André Ferdinand, Sara Klein

2. Excercise Sheet

1. Sub-Gaussian random variables

Recall Definition 1.2.3. of a σ-sub-Gaussian random variable X.
a) Show that every σ-sub-Gaussian random variable satisfies $\mathbb{E}[X]=0$ and $\mathbb{V}[X] \leq \sigma^{2}$.

Solution:

Let X be a σ-sub-Gaussian random variable. Then by Fubini

$$
\begin{equation*}
\sum_{t \geq 0} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right]=\mathbb{E}\left[X e^{\lambda X}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}=\sum_{t \geq 0} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!} \tag{1}
\end{equation*}
$$

We follow that

$$
\begin{equation*}
\lambda \mathbb{E}[X]+\frac{\lambda^{2}}{2} \mathbb{E}\left[X^{2}\right] \leq \frac{\lambda^{2} \sigma^{2}}{2}+g(\lambda), \tag{2}
\end{equation*}
$$

for

$$
g(\lambda)=\sum_{t \geq 2} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!}-\sum_{t \geq 3} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right] .
$$

Note that $g \in o\left(\lambda^{2}\right)$ because

$$
\lim _{\lambda \rightarrow 0} \frac{g(\lambda)}{\lambda^{2}}=\sum_{t \geq 2} \lim _{\lambda \rightarrow 0} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!}-\sum_{t \geq 3} \lim _{\lambda \rightarrow 0} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right]=0
$$

where we used that both sums are finite due to the finiteness of exp.
Finally for $\lambda>0$ dividing (2) by $1 / \lambda$ and taking the limits $\lambda \downarrow 0$ leads to

$$
\mathbb{E}[X] \leq \frac{\lambda \sigma^{2}}{2}+\frac{g(\lambda)}{\lambda}-\frac{\lambda}{2} \mathbb{E}\left[X^{2}\right] \rightarrow 0, \quad \lambda \downarrow 0
$$

and for $\lambda<0$ similarly

$$
\mathbb{E}[X] \geq \frac{\lambda \sigma^{2}}{2}+\frac{g(\lambda)}{\lambda}-\frac{\lambda}{2} \mathbb{E}\left[X^{2}\right] \rightarrow 0, \quad \lambda \uparrow 0 .
$$

Hence, $\mathbb{E}[X]=0$.
Rewriting (2) once again and deviding by λ^{2} results in

$$
\mathbb{E}\left[X^{2}\right] \leq 2\left(\frac{\sigma^{2}}{2}+\frac{g(\lambda)}{\lambda^{2}}\right) \rightarrow \sigma^{2}, \quad \lambda \rightarrow 0,
$$

which proofs the second claim.
b) Suppose X is σ-sub-Gaussian. Prove that $c X$ is $|c| \sigma$-sub-Gaussian.

Solution:
We have

$$
M_{c X}(\lambda)=\mathbb{E}\left[e^{\lambda c X}\right] \leq e^{\frac{(c \lambda)^{2} \sigma^{2}}{2}}=e^{\frac{\lambda^{2}(c \sigma)^{2}}{2}}
$$

Thus, $c X$ is $|c| \sigma$-sub-Gaussian.
c) Show that $X_{1}+X_{2}$ is $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$-sub-Gaussian if X_{1} and X_{2} are independent σ_{1}-subGaussian and σ_{2}-sub-Gaussian random variables.
Solution:
We have

$$
\begin{aligned}
M_{X_{1}+X_{2}}(\lambda) & =\mathbb{E}\left[e^{\lambda\left(X_{1}+X_{2}\right)}\right]=\mathbb{E}\left[e^{\lambda X_{1}} e^{\lambda X_{2}}\right] \\
& =\mathbb{E}\left[e^{\lambda X_{1}}\right] \mathbb{E}\left[e^{\lambda X_{2}}\right] \\
& \leq e^{\frac{\lambda^{2} \sigma_{1}^{2}}{2}} e^{\frac{\lambda^{2} \sigma_{2}^{2}}{2}} \\
& =\exp \left(\frac{\lambda^{2}\left(\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}{2}\right) .
\end{aligned}
$$

where the thrid equality follows from independence. This proofs the claim.
d) Show that a Bernoulli-variable is $\frac{1}{2}$-sub-Gaussian.

