Prof. Dr. Leif Döring
Sara Klein, Benedikt Wille

3. Excercise Sheet

1. Upper bound on $\hat{Q}_{a}(t)$ for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm $\hat{Q}_{a}(t)<Q_{a}+\Delta_{a}$ with probability $1-\delta$, given that $T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}$.

Solution:

Proof: Consider w.l.o.g. that $\mathbb{P}^{\pi}\left(T_{a}(t)=n\right)>0$ for all $n \in\{1, \ldots, t-(k-1)\}$. (We just go up to $t-(k-1)$ because we have to choose $k-1$ times a different arm as every arm has to be played once in the beginning.) First we obtain that $T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}$ is equivalent to $\Delta_{a}>\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}}$. So we will now first consider the probability of $\hat{Q}_{a}(t)-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}}$. Then, we first consider the intersection with condition $T_{a}(t)=n$ for some $n \leq t-(k-1)$.

$$
\begin{aligned}
& \mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}} \cap\left(T_{a}(t)=n\right)\right) \\
& =\mathbb{P}^{\pi}\left(\frac{1}{T_{a}(t)} \sum_{i=1}^{t} X_{i} \mathbf{1}_{\left\{A_{i}=a\right\}}-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}} \cap\left(T_{a}(t)=n\right)\right) \\
& =\mathbb{P}^{\pi}\left(\frac{1}{n} \sum_{i=1}^{t} X_{i} \mathbf{1}_{\left\{A_{i}=a\right\}}-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{n}} \cap\left(T_{a}(t)=n\right)\right) \\
& =\mathbb{P}^{\pi}\left(\left.\frac{1}{n} \sum_{i=1}^{t} X_{i} \mathbf{1}_{\left\{A_{i}=a\right\}}-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{n}} \right\rvert\, T_{a}(t)=n\right) \mathbb{P}^{\pi}\left(T_{a}(t)=n\right) \\
& \leq \delta \mathbb{P}^{\pi}\left(T_{a}(t)=n\right) .
\end{aligned}
$$

Note that a conditional probability is still a probability measure so we can use the normal Hoeffdings inequality in the last step.

Further we obtain that

$$
\begin{aligned}
& \mathbb{P}^{\pi}\left(\left(\hat{Q}_{a}(t)<Q_{a}+\Delta_{a}\right) \left\lvert\,\left(T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right)\right.\right) \\
& \geq \mathbb{P}^{\pi}\left(\left.\hat{Q}_{a}(t)-Q_{a}<\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}} \right\rvert\,\left(T_{a}(t)>\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right)\right) \\
& =\mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a}<\sqrt{\frac{2 \log (1 / \delta)}{T_{a}(t)}} \left\lvert\, \biguplus_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)}\left(T_{a}(t)=n\right)\right.\right) \\
& \geq \frac{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a}<\sqrt{\frac{2 \log (1 / \delta)}{n}} \cap\left(T_{a}(t)=n\right)\right)}{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)} \\
& =\frac{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)-\mathbb{P}^{\pi}\left(\hat{Q}_{a}(t)-Q_{a} \geq \sqrt{\frac{2 \log (1 / \delta)}{n}} \cap\left(T_{a}(t)=n\right)\right)}{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)} \\
& \geq \frac{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)-\delta \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)}{\sum_{n=\left\lceil\frac{2 \log (1 / \delta)}{\Delta_{a}^{2}}\right\rceil}^{t-(k-1)} \mathbb{P}^{\pi}\left(T_{a}(t)=n\right)} \\
& =1-\delta,
\end{aligned}
$$

where we used the definition of conditional expectation and that $\mathbb{P}(A \cap B)=\mathbb{P}(B)-\mathbb{P}\left(A^{c} \cap B\right)$.

2. Best Baseline

The variance of a random vector X is defined by to be $\mathbb{V}[X]:=\mathbb{E}\left[\|X\|_{2}^{2}\right]-\|E[X]\|_{2}^{2}$. Show by differentiation that

$$
b_{*}=\frac{\mathbb{E}_{\pi_{\theta}}\left[X_{A}\left\|\nabla \log \pi_{\theta}(A)\right\|_{2}^{2}\right]}{\mathbb{E}_{\pi_{\theta}}\left[\left\|\nabla \log \pi_{\theta}(A)\right\|_{2}^{2}\right]}
$$

is the baseline that minimises the variance of the unbiased estimators

$$
\left(X_{A}-b\right) \nabla \log \left(\pi_{\theta}(A)\right), \quad A \sim \pi_{\theta}
$$

of $\nabla J(\theta)$.
Solution:

We have

$$
\begin{aligned}
& \mathbb{V}\left(\left(X_{A}-b\right) \nabla \log \left(\pi_{\theta}(A)\right)\right) \\
& =\mathbb{E}\left[\left(X_{A}-b\right)^{2}\left\|\nabla \log \left(\pi_{\theta}(A)\right)\right\|_{2}^{2}\right]-\left\|\mathbb{E}\left[\left(X_{A}-b\right) \nabla \log \left(\pi_{\theta}(A)\right)\right]\right\|_{2}^{2} \\
& =\mathbb{E}\left[\left(X_{A}-b\right)^{2}\left\|\nabla \log \left(\pi_{\theta}(A)\right)\right\|_{2}^{2}\right]-\left\|\mathbb{E}\left[X_{A} \nabla \log \left(\pi_{\theta}(A)\right)\right]\right\|_{2}^{2},
\end{aligned}
$$

where we used the baseline trick in the last equation. We define $f(A)=\left\|\nabla \log \left(\pi_{\theta}(A)\right)\right\|_{2}$ to have a better overview. Then

$$
\begin{aligned}
& \mathbb{V}\left(\left(X_{A}-b\right) \nabla \log \left(\pi_{\theta}(A)\right)\right) \\
& =\mathbb{E}\left[\left(X_{A}-b\right)^{2} f(A)^{2}\right]-\left\|\mathbb{E}\left[X_{A} \nabla \log \left(\pi_{\theta}(A)\right)\right]\right\|_{2}^{2} \\
& =\mathbb{E}\left[X_{A}^{2} f(A)^{2}\right]-2 b \mathbb{E}\left[X_{A} f(A)^{2}\right]+b^{2} \mathbb{E}\left[f(A)^{2}\right]-\left\|\mathbb{E}\left[X_{A} \nabla \log \left(\pi_{\theta}(A)\right)\right]\right\|_{2}^{2}
\end{aligned}
$$

We calculate the first derivative

$$
\begin{aligned}
& \frac{\partial \mathbb{V}\left(\left(X_{A}-b\right) \nabla \log \left(\pi_{\theta}(A)\right)\right)}{\partial b} \\
& =-2 \mathbb{E}\left[X_{A} f(A)^{2}\right]+2 b \mathbb{E}\left[f(A)^{2}\right] .
\end{aligned}
$$

Solving for the root gives

$$
b *=\frac{\mathbb{E}\left[X_{A} f(A)^{2}\right]}{\mathbb{E}\left[f(A)^{2}\right]},
$$

which is a minimum, as the second derivative $2 \mathbb{E}\left[f(A)^{2}\right] \geq 0$ almost surely. Plugging in the definition of f proves the claim.

