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1. Sub-Gaussian random variables
Recall Definition 1.2.3. of a o-sub-Gaussian random variable X.
a) Show that every o-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] < o2.

Solution:

Let X be a o-sub-Gaussian random variable. Then by Fubini
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where we used that both sums are finite due to the finiteness of exp.
Finally for A\ > 0 dividing (2) by 1/X and taking the limits X | 0 leads to
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and for A < 0 similarly
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Hence, E[X] = 0.
Rewriting (2) once again and deviding by \* results in
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which proofs the second claim.
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Suppose X is o-sub-Gaussian. Prove that cX is |c|o-sub-Gaussian.
Solution:
We have
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Thus, c¢X is |c|o-sub-Gaussian.

Show that X7 + Xo is \/0% +0§—sub—Gaussian if X1 and X, are independent oq-sub-
Gaussian and os-sub-Gaussian random variables.

Solution:
We have

My () = B[0000] — [ i

-l el

)\20'% A2 rr%
<e 2 e 2

SO i
= xp(TVILERE)

where the thrid equality follows from independence. This proofs the claim.

Show that a Bernoulli-variable is %—sub—Gaussian.
Solution:

FEzxactly as in the next exercise but with a =0 and b = 1.

Show that every centered bounded random variable, say bounded below by a and above by
b is @—snb—(}aussian.
Solution:

As a < X < b we have almost surely
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where we used IE[X]| = 0 and L(h) is definied by
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We will show that L(h) < h?/8, then it follows
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So let us proof that L(h) < h?/8. Therefore we first calculate the first and second derivative.

which proofs that X is o-sub-Gauss with o =
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By Taylor we know there exists 6 € [0, 1] such that

L(h) = L(0) + hVL(0) + %hQVZL(hH) = %h2V2L(h9).

This conclues the proof.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise
sheet. Show that

R,(m) <A+ Cyn

for some model-free constant C' so that, in particular, R,(7) < 1+ C'y/n for all bandit models
with regret bound A <1 (for instance for Bernoulli bandits).
Hint: Use the same trick as in the proof of Theorem 1.2.10.
Solution:
We will first show that
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by plugging m* = max{1, [é log(”TMﬂ} into the regret bound from the last exercise sheet
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This leads to

2 2
R, <m*A+ (n—2m*)A exp(—% max{1, [ log(nﬁ )1}
A2 A2 4 nA2

=m*A+ (n—2m*)A min{eXp(—T%eXp(—T [E IOg(Tﬂ)}

A2 2
<oxp(— 47 2 log(n82))< 4

A? 4

< * — - - *, Ao

m*A + min{(n — 2m*)A exp( 1 ), (n 27>7;L) )AAgn}
) _ ) A2 4

<m*A 4+ min{(n — 2m™)A eXP(—T)’ Z}
A% 4 nA?

< 3 * _ * — ) —

< min {m A+ (n —2m*)Aexp( 1 ), A + max{1, (A log(—— )]}A}

<1 (1+max{0 log( )})A

. " 4 nA2
< min { —m* A +nA A + Z(l + max{0, log(T)})}
<0
A2
~ N}
Using this we can devide in the cases A < \/g and A > \/g, for some constant ¢ > 0 which we
specify later. Thus, in the first case A < \/% we have
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R, < min {nA, A+ %(1 + max{(),log(%)})} <nA < en.

For the second case we consider the second term and rewrite

2 og(BA?
2(1 + max{0, log( ﬁ )}) < 4(% 4 1g<A4))

an
We define f(x) = log(T), and prove f(x) < 2 for x > \/6274. If this is true we have for the
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second case with ¢ = €24 that
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Now to our clarzm. We have
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and so f'(z) <0 iff
nx? e24

log( )>2 & >4 —.

Thus f decreases in | %4,00) and so f(x) < f(\/e%‘l) = 2.
Coosing C = 8 + % concludes the proof, as for the first case with ¢ = e*4 we have R, < 2ey/n <
A+ Cy/n and for the second case also R, < A+ Cy/n.



3. Upper bound on Qa(t) for many samples

Suppose v is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm
Qa(t) < Qq + A, with probability 1 — 4, given that T,(t) > 21%(31/5).

Hint: Proof a generalized Hoeffding’s inequality:

Suppose X1, Xo,... are @id random variables on a probability space (Q, F,P) with expectation
W such that Xy is o-sub-Gaussian. Assume further T : Q — {1,2,3,...} is a discrete random
variable, almost surely finite, on the same probability space and independent of X1, Xo,. ...

Then it holds:
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Solution:

Proof: First we proof the generalized Hoeffding inequality. Assume X1, Xo,... are iid random
variables on a probability space (Q, F,P) with expectation p such that Xi is o-sub-Gaussian.
Assume further T : Q — {1,2,3,...} is a discrete random variable, almost surely finite, on the
same probability space and independent of X1, Xo,.... Then by o-additivity and independence

we have
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where we used the normal Hoeffings inequality in the inequality.
Now note that T,(t) > 21%(21/5) is equivalent to
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By the definition of Qu(t) = ﬁZﬁ?)Yi, ((Y;) idid realisation of Arm a), and as T,(t) is



independent of the rewards (Y;);en we have
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