Prof. Dr. Leif Döring
Sara Klein, Benedikt Wille

7. Solution Sheet

1. Proof of Lemma 3.4 .6 for T-step MDPs

Prove Lemma 3.4.6 from the lecture by comparing with the discounted counterpart.
The following holds for the optimal time-state value function and the optimal time-state-action value function for any $s \in \mathcal{S}$:
(i) $V_{t}^{*}(s)=\max _{a \in \mathcal{A}_{s}} Q_{t}^{*}(s, a)$ for all $t \leq T$,
(ii) $Q_{t}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{*}\left(s^{\prime}\right)$ for all $t<T$

In particular, V^{*} and Q^{*} satisfy the following Bellman optimality equations (backwards recursions):

$$
V_{t}^{*}(s)=\max _{a \in \mathcal{A}_{s}}\left\{r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{*}\left(s^{\prime}\right)\right\}, \quad s \in \mathcal{S}
$$

and

$$
Q_{t}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) \max _{a^{\prime} \in \mathcal{A}_{s^{\prime}}} Q_{t+1}^{*}\left(s^{\prime}, a^{\prime}\right), \quad s \in \mathcal{S}, a \in \mathcal{A}_{s},
$$

for all $t<T$.
Solution:
The Bellmann optimality equations are direct consequences of i) and ii) by simply plugging i) into ii) and vice-versa, so we will proceed by simply showing i) and ii) in this order. The proof is very similar to the proof of Theorem 3.1.23 but using the slightly more special definitions of Q_{t} and V_{t} as well as directly using only non-stationary policies. First we want to employ Proposition 3.4.4 to obtain

$$
\sup _{\pi_{t}} V_{t}^{\pi}(s)=\max _{a \in \mathcal{A}_{s}} Q_{t}^{\pi}(s, a) \quad \forall t \leq T .
$$

$" \geq "$ is trivial since the supremum over all kernels π_{t} at time t is of course bigger than the max over the deterministic kernels π_{t} choosing arm a at time t. The counterpart follows with Proposition 3.4.4 from the inequality

$$
V_{t}^{\pi}(s)=\sum_{a \in \mathcal{A}_{s}} \pi_{t}(a ; s) Q_{t}^{\pi}(s, a) \leq \max _{a \in \mathcal{A}_{s}} Q_{t}^{\pi}(s, a) \underbrace{\sum_{a \in \mathcal{A}_{s}} \pi_{t}(a ; s)}_{\leq 1}=\max _{a \in \mathcal{A}_{s}} Q_{t}^{\pi}(s, a)
$$

Because of this and the fact that $Q_{t}^{\pi}(s, a)$ does not depend on π_{t} for any $\pi \in \Pi_{t}^{T}$ we obtain

$$
\begin{aligned}
\max _{a \in \mathcal{A}_{s}} Q_{t}^{*}(s, a) & =\max _{a \in \mathcal{A}_{s}} \sup _{\pi \in \Pi_{t}^{T}} Q_{t}^{\pi}(s, a) \\
& =\sup _{\pi \in \Pi_{t+1}^{T}} \max _{a \in \mathcal{A}_{s}} Q_{t}^{\pi}(s, a) \\
& =\sup _{\pi \in \Pi_{t+1}^{T}} \sup _{t \in \Pi_{t}^{t}} V_{t}^{\pi}(s) \\
& =\sup _{\pi \in \Pi_{t}^{T}} V_{t}^{\pi}(s) \\
& =V_{t}^{*}(s)
\end{aligned}
$$

for all $t<T$. Conversely, using the exact same trick as in the proof of Theorem 3.1.23 for the justification of the change of sum and supremum for all $t<T$ we obtain by Proposition 3.4.4:

$$
\begin{aligned}
Q_{t}^{*}(s, a) & =\sup _{\pi \in \Pi_{t}^{T}} Q_{t}^{\pi}(s, a)=\sup _{\pi \in \Pi_{t}^{T}}\left(r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{\pi}\left(s^{\prime}\right)\right) \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) \sup _{\pi \in \Pi_{t}^{T}} V_{t+1}^{\pi}\left(s^{\prime}\right) \\
& =r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{t+1}^{*}\left(s^{\prime}\right)
\end{aligned}
$$

2. Example: T-step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is $m=3$ and the damand distribution is given by $\mathbb{P}\left(D_{t}=d\right)=p_{d}$ with $p_{0}=p_{2}=\frac{1}{4}, p_{1}=\frac{1}{2}$. Suppose the revenue function f, ordering cost function o and storage cost function h are given by

$$
\begin{aligned}
& f: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 9 x \\
& o: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 2 x \\
& h: \mathbb{N}_{0} \rightarrow \mathbb{R}, x \mapsto 2+x
\end{aligned}
$$

a) Set up the transition matrix $p\left(s_{t+1} ; s_{t}, a_{t}\right)$ in a table, such that every $s_{t}+a_{t}$ maps to the probability to land in s_{t+1}, and the reward function $r\left(s_{t}, a_{t}, s_{t+1}\right)$ for this example.
Solution:
The transition matrix is given as follows

$(s+a) \backslash s^{\prime}$	0	1	2	3
0	1	0	0	0
1	$\frac{3}{4}$	$\frac{1}{4}$	0	0
2	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0
3	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

The reward function $R\left(s_{t}, a_{t}, s_{t+1}\right)=f\left(s_{t}+a_{t}-s_{t+1}\right)-o\left(a_{t}\right)-h\left(a_{t}+s_{t}\right)$ is given by

$$
R\left(s_{t}, a_{t}, s_{t+1}\right)=9\left(s_{t}+a_{t}-s_{t+1}\right)-2 a_{t}-2-\left(s_{t}+a_{t}\right)=8 s_{t}+6 a_{t}-9 s_{t+1}-2
$$

b) Calculate the expected reward $r(s, a)$ for every state action pair. Can you guess an optimal strategy for a one time step MDP?

