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1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient

descent method. Let F : Rd → R be a function of the form F (x) = E[f(x, Z)] for some Z ∼ µ,

whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to

approximate the gradient of F by ∇xf(x, Zi) with independent realisations Zi ∼ µ in each step,

leading to the following algorithm:

Algorithm 1: Stochastic Gradient Descent

Data: Realisation of initial random variable X0, stepsizes αk

Result: Approximation X of a stationary point of F

Set k = 0

while not converged do
simulate Zk+1 ∼ µ independently

approximate the gradient ∇xF (Xk) through

Gk = ∇xf(Xk, Zk+1)

set Xk+1 = Xk − αkGk

set k = k + 1
end

return X := Xk

Assume the following:

• Let (Ω,F , (Fk)k∈N,P) be a filtered probability space, where the filtration is defined by

Fk := σ(X0, Zm,m ≤ k) for Zk ∼i.i.d µ,

• let F : Rd → R, x 7→ E[f(x, Z)] for Z ∼ µ be an L-smooth function for some L < 1, i.e.

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rd

and let F∗ := infx∈Rd F (x) > −∞,

• let ∇xF (x) = E[∇xf(x, Z)] and E[∥∇xf(x, Z)∥2] ≤ c for some c > 0 and all x ∈ Rd,

• let (αk)k∈N be a sequence of Fk-adapted and strictly positive random variables, where

∞∑
k=1

αk = ∞ and

∞∑
k=1

α2
k < ∞

• let X0 be such that E[F (X0)] < ∞, and

• let (Xk)k∈N be the random variables generated by applying Stochastic Gradient Descent.
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a) For all L-smooth functions f : Rd → R it holds that

f(x+ y) ≤ f(x) + yT∇f(x) +
L

2
∥y∥2 ∀x, y ∈ Rd.

Solution:

Let x, y ∈ Rd be fixed. We define ϕ(t) := f(x+ ty) for all t ∈ [0, 1] and apply the chain rule

in order to derive

ϕ′(t) = yT∇f(x+ ty) ∀t ∈ [0, 1].

By the fundamental theorem of calculus it follows

f(x+ y)− f(x) = ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t)dt =

∫ 1

0
yT∇f(x+ ty)dt

=

∫ 1

0
yT∇f(x)dt+

∫ 1

0
yT (∇f(x+ ty)−∇f(x))dt

≤ yt∇f(x) +

∫ 1

0
∥y∥ · ∥∇f(x+ ty)−∇f(x)∥dt

≤ yT∇f(x) + ∥y∥
∫ 1

0
Lt · ∥y∥dt

= yT∇f(x) +
L

2
∥y∥2,

where we have applied Cauchy-Schwarz followed by the L-smoothness of f .

b) Define Mk+1 := ∇xF (Xk)−∇xf(Xk, Zk+1) and show that

E[Mk+1|Fk] = 0 and E[∥Mk+1∥2|Fk] ≤ c− ∥∇xF (Xk)∥2 ∀k ∈ N.

Solution:

Since by definition of the filtration Xk is Fk-measurable and Zk+1 is independent of Fk we

can compute

E[Mk+1|Fk] = ∇xF (Xk)− E[∇xf( · , Zk+1)](Xk)
ass.
= 0

and

E[∥Mk+1∥2|Fk] = ∥∇xF (Xk)∥2 − 2E[⟨∇xF ( · ),∇xf( · , Zk+1)⟩](Xk)

+ E[∥∇xf( · , Zk+1)](Xk)

ass.
≤ c− ∥∇xF (Xk)∥2.

c) Show that limk→∞ F (Xk) = F∞ almost surely for some almost surely finite random variable.

