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1. Sample based policy iteration without bounded rewards

Let the second moments of the rewards given a policy π ∈ ΠS exist, i.e.

Eπ
s [R

2
0] < ∞ ∀s ∈ S.

Show that the Theorems 4.5.1 and 4.5.2 still apply to this policy, so that the one-step policy

evaluation schemes from the lecture converge.

2. Convergence theorem 4.3.8 under weaker assumptions

Show that the statement of Theorem 4.3.8 also holds if IE[εi(n) | Fn] ̸= 0 but instead satisfies

∞∑
n=1

αi(n)
∣∣IE[εi(n) | Fn]

∣∣ < ∞

almost surely for all coordinates i = 1, . . . , d. It is enough to prove an improved version of Lemma

4.4.4 where the condition IE[εn | Fn] = 0 is replaced with

∞∑
n=1

αn

∣∣IE[εn | Fn]
∣∣ < ∞. (1)

Apply the Robbins-Siegmund theorem to W 2 and use that W ≤ 1 +W 2.

3. Programming task: One-step policy evaluation on grid world

We want to use the grid world example to illustrate how to perform policy evaluation:

a) Implement the grid world example from the lecture notes with target in the lower right

corner and trap diagonally above or modify the code from the lecture’s webpage.

b) Implement the Algorithms 17 and 18, the one-step policy evaluation schemes for V π and

Qπ respectively, for the grid world example.

c) Think about what you intuitively think the best policy π+ and the worst policy π− are for

grid world and let additionally π be the policy that chooses the next action uniformly for

all available options. Calculate n = 1000 steps of each policy evaluation scheme for π+, π−,

and π.

d) Compare Algorithm 17 to Algorithm 7, the iterative policy evaluation. Which algorithm do

you think performs better? Can we always apply both algorithms?
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