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1. Best Baseline

The variance of a random vector X is defined by to be V[X] := IE[||X||22] − ||E[X]||22. Show by

differentiation that

b∗ =
IEπθ

[XA||∇ log πθ(A)||22]
IEπθ

[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of ∇J(θ).

2. Programming task, Gradient Bandit Methods

Implement the Gradient Bandit algorithm from example 1.2.15 of the lecture. The probability

that an arm is drawn is given by the soft-max distribution

Pπ(At = a) =
exp(θt(a))
k∑

b=1

exp(θt(b))

=: πt(a), a ∈ A.

The weights are updated as follows

θt+1(a) =

θt(a) + α(xt − xt)(1− πt(a)) , a = At

θt(a)− α(xt − xt)πt(a) , otherwise
,

where α > 0 is a step-size parameter and xt :=
1

t−1

t−1∑
i=1

xt is the mean reward until time t − 1.

Implement the Gradient Bandit algorithm with and without the baseline term xt, t ∈ {1, . . . , n}
and test both algorithm on a Gaussian Bandit. Play around with the mean parameters of the

Gaussian Bandit. What do you notice?

3. Programming task, Boltzmann Exploration

In this task we want to implement different variants of the Boltzmann Exploration Algorithm.

(a) Use the implementation from Algorithm 1.

(b) Use the Gumbel trick from Lemma 1.2.11 to implement the algorithm.

(c) Use the implementation of Boltzmann exploration from algorithm 2. Source: paper section

4.
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https://proceedings.neurips.cc/paper/2017/file/b299ad862b6f12cb57679f0538eca514-Paper.pdf


Input : Initialization Q̂a(0), a ∈ A, number of total timesteps n ∈ IN, number of arms k ∈ IN

and parameter θ > 0

Output: Trajectory of Rewards (xt)t∈{1,...,n} and actions (at)t∈{1,...,n}

begin

for t← 1 to n do

Sample at from SM
(
θ, (Q̂a(t))a∈A

)
;

Obtain reward xt by playing arm at;

Update the estimated action value functions
(
Q̂a(t), a ∈ A

)
;

end

return (xt)t∈{1,...,n}, (xt)t∈{1,...,n} ;

end
Algorithm 1: Boltzmann exploration algorithm

Input : Initialization Q̂a(0), a ∈ A, number of total timesteps n, number of arms k ∈ IN and

parameter C ∈ IR

Output: Trajectory of Rewards (Xt)t∈{1,...,n} and actions (At)t∈{1,...,n}

begin

for t← 1 to n do

Simulate za, a ∈ A independently identically standard Gumbel;

Set at = argmax
a∈A

{
Q̂a(t) +

√
C2

Na
za
}
;

Obtain reward xt by playing arm at;

Set Nat = Nat + 1;

Update the estimated action value functions
(
Q̂a(t)

)
;

end

return (Xt)t∈{1,...,n}, (At)t∈{1,...,n} ;

end
Algorithm 2: Boltzmann exploration algorithm modified

2



(d) Test the different algorithms on a multi-armed bandit. Which algorithm with which pa-

rameter configuration leads to the best results (minimum reward, maximum best action

probability)?
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