
Prof. Dr. Leif Döring Reinforcement Learning

Sara Klein, Benedikt Wille 7. Exercise Sheet

1. Proof of Lemma 3.4.6 for T -step MDPs

Prove Lemma 3.4.6 from the lecture by comparing with the discounted counterpart.

The following holds for the optimal time-state value function and the optimal time-state-action

value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As Q

∗
t (s, a) for all t < T ,

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s
′) for all t < T

In particular, V ∗ and Q∗ satisfy the following Bellman optimality equations (backwards recur-

sions):

V ∗
t (s) = max

a∈As

{
r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
t+1(s

′)
}
, s ∈ S,

and

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s

′, a′), s ∈ S, a ∈ As,

for all t < T .

2. Example: T -step MDPs

Recall the Ice Vendor example from the lecture. Assume the maximal amount of ice cream is

m = 3 and the damand distribution is given by P(Dt = d) = pd with p0 = p2 = 1
4 , p1 = 1

2 .

Suppose the revenue function f , ordering cost function o and storage cost function h are given

by

f : IN0 → IR, x 7→ 9x,

o : IN0 → IR, x 7→ 2x,

h : IN0 → IR, x 7→ 2 + x.

a) Set up the transition matrix p(st+1; st, at) in a table, such that every st + at maps to the

probability to land in st+1, and the reward function r(st, at, st+1) for this example.

b) Calculate the expected reward r(s, a) for every state action pair. Can you guess an optimal

strategy for a one time step MDP?
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c) Suppose now you can play a 3-step MDP, hence you can order ice cream 4 times in t = 0, 1, 2.

What is the optimal strategy for this finite time horizion MDP? Calculate the optimal

state value, state-action value functions and the optimal policies using the optimal control

algorithm from the lecture.

Hint: Use backward induction.

3. First visit Monte Carlo (Advanced)

Recall the first visit Monte Carlo Algorithm (14) from the lecture notes. Rewrite the estimate

Vn(st) to argue how we can apply the law of large numbers to show convergence (Hint: Use the

strong Markov property).

Now consider the same algorithm without the if-condition in the for-loop. This algorithm is

called every visit Monte Carlo algorithm (see Algorithm 1). Argue why we cannot apply the law

of large numbers.

Data: Policy π ∈ ΠS , initial condition µ

Result: Approximation Ṽ ≈ V π

Initialize V0 ≡ 0 and N ≡ 1

n = 0

while not converged do
n = n+ 1

Sample T ∼ Geo(1− γ).

Sample s0 from µ.

Generate trajectory (s0, a0, r0, s1, ...) until time horizon T using policy π.

for t = 0, 1, 2, ..., T do

v =
∑T

k=t rk

Vn(st) =
1

N(st)+1v +
N(st)−1
N(st)

Vn−1(st)

N(st) = N(st) + 1

end

end

Set Ṽ = Vn.
Algorithm 1: Every visit Monte Carlo policy evaluation of V π
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