheet

1. Proof Theorem 4.2.9.

Close the gap in the proof of Theorem 4.2.9. from the lecture. Therefore go through the one

dimensional proof of Theorem 4.2.8. and check that also in the d-dimensional case there exits a

sequence tk → ∞ such that supt≥tk
|x(t)| ≤ Dk almost surely and limk→∞Dk = 0.

Solution:

From the lecture we already know that supt≥0∥x(t)∥∞ < ∞ almost surely. Thus define D0 =

supt≥0∥x(t)∥∞. Exactly as in the one dimensional case, we set Dk+1 = β(1 + 3ϵ)Dk for some

ϵ > 0 such that (1 + 2ϵ)β < 1, i.e. Dk → 0 for k → ∞. Now we inductively show that there

exists a random sequence (tk)k≥0 such that tk → ∞ for k → ∞. and supt≥tk
∥x(t)∥∞ ≤ Dk for

all k ≥ 0.

Induction beginning: We set t0 = 0, then the induction beginning follows from the choice of

D0.

Now suppose that tk is given such that supt≥tk
∥x(t)∥∞ ≤ Dk almost surely.

Induction conclusion: First recall the process W from Lemma 4.2.5 and denote for all i =

1, . . . , d by Wi(· : ·) this process defined by the error sequence ϵi from the theorem. Next we define

τ = min{s ≥ tk : Wi(t : s) < βϵDk ∀i = 1, . . . , d, t ≥ s},

the τ < ∞ almost surely because for all i = 1, . . . , d we have that Wi(t : s) → ∞ for t → ∞
almost surely. Define the process

Yi(t+ 1 : τ) + (1 + αi(t))Yi(t : τ) + αi(t)A,

for A = βDk started at time τ in Dk, i.e. Yi(τ : τ) = Dk. Then we will show that

|xi(t)−Wi(t : τ)| ≤ Yi(t : τ) (1)

for all t ≥ τ and i = 1, . . . , d. We beginn with t = τ , then

|xi(t)−Wi(t : τ)| = |xi(τ)| ≤ ∥x(τ)∥∞ ≤ Dk

for all i = 1, . . . , d by the induction hypothesis and τ ≥ tk by definition. Suppose the claim (1)

holds for fixed t ≥ τ and all i = 1, . . . , d, then for t+ 1 we follow

xi(t+ 1) = (1− αi(t))xi(t) + αiFi(x(t)) + αiϵi(t)

≤ (1− αi(t))(Yi(t : τ) +Wi(t : τ)) + αi(t)β∥x(t)∥∞ + αiϵi(t)

≤ (1− αi(t))(Yi(t : τ) +Wi(t : τ)) + αi(t)βDk + αiϵi(t)

= Yi(t+ 1 : τ) + (1− αi(t))Wi(t : τ) + αiϵi(t)

= Yi(t+ 1 : τ) +Wi(t+ 1 : τ),

1

where we used in the first inequality that Fi is a β-contraction and (1) for fixed t ≥ τ . In the

second inequality we used the induction hypothesis supt≥tk
∥x(t)∥∞ ≤ Dk, because t ≥ τ ≥ tk. The

two equations follow from the recursive definition of Y and Wi. To close the second induction

and prove (1) it remains to show xi(t+ 1) ≥ −Y (t : τ) +Wi(t : τ).

−Yi(t+ 1 : τ) +Wi(t+ 1 : τ) = (1− αi(t))(−Yi(t : τ) +Wi(t : τ))− αi(t)β∥x(t)∥∞ + αiϵi(t)

≤ (1− αi(t))xi(t) + αi(t)Fi(x(t)) + αiϵi(t)

= xi(t+ 1),

for every i = 1, . . . , d. This condludes the second induction and proves that (1) is true for ever

t ≥ τ and i = 1, . . . , d.

Next we used that |a| − |b| ≤ |a− b| to follow from (1) that

|xi(t)| ≤ Yi(t : τ) + |Wi(t : τ)|, ∀t ≥ τ, i = 1, . . . , d.

