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1. Sub-Gaussian random variables
Recall Definition 1.3.3. of a o-sub-Gaussian random variable X.
a) Show that every o-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] < o2.

Solution:

Let X be a o-sub-Gaussian random variable. Then by Fubini
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where we used that both sums are finite due to the finiteness of exp.
Finally for A\ > 0 dividing (2) by 1/X and taking the limits X | 0 leads to
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and for A < 0 similarly
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Hence, E[X] = 0.
Rewriting (2) once again and deviding by \* results in
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which proofs the second claim.
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Suppose X is o-sub-Gaussian. Prove that cX is |c|o-sub-Gaussian.
Solution:
We have
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Thus, c¢X is |c|o-sub-Gaussian.

Show that X7 + Xo is \/0% +0§—sub—Gaussian if X1 and X, are independent oq-sub-
Gaussian and os-sub-Gaussian random variables.

Solution:
We have
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where the thrid equality follows from independence. This proofs the claim.

Show that a Bernoulli-variable is %—sub—Gaussian.
Solution:

FEzxactly as in the next exercise but with a =0 and b = 1.

Show that every centered bounded random variable, say bounded below by a and above by
b is @—snb—(}aussian.
Solution:

As a < X < b we have almost surely

eAX<b_X€)\a_|_X_a b

“b—-a b—a6
We follow
IE[eAX} < b_IE[X]eAa+E[X]_aeAb
b—a b—a
_ b a b
_b—ae b—ae

— exp L(Ab — a),

where we used IE[X]| = 0 and L(h) is definied by
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So let us proof that L(h) < h?/8. Therefore we first calculate the first and second derivative.

which proofs that X is o-sub-Gauss with o =
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By Taylor we know there exists 6 € [0, 1] such that

L(h) = L(0) + hVL(0) + %hQVZL(hH) = %h2V2L(h9).

This conclues the proof.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise
sheet. Show that

R,(m) <A+ Cyn

for some model-free constant C' so that, in particular, R,(7) < 1+ C'y/n for all bandit models
with regret bound A <1 (for instance for Bernoulli bandits).
Hint: Use the same trick as in the proof of Theorem 1.2.10.
Solution:
We will first show that
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by plugging m* = max{1, [é log(”TMﬂ} into the regret bound from the last exercise sheet
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This leads to
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Using this we can devide in the cases A < \/g and A > \/g, for some constant ¢ > 0 which we
specify later. Thus, in the first case A < \/% we have
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R, < min {nA, A+ %(1 + max{(),log(%)})} <nA < en.

For the second case we consider the second term and rewrite
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We define f(x) = log(T), and prove f(x) < 2 for x > \/6274. If this is true we have for the
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second case with ¢ = €24 that
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Now to our clarzm. We have
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and so f'(z) <0 iff
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Thus f decreases in | %4,00) and so f(x) < f(\/e%‘l) = 2.
Coosing C = 8 + % concludes the proof, as for the first case with ¢ = e*4 we have R, < 2ey/n <
A+ Cy/n and for the second case also R, < A+ Cy/n.



. Advanced: e-greedy Regret

Let m the learning strategy that first explores each arm once and then continuous according to
e-greedy for some € € (0,1) fixed. Furthermore, assume that v is a 1-sub-gaussian bandit model.

Show that the regret grows linearly:
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Solution:

We denote by m the learning strategy induced by the e-greedy algorithm. Further, denote by
Qa(t) = ﬁ(t) Z;:O X7 1an—q the estimator for arm a after round t.

Then, forn > K

B(A] = a) = = + (1 = )P(Qu(t) > max Qu(t)).

By the regret decomposition lemma we follow directly that
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To show the upper bound we will prove that Y72 P(Qu(t) > max, Qy(t)) < C < oo. Then the

claim follows again from the regret decomposition lemma:
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As the upper and lower bound on the limit coincide, this proves the claim.
It remains to show that 35° P(Qa(t) > maxy, Qy(t)) < C < oo. Therefore, first note that

P(Qa(t) > max Qy(t)) < P(Qa(t) > Qa. (1))
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for the last equality note that Q, + a = Qq+ — 32 by definition of Ay = Qu+ — Qax and in the

second inequality we used that for two random vamables X and Y it holds that
PX>Y)=PX>2Y,Y>a)+P(X>Y)Y <a) <P(X >a)+PY <a).

For any arm a we will now prove that
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Then it is obvious that > 5, P(Qu(t) > maxy Qy(t)) < C < 0. So, it holds
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where we applied Hoeffdings inequality in the last step. We divide into two sums as follows.
Define v = | 5], then
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In the last step we used that Y 7° et < %e"’m. Further, let TE(t) be the number of random

explorations of the arm a before time t, then
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The last inequality follows from Bernstein inequality and this is exactly what we wanted to prove.
Bernstein inequality: Let X; be i.i.d. r.v. with mean p such that | X; —p| < M and V(> | X;) =

o2, then
1 ¢ 1
P - X, —pu>b| < .
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In our case we have b = %, o’ < % and M = 1.