Solution:

Using a) and b) we obtain (path-wise) that

F (Xk+1) = F (Xk − αk∇xf(Xk, Zk+1))

≤ F (Xk)− αk⟨∇xF (Xk),∇xf(Xk, Zk+1)⟩+ α2
k

L

2
∥∇xf(Xk, Zk+1)∥2

= F (Xk)− αk∥∇xF (Xk)∥2 + αk⟨∇xF (Xk),Mk+1⟩

+ α2
k

L

2
(∥∇xF (Xk)∥2 − 2⟨∇xF (Xk),Mk+1⟩+ ∥Mk+1∥2)
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and therefore, using again that Xk is Fk-measurable,

E[F (Xk+1)− F∗|Fk] ≤ (F (Xk)− F∗) + α2
k

L

2
c− αk∥∇xF (Xk)∥2.

Now a direct application of the Robbins-Siegmund Theorem 4.4.2. with Zk = F (Xk) − F∗,

Ak = 0, Bk = α2
k
L
2 c, and Ck = αk∥∇xF (Xk)∥2 yields the assertion. All random variables

are positive because of the definition of F∗ and the fact that all αk > 0 by assumption and

the summation conditions of the theorem hold because of the assumptions on αk, justifying

its application.

d) Show that limk→∞ ∥∇xF (Xk)∥2 = 0 almost surely.

Solution:

The application of the Robbins-Siegmund Theorem in part c) reveals that almost surely it

holds
∑∞

k=0 αk∥∇xF (Xk)∥2 < ∞. Since
∑∞

k=0 αk = ∞ almost surely, there can not exist

any ϵ > 0 such that on a non-null set of Ω it holds ∥∇xF (Xk(ω))∥2 > ϵ for all k ≥ k̄(ω) ≥ 0

for some k̄(ω). Thus almost surely

lim inf
k→∞

∥∇xF (Xk)∥ = 0.

Now let ω be a path on which the sum over αk∥∇xF (Xk)∥2 is finite and the sum over αk

is infinite. Assume that

lim sup
k→∞

∥∇xF (Xk(ω))∥2 ≥ ϵ2 > 0

and consider two sub-sequences (mj(ω))j∈N, (nj(ω))j∈N, with mj(ω) < nj(ω) < mj+1(ω)

such that
ϵ

3
< ∥∇xf(Xk(ω))∥ for mj(ω) ≤ k < nj(ω)

and

∥∇xf(Xk(ω))∥ ≤ ϵ

3
for nj(ω) ≤ k < mj+1(ω).

Such subsequences must exist, because we proved, that the limes inferior is zero. Moreover,

let j̄(ω) ∈ N be sufficiently large such that

∞∑
k=mj̄(ω)

αk(ω)∥∇xF (Xk(ω))∥2 ≤
ϵ2

9L
.
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Using L-smoothness for all j ≥ j̄(ω) and mj(ω) ≤ m ≤ nj(ω)− 1 it holds true that

E[∥∇xF (Xnj(ω))−∇xF (Xm)∥|Fm](ω) ≤
nj(ω)−1∑
k=m

E[∥∇xF (Xk+1)−∇xF (Xk)∥|Fk](ω)

≤ L

nj(ω)∑
k=m

E[∥Xk+1 −Xk∥|Fk](ω)

=

nj(ω)∑
k=m

αk(ω)E[∥∇xf(Xk, Zk+1)∥|Fk]

=

nj(ω)∑
k=m

αk(ω)∥∇xF (Xk(ω)∥

≤ L
3

ϵ

nj(ω)∑
k=m

αk(ω)∥∇xF (Xk(ω)∥2

≤ ϵ

3
,

where we have used that ∥∇xF (Xk)(ω)∥ > ϵ
3 for mj(ω) ≤ k ≤ nj(ω)− 1. This implies that

∥∇xF (Xm(ω))∥ ≤ E[∥∇xF (Xnj(ω))∥|Fm](ω) +
ϵ

3
≤ 2ϵ

3

and therefore ∥∇xF (Xm(ω))∥ ≤ 2ϵ
3 for all m ≥ mj(ω). This is in contradiction to

lim sup
k→∞

∥∇xF (Xk(ω))∥2 ≥ ϵ2.

Thus, the assertion holds.
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