By the definition of τ it holds that |Wi(t : τ)| ≤ βϵDk for all t ≥ τ, i = 1, . . . , d. As Yi(t : τ) →
Dkβ for t → ∞ there exits a tk+1 ≥ τ > tk s.t.

|xi(t)| ≤ βϵDk + (1 + ϵ)βDk = βDk(1 + 2ϵ) = Dk+1,

for all t ≥ tk+1 and i = 1, . . . , d. We follow that

∥x(t)∥∞ ≤ Dk+1 ,∀t ≥ tk+1.

Thus,

sup
t≥tk+1

∥x(t)∥∞ ≤ Dk+1.

This concludes the induction and proves the claim of Theorem 4.2.9.

2. SARSA

Rewrite a k-armed Bandit as a MDP in such a way that SARSA (Algorithm 25 with ϵn-greedy

policy updates and α(s, a) = 1
N(s,a)+1) corresponds to the ϵn-greedy algorithm introduced in

Chapter 1.

Solution:

We define the state space to be S = {1, T} where 1 is the first state, the initial distribution is

thus µ = δ1, and T is the terminal state.

The action space is defined to be A1 = {1, . . . , k} and AT = {N} and can be interpreted as we

play an arm between in 1, . . . , k in the state 1 and we do noting in the terminal state T .

Then we define the transition probabilities to be p({T}; {1}, a) = 1 for all a ∈ A1.

The reward set R is given by the set of all possible rewards of all k arms united with a terminal

reward {0} whenever we are in the terminal state T and play action N . I.e. the rewards are

defined to be independent of the states and whenever we play action At = a ∈ A1 the reward

is distributed as the rewards of arm a of the bandit, Rt+1 = R(a) ∼ Pa and whenever we play

2

Algorithm 1: SARSA

Result: Approximation Q ≈ Q∗

Initialize Q(s, a) = 0 and N(s, a) = 0 for all (s, a) ∈ S ×A

Choose initial policy π.

while not converged do
Initialize s

Choose a ∼ π(· ; s)
while s not terminal do

Take action a, sample reward R(s, a) and next state s′.

Choose a′ ∼ π(· | s′).
Determine step size α.

Q(s, a) = Q(s, a) + α(R(s, a) + γQ(s′, a′)−Q(s, a))

N(s, a) = N(s, a) + 1

s = s′, a = a′

Choose policy π derived from updated Q-values.

end

end

action At = N the reward is defined to be Rt+1 = R(N) = 0.

We choose γ ∈ (0, 1) arbitrarily, as γ will be irrelevant in the algorithm. Now recall the SARSA

Algorithm 1 stated below. For the initialisation of Q and N changes nothing. As we consider

ϵn-greedy policies, consider a fixed sequence (ϵn)n∈IN0 and initialise π with any ϵ0-greedy policy,

where we only have to consider state 1 as the action in state T is always N with probability one.

As Q ≡ 0 we choose an arbitrary action (wlog action a = 1) with probability 1− ϵ0(k−1)
k and all

other actions a′ ∈ A1 with probability ϵ0
k .

Next we enter the ’while not convergend’-loop and see that we initialise s always with 1, as we

choose µ = δ1. Then we choose a ∼ π(·|1) after the ϵ0-greedy policy defined above. As 1 is not

a terminal state we take the action we sampled and recive a reward R(1, a). Then we transit

in the terminal state s′ = T almost surely and choose action a′ = N almost surely and update

Q(1, a), using α = 1
N(1,a)+1 , and N(1, a). As s′ = T is a terminal state we update the policy π

as ϵ1-greedy policy and continue again with initialising s ∼ µ in the outer loop.

Observations:

• We only fulfill the ’while s not terminal’ condition once, i.e. this is not a real loop. Moreover

we choose always s′ = T and a′ = N .

• Q(T,N) is never updated and stayes 0 forever, i.e. together with the first overvation we

note that the term γQ(s′, a′) is zero forever.

• We only need to consider Q(s, a) and N(s, a) for s = 1, i.e. we can drop the dependence

on s.