Solution:
Exactly as in the next exercise but with $a=0$ and $b=1$.
e) Show that every centered bounded random variable, say bounded below by a and above by b is $\frac{(b-a)}{2}$-sub-Gaussian.
Solution:
As $a \leq X \leq b$ we have almost surely

$$
e^{\lambda X} \leq \frac{b-X}{b-a} e^{\lambda a}+\frac{X-a}{b-a} e^{\lambda b}
$$

We follow

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda X}\right] & \leq \frac{b-\mathbb{E}[X]}{b-a} e^{\lambda a}+\frac{\mathbb{E}[X]-a}{b-a} e^{\lambda b} \\
& =\frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b} \\
& =\exp L(\lambda(b-a)),
\end{aligned}
$$

where we used $\mathbb{E}[X]=0$ and $L(h)$ is definied by

$$
L(h)=\frac{h a}{(b-a)}+\log \left(1+\frac{a-e^{h} a}{b-a}\right) .
$$

We will show that $L(h) \leq h^{2} / 8$, then it follows

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq \exp L(\lambda(b-a)) \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

which proofs that X is σ-sub-Gauss with $\sigma=\frac{(b-a)}{2}$.
So let us proof that $L(h) \leq h^{2} / 8$. Therefore we first calculate the first and second derivative.

$$
\begin{aligned}
& \nabla L(h)=\frac{a}{b-a}-\frac{e^{h} a}{b-e^{h} a}, \\
& \nabla^{2} L(h)=-\frac{e^{h} a b}{\left(b-e^{h} a\right)^{2}} .
\end{aligned}
$$

Note now, that

$$
\begin{aligned}
& L(0)=0, \\
& \nabla L(0)=0 \text { and } \\
& \nabla^{2} L(h)=-\underbrace{\frac{e^{h} a b}{\left(b-e^{h} a\right)^{2}}}_{\geq-4\left(b e^{h} a\right)} \leq \frac{e^{h} a b}{4 e^{h} a b} \leq \frac{1}{4} .
\end{aligned}
$$

By Taylor we know there exists $\theta \in[0,1]$ such that

$$
L(h)=L(0)+h \nabla L(0)+\frac{1}{2} h^{2} \nabla^{2} L(h \theta)=\frac{1}{2} h^{2} \nabla^{2} L(h \theta) .
$$

As $\nabla^{2} L(h) \leq \frac{1}{4}$, we have

$$
L(h) \leq \frac{1}{2} h^{2} \frac{1}{4}=\frac{h^{2}}{8} .
$$

This conclues the proof.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise sheet. Show that

$$
R_{n}(\pi) \leq \Delta+C \sqrt{n}
$$

for some model-free constant C so that, in particular, $R_{n}(\pi) \leq 1+C \sqrt{n}$ for all bandit models with regret bound $\Delta \leq 1$ (for instance for Bernoulli bandits).
Hint: Use the same trick as in the proof of Theorem 1.2.10.
Solution:
We will first show that

$$
R_{n}(\pi) \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\}
$$

by plugging $m^{*}=\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}$ into the regret bound from the last exercise sheet

$$
R_{n} \leq m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{m^{*} \Delta^{2}}{4}\right) .
$$

This leads to

$$
\begin{aligned}
R_{n} & \leq m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4} \max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}\right) \\
& =m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \min \{\exp \left(-\frac{\Delta^{2}}{4}\right), \underbrace{\left.\exp \left(-\frac{\Delta^{2}}{4}\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right)\right\}}_{\leq \exp \left(-\frac{\Delta^{2}}{4} \frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right) \leq \frac{4}{\Delta^{2} n}} \\
& \leq m^{*} \Delta+\min \{\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4}\right),(n-\underbrace{2 m^{*}}_{>0}) \Delta \frac{4}{\Delta^{2} n}\} \\
& \leq m^{*} \Delta+\min \left\{\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4}\right), \frac{4}{\Delta}\right\} \\
& \leq \min \{m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \underbrace{\exp \left(-\frac{\Delta^{2}}{4}\right)}_{\leq 1}, \frac{4}{\Delta}+\underbrace{\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\} \Delta}_{\leq\left(1+\max \left\{0, \frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right) \Delta}\} \\
& \leq \min \{\underbrace{-m^{*} \Delta}_{\leq 0}+n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\} \\
& \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\} .
\end{aligned}
$$

Using this we can devide in the cases $\Delta \leq \sqrt{\frac{c}{n}}$ and $\Delta>\sqrt{\frac{c}{n}}$, for some constant $c>0$ which we specify later. Thus, in the first case $\Delta \leq \sqrt{\frac{c}{n}}$ we have

$$
R_{n} \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\} \leq n \Delta \leq \sqrt{c n} .
$$

For the second case we consider the second term and rewrite

$$
\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right) \leq 4\left(\frac{1}{\Delta}+\frac{\log \left(\frac{n \Delta^{2}}{4}\right)}{\Delta}\right)
$$

