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1. Convergence of Stochastic Gradient Descent

The goal of this exercise is to prove the convergence of the stochastic version of the gradient

descent method. Let F : Rd → R be a function of the form F (x) = E[f(x, Z)] for some Z ∼ µ,

whose minimum we want to find but whose gradient we cannot exactly compute. The idea is to

approximate the gradient of F by ∇xf(x, Zi) with independent realisations Zi ∼ µ in each step,

leading to the following algorithm:

Algorithm 1: Stochastic Gradient Descent

Data: Realisation of initial random variable X0, stepsizes αk

Result: Approximation X of a stationary point of F

Set k = 0

while not converged do
simulate Zk+1 ∼ µ independently

approximate the gradient ∇xF (Xk) through

Gk = ∇xf(Xk, Zk+1)

set Xk+1 = Xk − αkGk

set k = k + 1
end

return X := Xk

Assume the following:

• Let (Ω,F , (Fk)k∈N,P) be a filtered probability space, where the filtration is defined by

Fk := σ(X0, Zm,m ≤ k) for Zk ∼i.i.d µ,

• let F : Rd → R, x 7→ E[f(x, Z)] for Z ∼ µ be an L-smooth function for some L < 1, i.e.

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ ∀x, y ∈ Rd

and let F∗ := infx∈Rd F (x) > −∞,

• let ∇xF (x) = E[∇xf(x, Z)] and E[∥∇xf(x, Z)∥2] ≤ c for some c > 0 and all x ∈ Rd,

• let (αk)k∈N be a sequence of Fk-adapted and strictly positive random variables, where

∞∑
k=1

αk = ∞ and

∞∑
k=1

α2
k < ∞

• let X0 be such that E[F (X0)] < ∞, and

• let (Xk)k∈N be the random variables generated by applying Stochastic Gradient Descent.
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a) For all L-smooth functions f : Rd → R it holds that

f(x+ y) ≤ f(x) + yT∇f(x) +
L

2
∥y∥2 ∀x, y ∈ Rd.

b) Define Mk+1 := ∇xF (Xk)−∇xf(Xk, Zk+1) and show that

E[Mk+1|Fk] = 0 and E[∥Mk+1∥2|Fk] ≤ c− ∥∇xF (Xk)∥2 ∀k ∈ N.

c) Schow that limk→∞ F (Xk) = F∞ almost surely for some almost surely finite random varia-

ble.

d) Show that limk→∞ ∥∇xF (Xk)∥2 = 0 almost surely.
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