
Prof. Dr. Leif Döring Reinforcement Learning

André Ferdinand, Sara Klein 2. Excercise Sheet

1. Sub-Gaussian random variables

Recall Definition 1.2.3. of a σ-sub-Gaussian random variable X.

a) Show that every σ-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] ≤ σ2.

b) Suppose X is σ-sub-Gaussian. Prove that cX is |c|σ-sub-Gaussian.

c) Show that X1 + X2 is
√

σ2
1 + σ2

2-sub-Gaussian if X1 and X2 are independent σ1-sub-

Gaussian and σ2-sub-Gaussian random variables.

d) Show that a Bernoulli-variable is 1
2 -sub-Gaussian.

e) Show that every centered bounded random variable, say bounded below by a and above by

b is (b−a)
2 -sub-Gaussian.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise

sheet. Show that

Rn(π) ≤ ∆+ C
√
n

for some model-free constant C so that, in particular, Rn(π) ≤ 1 + C
√
n for all bandit models

with regret bound ∆ ≤ 1 (for instance for Bernoulli bandits).

Hint: Use the same trick as in the proof of Theorem 1.2.10.

3. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

Hint: Proof a generalized Hoeffding’s inequality:

Suppose X1, X2, . . . are iid random variables on a probability space (Ω,F ,P) with expectation

µ such that X1 is σ-sub-Gaussian. Assume further T : Ω → {1, 2, 3, . . . } is a discrete random

variable, almost surely finite, on the same probability space and independent of X1, X2,

Then it holds:

P
(1

T

T∑
n=1

Xn − µ ≥
√

2 log(1/δ)

T

)
≤ δ.

1

4. Programming task: ε-greedy and UCB

In this task, we want to implement the ε-greedy algorithm and the UCB algorithm of the lecture

for the multi-armed bandit problem. As a reminder, we have written the two algorithms again

on the exercise sheet.

(a) Suppose we have a Gaussian bandit with 10 arms that walks for 1000 steps. Implement

the ε-greedy algorithm and plot the regret and percentage of optimal actions for different

ε-configurations. Perform the same experiment with the Bernoulli Bandit. Are there any

differences?

(b) Implement the UCB algorithm. Compare your results for different Gaussian Bandits (espe-

cially different variances) and use different δ. Especially compare different prefactors for the

term log(1/δ) with δ = 1
n2 as discussed in the lecture. As a reminder, the UCB algorithm

is given by

UCBa(t, δ) =

Q̂a(t) +
√

2 log(1/δ)
Ta(t)

, Ta(t) ̸= 0

∞ , Ta(t) = 0
.

In addition, for the Bernoulli Bandit use the modified UCB for σ-subgaussian Bandits from

the skript. Compare again different values for σ.

(c) In the lecture, the regret bound

Rn ≤ 3
∑
a∈A
△a + 16 log(n)

∑
a:a̸=a∗

1

△a

for δ = 1
n2 was derived. Add this plot to the experiment from the previous experiment.

Input : Parameter δ, number of total timesteps n and number of arms k

Output: Trajectory of Rewards (Xt)t∈{1,...,n} and actions (At)t∈{1,...,n}

begin

for t← 1 to n do

Choose action At = argmaxiUCBi(t− 1, δ);

Observe reward Xt and update the upper confidence bounds;

end

return (Xt)t∈{1,...,n}, (At)t∈{1,...,n} ;

end

Algorithm 1: UCB(δ) algorithm

2

Input : Parameter varepsilon, number of arms n

Output: Trajectory of Rewards (Xt)t∈{1,...,n} and actions (At)t∈{1,...,n}

begin

for t← 1 to n do

Choose U ∼ U([0, 1]);
if U < ε then

Choose At uniformly;

Obtain reward Xt by playing arm At;

Update the estimated action value function Q̂(t);

end

else

Set At = argmaxa Q̃a(t− 1);

Obtain reward Xt by playing arm At;

Update the estimated action value function Q̃(t);

end

end

return (Xt)t∈{1,...,n}, (At)t∈{1,...,n};

end
Algorithm 2: ε-greedy algorithm

3

