
Prof. Dr. Leif Döring Reinforcement Learning

Sara Klein, Benedikt Wille 4. Exercise Sheet

1. Markov Chains

Suppose that (St)t∈N is a Markov Chain with values in some finite set S on a probability space

(Ω,F ,P) and denote by P the transition matrix. Assume further that P(Sn = s′) > 0 for some

n ∈ N and s′ ∈ S and define the probability measure P̃(· | Sn = s′). Prove that the shifted

process (S̃t)t∈N = (St+n)t∈N is again a Markov chain with transition matrix P .

2. Proof of Theorem 3.1.3

Complete the Proof of Theorem 3.1.3 in the lecture:

a) Show that defining PT on the singletons

PT ({(s0, r0, a0, . . . , sT , rT , aT )}) := µ({s0}) · π0({a0} ; s0) ·
T∏
i=1

p({(si, ri−1)} ; si−1, ai−1)

· πi({ai} ; s0, a0, . . . , ai−1, si) · p(S × {rT }; sT , aT ).

yields a probability measure.

b) Check the claimed conditional probability identity

Pπ
µ(St+1 = st+1, Rt = rt |St = s,At = a) = p(st+1, rt ; s, a).

where we assume that Pπ
µ(St = s,At = a) > 0.

3. Probabilistic interpretation of MDPs

Use the formal definition of the stochastic process (S,A,R) to check that

p(s′; s, a) = P(St+1 = s′ |St = s,At = a),

p(r; s, a) = P(Rt = r|St = s,At = a),

r(s, a) = E[Rt |St = s,At = a],

r(s, a, s′) = E[Rt |St = s,At = a, St+1 = s′]

holds if the events in the condition have positive probability, for any t ∈ IN0.
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4. Proof of Proposition 3.1.13

Prove that if π ∈ ΠS then (St, At, Rt)t∈N satisfies the Markov reward process property

P((St+1, At+1, Rt+1) = (st+1, at+1, rt+1) | (St, At) = (st, at), . . . , (S0, A0) = (s0, a0))

= P((St+1, At+1, Rt+1) = (st+1, at+1, rt+1) | (St, At) = (st, at))

with time-homogeneous state/reward transition probabilities

p(s.a),(S′,a′,r′) = p(s′, r; s, a)π(a′; s′)

5. Programming task, Gumbel trick extended

On the previous exercise sheet, we looked at the Boltzmann Exploration and the relationship

between the Softmax distribution and the Gumbel distribution. In this exercise you should try

other random variables instead of the Gumbel distribution for the algorithmus and think about

what a good or bad choice of random variables can be.

The following approach might be useful.

(a) Implement the algorithm 1 more generally by allowing them to pass any random variable

instead of the Gumbel distribution. This code might be useful.

(b) Look in scipy.stats to see which random variables are implemented.

(c) Try the following random variables: Cauchy, Beta, Betaprime, Chi

Input : Initialization Q̂a(0), a ∈ A, number of total timesteps n, number of arms k ∈ IN and

parameter C ∈ IR

Output: Trajectory of Rewards (Xt)t∈{1,...,n} and actions (At)t∈{1,...,n}

begin

for t← 1 to n do

Simulate za, a ∈ A independently identically standard Gumbel;

Set at = argmax
a∈A

{
Q̂a(t) +

√
C2

Na
za
}
;

Obtain reward xt by playing arm at;

Set Nat = Nat + 1;

Update the estimated action value functions
(
Q̂a(t)

)
;

end

return (Xt)t∈{1,...,n}, (At)t∈{1,...,n} ;

end
Algorithm 1: Boltzmann exploration algorithm modified
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https://github.com/aferdina/IntroductionRL/tree/main/gumbel_exp

