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1. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

Solution:

Proof: Consider w.l.o.g. that Pπ
(
Ta(t) = n

)
> 0 for all n ∈ {1, . . . , t− (k − 1)}. (We just go up

to t− (k−1) because we have to choose k−1 times a different arm as every arm has to be played

once in the beginning.) First we obtain that Ta(t) >
2 log(1/δ)

∆2
a

is equivalent to ∆a >
√

2 log(1/δ)
Ta(t)

.

So we will now first consider the probability of Q̂a(t)−Qa ≥
√

2 log(1/δ)
Ta(t)

. Then, we first consider

the intersection with condition Ta(t) = n for some n ≤ t− (k − 1).

Pπ
(
Q̂a(t)−Qa ≥

√
2 log(1/δ)

Ta(t)
∩ (Ta(t) = n)

)
= Pπ

( 1

Ta(t)

t∑
i=1

Xi1{Ai=a} −Qa ≥

√
2 log(1/δ)

Ta(t)
∩ (Ta(t) = n)

)

= Pπ
( 1

n

t∑
i=1

Xi1{Ai=a} −Qa ≥
√

2 log(1/δ)

n
∩ (Ta(t) = n)

)

= Pπ
( 1

n

t∑
i=1

Xi1{Ai=a} −Qa ≥
√

2 log(1/δ)

n

∣∣Ta(t) = n
)
Pπ(Ta(t) = n)

≤ δPπ(Ta(t) = n).

Note that a conditional probability is still a probability measure so we can use the normal Hoeff-

dings inequality in the last step.
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Further we obtain that

Pπ
((

Q̂a(t) < Qa +∆a

)∣∣∣(Ta(t) >
2 log(1/δ)

∆2
a

))
≥ Pπ

(
Q̂a(t)−Qa <

√
2 log(1/δ)

Ta(t)

∣∣∣(Ta(t) >
2 log(1/δ)

∆2
a

))

= Pπ
(
Q̂a(t)−Qa <

√
2 log(1/δ)

Ta(t)

∣∣∣ t−(k−1)⊎
n=⌈ 2 log(1/δ)

∆2
a

⌉

(
Ta(t) = n

))

≥

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Q̂a(t)−Qa <

√
2 log(1/δ)

n ∩ (Ta(t) = n)
)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)

=

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ(Ta(t) = n)− Pπ

(
Q̂a(t)−Qa ≥

√
2 log(1/δ)

n ∩ (Ta(t) = n)
)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)

≥

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ(Ta(t) = n)− δPπ(Ta(t) = n)

t−(k−1)∑
n=⌈ 2 log(1/δ)

∆2
a

⌉
Pπ

(
Ta(t) = n

)
= 1− δ,

where we used the definition of conditional expectation and that P(A∩B) = P(B)− P(Ac ∩B).

2. Best Baseline

The variance of a random vector X is defined by to be V[X] := IE[||X||22] − ||E[X]||22. Show by

differentiation that

b∗ =
IEπθ

[XA||∇ log πθ(A)||22]
IEπθ

[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of ∇J(θ).

Solution:
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We have

V
(
(XA − b)∇ log(πθ(A))

)
= IE

[
(XA − b)2||∇ log(πθ(A))||22

]
−

∥∥∥IE[(XA − b)∇ log(πθ(A))
]∥∥∥2

2

= IE
[
(XA − b)2||∇ log(πθ(A))||22

]
−

∥∥∥IE[XA∇ log(πθ(A))
]∥∥∥2

2
,

where we used the baseline trick in the last equation. We define f(A) = ||∇ log(πθ(A))||2 to have

a better overview. Then

V
(
(XA − b)∇ log(πθ(A))

)
= IE

[
(XA − b)2f(A)2

]
−
∥∥∥IE[XA∇ log(πθ(A))

]∥∥∥2
2

= IE
[
X2

Af(A)2
]
− 2bIE

[
XAf(A)2

]
+ b2IE

[
f(A)2

]
−
∥∥∥IE[XA∇ log(πθ(A))

]∥∥∥2
2

We calculate the first derivative

∂V
(
(XA − b)∇ log(πθ(A))

)
∂b

= −2IE
[
XAf(A)2

]
+ 2bIE

[
f(A)2

]
.

Solving for the root gives

b∗ =
IE
[
XAf(A)2

]
IE
[
f(A)2

] ,

which is a minimum, as the second derivative 2IE
[
f(A)2

]
≥ 0 almost surely. Plugging in the

definition of f proves the claim.
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