
Prof. Dr. Leif Döring Reinforcement Learning

André Ferdinand, Sara Klein 2. Excercise Sheet

1. Sub-Gaussian random variables

Recall Definition 1.2.3. of a σ-sub-Gaussian random variable X.

a) Show that every σ-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] ≤ σ2.

Solution:

Let X be a σ-sub-Gaussian random variable. Then by Fubini∑
t≥0

λt

t!
IE[Xt] = IE

[
XeλX

]
≤ e

λ2σ2

2 =
∑
t≥0

λ2tσ2t

2tt!
. (1)

We follow that

λIE[X] +
λ2

2
IE[X2] ≤ λ2σ2

2
+ g(λ), (2)

for

g(λ) =
∑
t≥2

λ2tσ2t

2tt!
−

∑
t≥3

λt

t!
IE[Xt].

Note that g ∈ o(λ2) because

lim
λ→0

g(λ)

λ2
=

∑
t≥2

lim
λ→0

λ2tσ2t

2tt!
−
∑
t≥3

lim
λ→0

λt

t!
IE[Xt] = 0,

where we used that both sums are finite due to the finiteness of exp.

Finally for λ > 0 dividing (2) by 1/λ and taking the limits λ ↓ 0 leads to

IE[X] ≤ λσ2

2
+

g(λ)

λ
− λ

2
IE[X2] → 0, λ ↓ 0

and for λ < 0 similarly

IE[X] ≥ λσ2

2
+

g(λ)

λ
− λ

2
IE[X2] → 0, λ ↑ 0.

Hence, IE[X] = 0.

Rewriting (2) once again and deviding by λ2 results in

IE[X2] ≤ 2
(σ2

2
+

g(λ)

λ2

)
→ σ2, λ → 0,

which proofs the second claim.
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b) Suppose X is σ-sub-Gaussian. Prove that cX is |c|σ-sub-Gaussian.

Solution:

We have

McX(λ) = IE
[
eλcX

]
≤ e

(cλ)2σ2

2 = e
λ2(cσ)2

2 .

Thus, cX is |c|σ-sub-Gaussian.

c) Show that X1 + X2 is
√

σ2
1 + σ2

2-sub-Gaussian if X1 and X2 are independent σ1-sub-

Gaussian and σ2-sub-Gaussian random variables.

Solution:

We have

MX1+X2(λ) = IE
[
eλ(X1+X2)

]
= IE

[
eλX1eλX2

]
= IE

[
eλX1

]
IE
[
eλX2

]
≤ e

λ2σ2
1

2 e
λ2σ2

2
2

= exp(
λ2(

√
σ2
1 + σ2

2)
2

2
).

where the thrid equality follows from independence. This proofs the claim.

d) Show that a Bernoulli-variable is 1
2 -sub-Gaussian.

Solution:

Exactly as in the next exercise but with a = 0 and b = 1.

e) Show that every centered bounded random variable, say bounded below by a and above by

b is (b−a)
2 -sub-Gaussian.

Solution:

As a ≤ X ≤ b we have almost surely

eλX ≤ b−X

b− a
eλa +

X − a

b− a
eλb.

We follow

IE
[
eλX

]
≤ b− IE[X]

b− a
eλa +

IE[X]− a

b− a
eλb

=
b

b− a
eλa − a

b− a
eλb

= expL(λ(b− a)),

where we used IE[X] = 0 and L(h) is definied by

L(h) =
ha

(b− a)
+ log

(
1 +

a− eha

b− a

)
.

We will show that L(h) ≤ h2/8, then it follows

IE
[
eλX

]
≤ expL(λ(b− a)) ≤ exp(

λ2(b− a)2

8
),
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which proofs that X is σ-sub-Gauss with σ = (b−a)
2 .

So let us proof that L(h) ≤ h2/8. Therefore we first calculate the first and second derivative.

∇L(h) =
a

b− a
− eha

b− eha
,

∇2L(h) = − ehab

(b− eha)2
.

Note now, that

L(0) = 0,

∇L(0) = 0 and

∇2L(h) = − ehab

(b− eha)2︸ ︷︷ ︸
≥−4(beha)

≤ ehab

4ehab
≤ 1

4
.

By Taylor we know there exists θ ∈ [0, 1] such that

L(h) = L(0) + h∇L(0) +
1

2
h2∇2L(hθ) =

1

2
h2∇2L(hθ).

As ∇2L(h) ≤ 1
4 , we have

L(h) ≤ 1

2
h2

1

4
=

h2

8
.

This conclues the proof.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise

sheet. Show that

Rn(π) ≤ ∆+ C
√
n

for some model-free constant C so that, in particular, Rn(π) ≤ 1 + C
√
n for all bandit models

with regret bound ∆ ≤ 1 (for instance for Bernoulli bandits).

Hint: Use the same trick as in the proof of Theorem 1.2.10.

