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1. Sub-Gaussian random variables

Recall Definition 1.2.3. of a o-sub-Gaussian random variable X.

a) Show that every o-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] < o2.
b) Suppose X is o-sub-Gaussian. Prove that cX is |c|o-sub-Gaussian.

¢) Show that X; + X is \/O’% —|—cr%-sub—Gaussian if X7 and Xy are independent oi-sub-

Gaussian and o9-sub-Gaussian random variables.

d) Show that a Bernoulli-variable is %—sub—Gaussian.

e) Show that every centered bounded random variable, say bounded below by a and above by

b is (b;a)—sub—Gaussian.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise
sheet. Show that

R,(m) <A+ Cyn

for some model-free constant C' so that, in particular, R, () < 14 Cy/n for all bandit models
with regret bound A <1 (for instance for Bernoulli bandits).
Hint: Use the same trick as in the proof of Theorem 1.2.10.

3. Upper bound on Qa(t) for many samples

Suppose v is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm
Qa(t) < Qq + A, with probability 1 — 4, given that T,(t) > 21%(21/6).

Hint: Proof a generalized Hoeffding’s inequality: ’

Suppose X1, Xo,... are iid random variables on a probability space (Q, F,P) with expectation
w such that Xy is o-sub-Gaussian. Assume further T : Q — {1,2,3,...} is a discrete random
variable, almost surely finite, on the same probability space and independent of X1, Xo,....

Then it holds:

P(g 3% -nz 2 <6



4. Programming task: ¢e-greedy and UCB

In this task, we want to implement the e-greedy algorithm and the UCB algorithm of the lecture

for the multi-armed bandit problem. As a reminder, we have written the two algorithms again

on the exercise sheet.
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(c)

Input

Suppose we have a Gaussian bandit with 10 arms that walks for 1000 steps. Implement
the e-greedy algorithm and plot the regret and percentage of optimal actions for different
g-configurations. Perform the same experiment with the Bernoulli Bandit. Are there any

differences?

Implement the UCB algorithm. Compare your results for different Gaussian Bandits (espe-
cially different variances) and use different §. Especially compare different prefactors for the
term log(1/d) with 6 = # as discussed in the lecture. As a reminder, the UCB algorithm

is given by

A 2log(1/9)

W) + Ta(t) #0
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In addition, for the Bernoulli Bandit use the modified UCB for o-subgaussian Bandits from

the skript. Compare again different values for o.

In the lecture, the regret bound

R, < 32Aa+1610g(n) Z AL

acA a:aFax

for § = 7712 was derived. Add this plot to the experiment from the previous experiment.

: Parameter 0, number of total timesteps n and number of arms k

Output: Trajectory of Rewards (X¢)seq1,...n) and actions (A¢)ieqi,.. 0}

begin

end

for t + 1 ton do

Choose action A; = arg max; UCB;(t — 1, 6);

Observe reward X; and update the upper confidence bounds;

end

return (Xy)ieq1,.nys (At)teqt,..n}

Algorithm 1: UCB(6) algorithm



Input : Parameter varepsilon, number of arms n

Output: Trajectory of Rewards (X¢);eq1,....n) and actions (Ag)seqi,...

begin
fort+ 1 tondo
Choose U ~ U([0,1]);
if U < ¢ then
Choose A; uniformly;
Obtain reward X; by playing arm A;;
Update the estimated action value function Q(t);
end
else
Set A; = argmax, Q,(t — 1);
Obtain reward X; by playing arm A;;

Update the estimated action value function Q(t);

end
end

return (Xt)eq1,..n}» (At)iefn,...n}3
end

Algorithm 2: e-greedy algorithm



