

Prof. Dr. Leif Döring André Ferdinand, Sara Klein

6. Excercise Sheet

Reinforcement Learning

1. Policy evaluation

Consider Algorithm 8 from the lecture. In Theorem 3.3.2 we proved convergence for this algorithm if $\gamma < 1$. Now assume $\gamma = 1$ and set $\Delta = 2\epsilon$ in the initialisation and choose termination condition $\Delta < \epsilon$. Give an example such that Algorithm 8 does not converge using $\gamma = 1$. Your are allowed to initialise the value function V arbitrarily.

2. Convergence of the in-place policy evaluation algorithm

Recall Algorithm 9 from the lecture. We aim to prove convergence of the algorithm (without termination) to V^{π} . Therfore label the state space S by s_1, \ldots, s_K and define

$$T^{\pi}_{s}V(s') = \begin{cases} T^{\pi}V(s) & : s = s' \\ V(s) & : s \neq s' \end{cases}$$

Define the composition $\overline{T}^{\pi}: U \to U, \overline{T}^{\pi}(v) := \left(T_{s_{K}}^{\pi} \circ \cdots \circ T_{s_{1}}^{\pi}\right)(v)$ on the space of all functions $U = \{u: S \to \mathbb{R}\}$ equiped with the supremums norm.

- a) Argue why \overline{T}^{π} is different from the Bellman operator T^{π} .
- b) Show that V^{π} is a fixpoint of the operator \overline{T}^{π} .
- c) Prove that \overline{T}^{π} is a contraction on $(U, || \cdot ||_{\infty})$.

3. Monte Carlo generalised ε -greedy policy iteration

In this exercise, we will use a Monte Carlo estimator to perform policy iteration. After Grid World has been a first example for a Markov decision process, we will now deal with more complex examples.

- a) Implement the ice vendor (Example 3.1.8) as a Markov decision process.
- b) Use the policy iteration from the last lecture to get the optimal decision rule for the iceman.
- c) Implement the Monte Carlo generalised ε -greedy policy iteration (algorithm 18) to get the optimal decision rule for the iceman. Additionally, use different ε parameters as well as a sequence $\varepsilon_n \downarrow 0, n \to \infty$.