• We only need a policy in the state s = 1, i.e. we will only wrtie π(·) as a probability

distribution of the possible arms.

3

• Sampling an action a after a ϵ-greedy policy is equivalent to sampling a uniform random

variable U ∼ U [0, 1] and play the greedy action whenever U > ϵ or a uniformly choosen

random action whenever U ≤ ϵ.

All in all the algorithm simplifies to Algorithm 2. Finally we observe that this algorithm equals

Algorithm 2: Bandit-SARSA

Result: Approximation Q ≈ Q∗

Initialize Q(a) = 0 and N(a) = 0 for all a ∈ {1, . . . , k}
Set n = 0

Set π(·) = δ1 (choose any arm)

while not converged do
Sample U ∼ U [0, 1]
if U ≤ ϵn then

Choose an uniformly in {1, . . . , k}
else

Choose an ∼ π(·)
end

Play arm an, observe reward R(an).

Determine stepsize α = 1
N(an)+1 .

Q(an) = Q(an) + α(R(an)−Q(an))

N(an) = N(an) + 1

Set policy π(·) as ϵn greedy policy over the Q-values.

n = n+ 1
end

the ϵn-greedy algorithm from Chapter 1 of the lecture, because for action an

Qnew(an) = Q(an) +
1

N(an) + 1
(R(an)−Q(an))

=
1

N(a) + 1

n∑
i=0

R(an)1{an=a}.

is the memory trick and equals the estimator of Q̂a of arm a in the ϵn-greedy algorithm.

3. Convergence of Q-Learning

The assumptions and definitions of Theorem 4.3.4 (Convergence of Q-Learning) are given.

Moreover let

F (Q)(s, a) := Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q(S1, a
′)
]

and

εn(s, a) := R(s, a) + γ max
a′∈As′

Qn(s
′, a′)− F (Qn)(s, a)

for all (s, a) ∈ S ×A and n ∈ IN. Show that the sequence

Qn+1(s, a) := Qn(s, a) + αn(s, a)
(
F (Qn)(s, a)−Qn(s, a) + εn(s, a)

)
, n ∈ IN

4

almost surely converges to Qπ.

Solution:

We aim to apply Theorem 4.2.9.. Therefore we have to show that

a) F : IR|S||A| → IR|S||A| is a contraction with respect to the || · ||∞-norm, and

b) εn(s, a) is Fn+1-measurable, IE[εn(s, a)|Fn] = 0 and there is some C > 0 such that

supn,s,a IE[ε
2
n(s, a)|Fn] ≤ C.

We show a) by checking the definition of a contraction:

∥F (Q1)− F (Q2)∥∞

= max
s,a

{∣∣Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q1(S1, a
′)
]
− Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q2(S1, a
′)
]∣∣}

= γmax
s,a

{∣∣Eπa

s

[
max

a′∈AS1

Q1(S1, a
′)− max

a′∈AS1

Q2(S1, a
′)
]∣∣}

≤ γmax
s,a

{∣∣Eπa

s

[
max

a′∈AS1

(Q1(S1, a
′)−Q2(S1, a

′))
]∣∣}

≤ γmax
s,a

{
Eπa

s

[
max

s′∈S,a′∈AS1

∣∣Q1(s
′, a′)−Q2(s

′, a′)
∣∣]}

= γmax
s,a

{
Eπa

s

[
∥Q1 −Q2∥∞

]}
= γ∥Q1 −Q2∥∞.

We move on to claim b). The errors are Fn-measurable by definition and so also Fn+1-mesurable.

For the expectation we see directly by definition

IE[εn(s, a)|Fn] = IE[R(s, a) + γ max
a′∈As′

Qn(s
′, a′)− F (Qn)(s, a)|Fn]

= IE
[
R(s, a) + γ max

a′∈As′
Qn(s

′, a′)− Eπa

s

[
R(s, a) + γ max

a′∈AS1

Qn(S1, a
′)
]]

= 0,

because the state state s′ in the algorithm is sampled from p(· ; s, a). The last claim follows directly

from the assumption on bounded rewards as in 4.3.2.

5

