
Prof. Dr. Leif Döring Reinforcement Learning

Sara Klein, Benedikt Wille 6. Exercise Sheet

1. Policy evaluation

Consider Algorithm 8 from the lecture. In Theorem 3.3.2 we proved convergence for this algo-

rithm if γ < 1. Now assume γ = 1 and set ∆ = 2ϵ in the initialisation and choose termination

condition ∆ < ϵ. Give an example such that Algorithm 8 does not converge using γ = 1. You

are allowed to initialise the value function V arbitrarily.

2. Convergence of the in-place policy evaluation algorithm

Recall Algorithm 9 from the lecture. We aim to prove convergence of the algorithm (without

termination) to V π. Therefore, label the state space S by s1, . . . , sK and define

T π
s V (s′) =

T πV (s) : s = s′

V (s) : s ̸= s′

Define the composition T
π
: U → U, T

π
(v) :=

(
T π
sK

◦ · · · ◦ T π
s1

)
(v) on the space of all functions

U = {u : S → IR} equipped with the supremum-norm.

a) Argue why T
π
is different from the Bellman operator T π.

b) Show that V π is a fixpoint of the operator T
π
.

c) Prove that T
π
is a contraction on (U, || · ||∞).

3. Exact policy iteration

Consider two types of costumers, L for low and H for high, shopping in a shopping center. Each

quarter the manager divides all costumers into these classes based in their purchase behavior in

the previous quarter. The manager wishes to determine to which classes of costumers he should

send quarterly catalogs. Sending a catalog costs him $15 per costumer. If a costumer received

a catalog at the beginning of the quarter and is in class L at the subsequent quarter, then the

expected purchase is $20, and $10 if he did not receive a catalog. If a costumer is in class H at

the subsequent quarter and received a catalog, then the expected purchase is $50, and $25 if he

did not. The decision weather or not to send a catalog to a customer also affects the customer’s

classification in the subsequent quarter: If a costumer is in class L at the start of the present

quarter, then the probability to stay in class L in the subsequent quarter is 0.3 if he receives a

catalog and 0.5 if he does not. For the class H costumer the probability to stay in H for the

subsequent quarter is 0.8 if he receives a catalog and 0.4 if he does not.

Assume that the discount rate is 0.9 and the manager wants to maximize the expected total

discounted reward.

1



a) Formulate this problem as discounted infinite-horizon Markov decision model.

b) What is the expected one-step reward for every state-action pair? Define the stationary

policy which has greatest one-step reward.

c) Find an optimal policy using the greedy exact policy iteration (algorithm 10) to find the

optimal policy. Start with the stationary policy from b).

4. Programming Task: Bandits - Will be discussed in class!

The aim of this exercise is to play around a little with the different algorithms for bandits that

we saw in the lecture in different settings. This is a very long and comprehensive exercise, but

you don’t need to write code by yourself if you don’t want to, instead you are highly encouraged

to use ChatGPT or other tools for generating your code. It is every easy - try it! Since the focus

does not lie on implementing but rather on the gained insights we will discuss the results of this

exercise in the tutorial session.

a) Implement a Gaussian bandit where the arms have random means that are standard nor-

mally distributed, and a Bernoulli bandit where the arms have random means p that are

uniformly distributed between 0 and 1. Additionally, implement a Gaussian bandit where

you draw standard normally distributed means but then fix the mean of the highest arm

and replace the other means in descending order by values decreasing by a fixed reward

gap ∆, i.e. if the arm with the highest mean has value µ∗, the mean of the k-th biggest arm

gets replaced by µ∗ − k∆.

b) Implement the following bandit algorithms: Explore-then-committ, ϵ-greedy, UCB, and

Boltzmann exploration.

c) Implement the policy gradient method with softmax parametrization starting with a uni-

form policy, i.e. a vector θ = k · (1, . . . , 1).

d) Play each bandit with each algorithm N = 5000 times using a time horizon of n = 500.

Vary the reward gaps by choosing ∆ = 0.1, 0.3, and 0.5 and the number of arms by choosing

K = 5, 10, and 20. Try to find the
”
best“parameters for each of the algorithms. Then

compare the outcomes in the following way:

i) Plot the regrets,

ii) Plot the average probabilities of choosing the different arms over the time horizon,

iii) For the last timestep, compute the average of the probabilities for playing each arm in

the next round,

iv) For the last timestep, compute what the algorithm makes out to be the mean of the

arms against their real means and add the confidence bounds, and

v) Plot how many times on average each algorithm chooses the best arm in total and plot

the average (cumulative) hitting times of the best arms over the time horizon.

What do you observe? Think about possible implications in the reinforcement learning

setting and especially how the different goals of bandits and reinforcement learning impact

what a good learning strategy is.
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5. Programming Task*: Policy Iteration

In this programming task we want to program a first game, as well as an agent that plays the

game. In addition, we want to use the algorithms from the lecture to optimize the policy of the

agent.

(a) Implement the Grid World game from the lecture (example 1.1.9). Create a class that can

be used to play the game. This code might be helpful.

(b) Implement a class player that has a decision rule, such that the game from the previous

task can be played.

(c) Use the generalized policy iteration paradigm (algorithm 12) to find the optimal policy for

the game. For policy evaluation use Algorithm 8 and for policy improvement use Algorithm

10.

6. Programming Task*: Monte Carlo generalised ε-greedy policy iteration

In this exercise, we will use a Monte Carlo estimator to perform policy iteration. After Grid

World has been a first example for a Markov decision process, we will now deal with more

complex examples.

a) Implement the ice vendor (Example 3.1.8) as a Markov decision process.

b) Use the policy iteration from the last lecture to get the optimal decision rule for the iceman.

c) Implement the Monte Carlo generalised ε-greedy policy iteration (algorithm 18) to get the

optimal decision rule for the iceman. Additionally, use different ε > 0 parameters as well

as a sequence εn ↓ 0, n → ∞.
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https://github.com/aferdina/IntroductionRL/tree/main/firstmdp