Solution:

The expected reward is given by

$$
\begin{aligned}
r(s, a) & =\sum_{r \in \mathcal{R}} r p(\mathcal{S} \times\{r\} ; s, a)=\sum_{r \in \mathcal{R}} \sum_{s^{\prime} \in \mathcal{S}} p\left(\left\{s^{\prime}\right\} \times\{r\} ; s, a\right) r \\
& =\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) R\left(s, a, s^{\prime}\right),
\end{aligned}
$$

because the reward is deterministic for given s, a, s^{\prime}. The reward table is then

$s \backslash a$	0	1	2	3
0	-2	$\frac{7}{4}$	1	-2
1	$\frac{15}{4}$	3	0	x
2	5	2	x	x
3	4	x	x	x

c) Suppose now you can play a 3 -step MDP, hence you can order ice cream 3 times in $t=0,1,2$. What is the optimal strategy for this finite time horizion MDP? Calculate the optimal state value, state-action value functions and the optimal policies using the greedy policy improvement algorithm from the lecture.
Hint: Use backward induction.

Solution:

We have as inition condition $V_{3}^{*} \equiv 0$ and $Q_{2}^{*} \equiv r$. We follow from Q_{2}^{*} that the optimal policy is

$$
\pi_{2}^{*}(1 ; 0)=1, \quad \pi_{2}^{*}(0 ; 1)=1, \quad \pi_{2}^{*}(0 ; 2)=1, \quad \pi_{2}^{*}(0 ; 3)=1
$$

The value function $V_{2}^{*}(s)=\max _{a} Q_{2}^{*}(s, a)$, are the red marked values in the reward tabel of b).

It follows by

$$
Q_{1}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{2}^{*}\left(s^{\prime}\right)
$$

that Q_{1}^{*} is given by

$s \backslash a$	0	1	2	3
0	$-\frac{1}{4}$	$\frac{61}{16}$	$\frac{67}{16}$	$\frac{9}{4}$
1	$\frac{93}{16}$	$\frac{99}{16}$	$\frac{17}{4}$	x
2	$\frac{131}{16}$	$\frac{25}{4}$	x	x
3	$\frac{33}{4}$	x	x	x

We follow from Q_{1}^{*} that the optimal policy is

$$
\pi_{1}^{*}(2 ; 0)=1, \quad \pi_{1}^{*}(1 ; 1)=1, \quad \pi_{1}^{*}(0 ; 2)=1, \quad \pi_{1}^{*}(0 ; 3)=1
$$

The value function $V_{1}^{*}(s)=\max _{a} Q_{1}^{*}(s, a)$ are the red numbers in the table. For the last timestep:

$$
Q_{0}^{*}(s, a)=r(s, a)+\sum_{s^{\prime} \in \mathcal{S}} p\left(s^{\prime} ; s, a\right) V_{1}^{*}\left(s^{\prime}\right)
$$

that Q_{0}^{*} is given by

$s \backslash a$	0	1	2	3
0	$\frac{35}{26}$	$\frac{413}{64}$	$\frac{231}{32}$	$\frac{203}{32}$
1	$\frac{605}{64}$	$\frac{295}{32}$	$\frac{331}{32}$	x
2	$\frac{359}{32}$	$\frac{331}{32}$	x	x
3	$\frac{395}{32}$	x	x	x
We follow from Q_{1}^{*} that the optimal policy is				

$$
\pi_{0}^{*}(2 ; 0)=1, \quad \pi_{0}^{*}(2 ; 1)=1, \quad \pi_{0}^{*}(0 ; 2)=1, \quad \pi_{0}^{*}(0 ; 3)=1
$$

Finally, we have that the red marked numbers in the last table are the optimal value function V_{0}^{*} of this MDP.

3. First visit Monte Carlo (Advanced)

Recall the first visit Monte Carlo Algorithm (14) from the lecture notes. Rewrite the estimate $V_{n}\left(s_{t}\right)$ to argue how we can apply the law of large numbers to show convergence (Hint: Use the strong Markov property).

Now consider the same algorithm without the if-condition in the for-loop. This algorithm is called every visit Monte Carlo algorithm (see Algorithm1). Argue why we cannot apply the law of large numbers.

```
Algorithm 1: Every visit Monte Carlo policy evaluation of \(V^{\pi}\)
    Data: Policy \(\pi \in \Pi_{S}\), initial condition \(\mu\)
    Result: Approximation \(\tilde{V} \approx V^{\pi}\)
    Initialize \(V_{0} \equiv 0\) and \(N \equiv 1\)
    \(n=0\)
    while not converged do
        \(n=n+1\)
        Sample \(T \sim \operatorname{Geo}(1-\gamma)\).
        Sample \(s_{0}\) from \(\mu\).
        Generate trajectory \(\left(s_{0}, a_{0}, r_{0}, s_{1}, \ldots\right)\) until time horizon \(2 T\) using policy \(\pi\).
        for \(t=0,1,2, \ldots, T\) do
            \(v=\sum_{k=t}^{T+t} r_{k}\)
            \(V_{n}\left(s_{t}\right)=\frac{1}{N\left(s_{t}\right)+1} v+\frac{N\left(s_{t}\right)-1}{N\left(s_{t}\right)} V_{n-1}\left(s_{t}\right)\)
            \(N\left(s_{t}\right)=N\left(s_{t}\right)+1\)
        end
    end
    Set \(\tilde{V}=V_{n}\).
```


Solution:

Discussion in exercise class!

