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1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient
descent method. Let F : R? — R be a function of the form F(z) = E[f(z, Z)] for some Z ~ p,
whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to

approximate the gradient of F' by V, f(x, Z;) with independent realisations Z; ~ u in each step,

leading to the following algorithm:

Algorithm 1: Stochastic Gradient Descent

Data: Realisation of initial random variable X, stepsizes oy
Result: Approximation X of a stationary point of F'
Set k=0

while not converged do
simulate Zy1 ~ p independently

approximate the gradient V,F(X}) through
Gi = V[ (Xk, Zg+1)
set X1 = X — oGy

set k=k+1
end

return X := X,

Assume the following;:

o Let (2, F, (Fk)ken, P) be a filtered probability space, where the filtration is defined by
Fi = 0(Xo, Zm,m < k) for Zp ~iia

let F:R? = R, z+— E[f(x, Z)] for Z ~ pu be an L-smooth function for some L < 1, i.e.

IVF(z) = VF(y)|| < Lz —y|| Va,y € R’

and let F, := inf cpa F'(z) > —oo0,
let V. F(z) = E[V.f(x,Z)] and E[||V.f(z, Z)||?] < ¢ for some ¢ > 0 and all x € R?,

let (ax)ken be a sequence of Fy-adapted and strictly positive random variables, where

o0 [e.9]
E oy, = 00 and E ai < oo
k=1 k=1

let X( be such that E[F(X()] < oo, and

let (X%)ren be the random variables generated by applying Stochastic Gradient Descent.



a) For all L-smooth functions f : R? — R it holds that
flo+y) < @) + 57V @)+ F ol o,y € Y
b) Define My 1 := V,F(Xy) — Vo f(Xk, Zx+1) and show that
E[Mye1|F] = 0 and B[ My |15 < ¢ — [VoF(XQ|? V€ N,

c¢) Schow that limy_, F(Xj) = Fx almost surely for some almost surely finite random varia-
ble.

d) Show that limy s | V. F(Xg)|? = 0 almost surely.