We define $f(x)=\frac{\log \left(\frac{n x^{2}}{4}\right)}{x}$, and prove $f(x) \leq 2$ for $x \geq \sqrt{\frac{e^{2} 4}{n}}$. If this is true we have for the second case with $c=e^{2} 4$ that

$$
\begin{aligned}
R_{n} & \leq \Delta+4\left(\frac{1}{\Delta}+\frac{\log \left(\frac{n \Delta^{2}}{4}\right)}{\Delta}\right) \\
& \leq \Delta+4\left(\sqrt{\frac{n}{c}}+2\right) \leq \Delta+\sqrt{n}\left(8+\frac{4}{\sqrt{c}}\right)=\Delta+\sqrt{n}\left(8+\frac{2}{e}\right) .
\end{aligned}
$$

Now to our claim. We have

$$
f^{\prime}(x)=\frac{2-\log \left(\frac{n x^{2}}{4}\right)}{x^{2}}
$$

and so $f^{\prime}(x) \leq 0$ iff

$$
\log \left(\frac{n x^{2}}{4}\right) \geq 2 \quad \Leftrightarrow \quad x \geq \sqrt{\frac{e^{2} 4}{n}} .
$$

Thus f decreases in $\left[\sqrt{\frac{e^{2} 4}{n}}, \infty\right)$ and so $f(x) \leq f\left(\sqrt{\frac{e^{2} 4}{n}}\right)=2$.
Coosing $C=8+\frac{2}{e}$ concludes the proof, as for the first case with $c=e^{2} 4$ we have $R_{n} \leq 2 e \sqrt{n} \leq$ $\Delta+C \sqrt{n}$ and for the second case also $R_{n} \leq \Delta+C \sqrt{n}$.

3. Upper bound on $\hat{Q}_{a}(t)$ for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm $\hat{Q}_{a}(t)<Q_{a}+\Delta_{a}$ with probability $1-\delta$, given that $T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}$.
Hint: Proof a generalized Hoeffding's inequality:
Suppose X_{1}, X_{2}, \ldots are iid random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with expectation μ such that X_{1} is σ-sub-Gaussian. Assume further $T: \Omega \rightarrow\{1,2,3, \ldots\}$ is a discrete random variable, almost surely finite, on the same probability space and independent of X_{1}, X_{2}, \ldots.
Then it holds:

$$
\mathbb{P}\left(\frac{1}{T} \sum_{n=1}^{T} X_{n}-\mu \geq \sqrt{\frac{2 \log (1 / \delta)}{T}}\right) \leq \delta .
$$

Solution:

Proof: First we proof the generalized Hoeffding inequality. Assume X_{1}, X_{2}, \ldots are iid random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with expectation μ such that X_{1} is σ-sub-Gaussian. Assume further $T: \Omega \rightarrow\{1,2,3, \ldots\}$ is a discrete random variable, almost surely finite, on the same probability space and independent of X_{1}, X_{2}, \ldots Then by σ-additivity and independence we have

$$
\begin{aligned}
& \mathbb{P}\left(\frac{1}{T} \sum_{n=1}^{T} X_{n}-\mu \geq \sqrt{\frac{2 \log (1 / \delta)}{T}}\right) \\
& =\mathbb{P}\left(\left\{\frac{1}{T} \sum_{n=1}^{T} X_{n}-\mu \geq \sqrt{\frac{2 \log (1 / \delta)}{T}}\right\} \cap\left\{\biguplus_{n=1}^{\infty}\{T=n\}\right\}\right) \\
& =\sum_{n=1}^{\infty} \mathbb{P}\left(\left\{\frac{1}{T} \sum_{n=1}^{T} X_{n}-\mu \geq \sqrt{\frac{2 \log (1 / \delta)}{T}}\right\} \cap\{T=n\}\right) \\
& =\sum_{n=1}^{\infty} \mathbb{P}(T=n) \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu \geq \sqrt{\frac{2 \log (1 / \delta)}{n}}\right) \\
& \leq \sum_{n=1}^{\infty} \mathbb{P}(T=n) \delta \\
& =\delta
\end{aligned}
$$

where we used the normal Hoeffings inequality in the inequality.
Now note that $T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}$ is equivalent to

$$
\Delta_{a}>\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}}
$$

By the definition of $\hat{Q}_{a}(t)=\frac{1}{T_{a}(t)} \sum_{i=1}^{T_{a}(t)} Y_{i},\left(\left(Y_{i}\right)\right.$ iid realisation of Arm a), and as $T_{a}(t)$ is
independent of the rewards $\left(Y_{i}\right)_{i \in \mathbb{N}}$ we have

$$
\begin{aligned}
& \mathbb{P}^{\pi}\left(\left(\hat{Q}_{a}(t)<Q_{a}+\Delta_{a}\right) \cap\left(T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right)\right) \\
& \geq \mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a}<\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}}\right) \\
& =1-\mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}}\right) \\
& \geq 1-\delta
\end{aligned}
$$

