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1. Upper bound on Q̂a(t) for many samples

Suppose ν is a bandit model with 1-sub-gaussian arms. Show that under the UCB Algorithm

Q̂a(t) < Qa +∆a with probability 1− δ, given that Ta(t) >
2 log(1/δ)

∆2
a

.

2. Best Baseline

The variance of a random vector X is defined by to be V[X] := IE[||X||22] − ||E[X]||22. Show by

differentiation that

b∗ =
IEπθ

[XA||∇ log πθ(A)||22]
IEπθ

[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of ∇J(θ).

3. Programming task*: Gradient Bandit Methods

Implement the Gradient Bandit algorithm from example 1.2.15 of the lecture. The probability

that an arm is drawn is given by the soft-max distribution

Pπ(At = a) =
exp(θt(a))
k∑

b=1

exp(θt(b))

=: πt(a), a ∈ A.

The weights are updated as follows

θt+1(a) =

θt(a) + α(xt − xt)(1− πt(a)) , a = At

θt(a)− α(xt − xt)πt(a) , otherwise
,

where α > 0 is a step-size parameter and xt :=
1

t−1

t−1∑
i=1

xt is the mean reward until time t − 1.

Implement the Gradient Bandit algorithm with and without the baseline term xt, t ∈ {1, . . . , n}
and test both algorithm on a Gaussian Bandit. Play around with the mean parameters of the

Gaussian Bandit. What do you notice?

4. Programming task*: Boltzmann Exploration

In this task we want to implement different variants of the Boltzmann Exploration Algorithm.
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(a) Use the implementation from Algorithm 1.

(b) Use the Gumbel trick from Lemma 1.2.11 to implement the algorithm.

(c) Use the implementation of Boltzmann exploration from algorithm 2. Source: paper section

4.

(d) Test the different algorithms on a multi-armed bandit. Which algorithm with which pa-

rameter configuration leads to the best results (minimum reward, maximum best action

probability)?

Input : Initialization Q̂a(0), a ∈ A, number of total timesteps n ∈ IN, number of arms k ∈ IN

and parameter θ > 0

Output: Trajectory of Rewards (xt)t∈{1,...,n} and actions (at)t∈{1,...,n}

begin

for t← 1 to n do

Sample at from SM
(
θ, (Q̂a(t))a∈A

)
;

Obtain reward xt by playing arm at;

Update the estimated action value functions
(
Q̂a(t), a ∈ A

)
;

end

return (xt)t∈{1,...,n}, (xt)t∈{1,...,n} ;

end
Algorithm 1: Boltzmann exploration algorithm

Input : Initialization Q̂a(0), a ∈ A, number of total timesteps n, number of arms k ∈ IN and

parameter C ∈ IR

Output: Trajectory of Rewards (Xt)t∈{1,...,n} and actions (At)t∈{1,...,n}

begin

for t← 1 to n do

Simulate za, a ∈ A independently identically standard Gumbel;

Set at = argmax
a∈A

{
Q̂a(t) +

√
C2

Na
za
}
;

Obtain reward xt by playing arm at;

Set Nat = Nat + 1;

Update the estimated action value functions
(
Q̂a(t)

)
;

end

return (Xt)t∈{1,...,n}, (At)t∈{1,...,n} ;

end
Algorithm 2: Boltzmann exploration algorithm modified
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https://proceedings.neurips.cc/paper/2017/file/b299ad862b6f12cb57679f0538eca514-Paper.pdf

