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1. Bellman expecation operator.

Recall the Bellman expectation operator for a stationary policy π ∈ Πs:

(T πu)(s) =
∑
a∈A

r(s, a)π(a ; s) + γ
∑
s′∈S

Pπ(S1 = s′|S0 = s)u(s′)

=
∑
a∈A

π(a ; s)
(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)u(s′)
)

Show that we can rewrite the fixed point equation in vector notation, i.e. check that indeed

T πV = V is equivalent to rπ + γPπV = V , where

Pπ =
(∑

a∈A
π(a ; s)p(s′ ; s, a)

)
(s,s′)∈S×S

rπ =
(∑

a∈A
π(a ; s)r(s, a)

)
s∈S

.

Solution:

V = T πV

=
(∑

a∈A
π(a ; s)

(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)V (s′)
))

s∈S

=
(∑

a∈A
π(a ; s)r(s, a)

)
s∈S

+ γ
(∑

s′∈S

∑
a∈A

π(a ; s)p(s′; s, a)V (s′)
)
s∈S

= rπ + γ
(∑

s′∈S
Pπ(s, s

′)V (s′)
)
s∈S

= rπ + γPπV.

2. Exact policy iteration

Consider two types of costumers, L for low and H for high, shopping in a shopping center. Each

quarter the manager devides all costumers into these classes based in their purchase behavior in

the previous quarter. The manager wishes to determine to which classes of costumers he should

send quarterly catalogs. Sending a catalog costs him $15 per costumer. If a costumer received

a catalog at the beginning of the quarter and is in class L at the subsequent quarter, then the

expected purchase is $20, and $10 if he did not receive a catalog. If a costumer is in class H at

the subsequent quarter and received a catalog, then the expected purchase is $50, and $25 if he

did not. The decision wheather or not to send a catalog to a customer also affects the customer’s

classification in the subsequent quarter: If a costumer is in class L at the start of the present
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quarter, then the probability to stay in class L in the subsequent quarter is 0.3 if he receives a

catalog and 0.5 if he does not. For the class H costumer the probability to stay in H for the

subsequent quarter is 0.8 if he receives a catalog and 0.4 if he does not.

Assume that the discount rate is 0.9 and the manager wants to maximize the expected total

discounted reward.

a) Formulate this problem as discounted infinte-horizion Markov decision model.

Solution:

• S = {L,H} is the state space,

• A = {C,NC} is the action space, where C stands for catalog and NC for no catalog,

• R = {5, 10, 35, 25} is the reward space,

• the transition function p({s′, r′}; s, a) is given by

(s, a)\(s′, r′) L, 5 L, 10 H, 35 H, 25 L, 35 L, 25 H, 5 H, 10

L,C 0.3 0 0.7 0 0 0 0 0

L,NC 0 0.5 0 0.5 0 0 0 0

H,C 0.2 0 0.8 0 0 0 0 0

H,NC 0 0.6 0 0.4 0 0 0 0

For example if costumer L receives a catalog ((s, a) = (L,C)) then he stays in class L

with probability 0.3 and thus has an expected purchase of 25− 15 = 5 ((s′, r′) = (L, 5))

or he changes to class H with probability 0.7 and then has an expected purchase of

50−15 = 35 ((s′, r′) = (H, 35)). All other combinations of (s′, r′) have zero probability.

b) What is the expected one-step reward r(s, a) for every state-action pair? Define the statio-

nary policy which has greatest one-step reward.

Solution:

The one step reward is defined by r(s, a) =
∑

s′,r′ r
′p({s′, r′}; s, a). So we have

r(L,C) = 0.3 · 5 + 0.7 · 35 = 26, r(L,NC) = 0.5 · 10 + 0.5 · 25 = 17.5

r(H,C) = 0.2 · 5 + 0.8 · 35 = 29, r(H,NC) = 0.6 · 10 + 0.4 · 25 = 16

Thus, the stationary policy

π(C;L) = 1, π(NC;L) = 0

π(C;H) = 1, π(NC;H) = 0,

maximizes the one step reward.

c) Find an optimal policy using the greedy exact policy iteration (algorithm 11) to find the

optimal policy. Start with the stationary policy from b).

Solution:

We choose π0 = π from b) and first have to calculate V π0
= (I − γPπ0)−1rπ0 By the

definition of π0 we see that rπ0 =
(∑

a∈A π0(a ; s)r(s, a)
)
s∈S

is given by

rπ0 =

(
26

29

)
.
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For Pπ0(s, s′) =
∑

a∈A π0(a ; s)p(s′ ; s, a) we have

Pπ0 =

(
0.3 0.7

0.8 0.2

)
.

Thus,

(I − γPπ0)−1 =

(
1− 0.9 · 0.3 −0.9 · 0.7
−0.9 · 0.8 1− 0.9 · 0.2

)−1

=
1

0.73 · 0.82− (−0.27) · (−0.72)

(
0.82 0.27

0.72 0.73

)

=

(
2.03 0.67

1.78 1.81

)
.

Now we can caluclate V π0
by

V π0
=

(
2.03 0.67

1.78 1.81

)(
26

29

)
=

(
72.21

98.77

)
.

We continue with the next step in the algorithm and calculate Qπ0
(s, a) =

r(s, a) + γ
∑

s′ p(s
′; s, a)V π0

(s′):

Qπ0
(L,C) = 26 + 0.9(0.3 · 72.21 + 0.7 · 98.77) = 107.72

Qπ0
(L,NC) = 17.5 + 0.9(0.5 · 72.21 + 0.5 · 98.77) = 94.44

Qπ0
(H,C) = 29 + 0.9(0.2 · 72.21 + 0.8 · 98.77) = 113.11

Qπ0
(H,NC) = 16 + 0.9(0.6 · 72.21 + 0.4 · 98.77) = 90.55

We follow the policy

π1(C;L) = 1, π1(NC;L) = 0

π1(C;H) = 1, π1(NC;H) = 0,

and see that π0 = π1. Hence the algorithm is terminated and the optimal policy is π0 = π1.
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