Solution:

We will first show that

Rn(π) ≤ min{n∆,∆+
4

∆

(
1 + max{0, log(n∆

2

4
)}
)
}

by plugging m∗ = max{1, ⌈ 4
∆2 log(

n∆2

4 )⌉} into the regret bound from the last exercise sheet

Rn ≤ m∗∆+ (n− 2m∗)∆ exp(−m∗∆2

4
).
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This leads to

Rn ≤ m∗∆+ (n− 2m∗)∆ exp(−∆2

4
max{1, ⌈ 4

∆2
log(

n∆2

4
)⌉})

= m∗∆+ (n− 2m∗)∆min{exp(−∆2

4
), exp(−∆2

4
⌈ 4

∆2
log(

n∆2

4
)⌉)︸ ︷︷ ︸

≤exp(−∆2

4
4

∆2 log(n∆2

4
))≤ 4

∆2n

}

≤ m∗∆+min{(n− 2m∗)∆ exp(−∆2

4
), (n− 2m∗︸︷︷︸

>0

)∆
4

∆2n
}

≤ m∗∆+min{(n− 2m∗)∆ exp(−∆2

4
),

4

∆
}

≤ min
{
m∗∆+ (n− 2m∗)∆ exp(−∆2

4
)︸ ︷︷ ︸

≤1

,
4

∆
+max{1, ⌈ 4

∆2
log(

n∆2

4
)⌉}∆︸ ︷︷ ︸

≤(1+max{0, 4
∆2 log(n∆2

4
)})∆

}

≤ min
{
−m∗∆︸ ︷︷ ︸

≤0

+n∆,∆+
4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

≤ min
{
n∆,∆+

4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

.

Using this we can devide in the cases ∆ ≤
√

c
n and ∆ >

√
c
n , for some constant c > 0 which we

specify later. Thus, in the first case ∆ ≤
√

c
n we have

Rn ≤ min
{
n∆,∆+

4

∆

(
1 + max{0, log(n∆

2

4
)}
)}

≤ n∆ ≤
√
cn.

For the second case we consider the second term and rewrite

4

∆

(
1 + max{0, log(n∆

2

4
)}
)
≤ 4(

1

∆
+

log(n∆
2

4 )

∆
).

We define f(x) =
log(nx2

4
)

x , and prove f(x) ≤ 2 for x ≥
√

e24
n . If this is true we have for the

second case with c = e24 that

Rn ≤ ∆+ 4(
1

∆
+

log(n∆
2

4 )

∆
)

≤ ∆+ 4(

√
n

c
+ 2) ≤ ∆+

√
n(8 +

4√
c
) = ∆+

√
n(8 +

2

e
).

Now to our claim. We have

f ′(x) =
2− log(nx

2

4 )

x2

and so f ′(x) ≤ 0 iff

log(
nx2

4
) ≥ 2 ⇔ x ≥

√
e24

n
.

Thus f decreases in [
√

e24
n ,∞) and so f(x) ≤ f(

√
e24
n ) = 2.

Coosing C = 8+ 2
e concludes the proof, as for the first case with c = e24 we have Rn ≤ 2e

√
n ≤

∆+ C
√
n and for the second case also Rn ≤ ∆+ C

√
n.
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3. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

Hint: Proof a generalized Hoeffding’s inequality:

Suppose X1, X2, . . . are iid random variables on a probability space (Ω,F ,P) with expectation

µ such that X1 is σ-sub-Gaussian. Assume further T : Ω → {1, 2, 3, . . . } is a discrete random

variable, almost surely finite, on the same probability space and independent of X1, X2, . . . .

Then it holds:

P
( 1

T

T∑
n=1

Xn − µ ≥
√

2 log(1/δ)

T

)
≤ δ.

Solution:

Proof: First we proof the generalized Hoeffding inequality. Assume X1, X2, . . . are iid random

variables on a probability space (Ω,F ,P) with expectation µ such that X1 is σ-sub-Gaussian.

Assume further T : Ω → {1, 2, 3, . . . } is a discrete random variable, almost surely finite, on the

same probability space and independent of X1, X2, . . . . Then by σ-additivity and independence

we have

P
( 1

T

T∑
n=1

Xn − µ ≥
√

2 log(1/δ)

T

)

= P
({ 1

T

T∑
n=1

Xn − µ ≥
√

2 log(1/δ)

T

}
∩
{ ∞⊎
n=1

{T = n}
})

=

∞∑
n=1

P
({ 1

T

T∑
n=1

Xn − µ ≥
√

2 log(1/δ)

T

}
∩
{
T = n

})
=

∞∑
n=1

P(T = n)P
( 1

n

n∑
i=1

Xi − µ ≥
√

2 log(1/δ)

n

)
≤

∞∑
n=1

P(T = n)δ

= δ

where we used the normal Hoeffings inequality in the inequality.

Now note that Ta(t) >
2 log(1/δ)

∆2
a

is equivalent to

∆a >

√
2 log(1/δ)

Ta(t)
.

By the definition of Q̂a(t) = 1
Ta(t)

∑Ta(t)
i=1 Yi, ((Yi) iid realisation of Arm a), and as Ta(t) is
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independent of the rewards (Yi)i∈N we have

Pπ
((

Q̂a(t) < Qa +∆a

)
∩
(
Ta(t) >

2 log(1/δ)

∆2
a

))
≥ Pπ

(
Q̂a(t)−Qa <

√
2 log(1/δ)

Ta(t)

)
= 1− Pπ

(
Q̂a(t)−Qa ≥

√
2 log(1/δ)

Ta(t)

)
≥ 1− δ.
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