Prof. Dr. Leif Döring
Sara Klein, Benedikt Wille

2. Excercise Sheet

1. Sub-Gaussian random variables

Recall Definition 1.3.3. of a σ-sub-Gaussian random variable X.
a) Show that every σ-sub-Gaussian random variable satisfies $\mathbb{E}[X]=0$ and $\mathbb{V}[X] \leq \sigma^{2}$.

Solution:

Let X be a σ-sub-Gaussian random variable. Then by Fubini

$$
\begin{equation*}
\sum_{t \geq 0} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right]=\mathbb{E}\left[X e^{\lambda X}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}=\sum_{t \geq 0} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!} \tag{1}
\end{equation*}
$$

We follow that

$$
\begin{equation*}
\lambda \mathbb{E}[X]+\frac{\lambda^{2}}{2} \mathbb{E}\left[X^{2}\right] \leq \frac{\lambda^{2} \sigma^{2}}{2}+g(\lambda) \tag{2}
\end{equation*}
$$

for

$$
g(\lambda)=\sum_{t \geq 2} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!}-\sum_{t \geq 3} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right] .
$$

Note that $g \in o\left(\lambda^{2}\right)$ because

$$
\lim _{\lambda \rightarrow 0} \frac{g(\lambda)}{\lambda^{2}}=\sum_{t \geq 2} \lim _{\lambda \rightarrow 0} \frac{\lambda^{2 t} \sigma^{2 t}}{2^{t} t!}-\sum_{t \geq 3} \lim _{\lambda \rightarrow 0} \frac{\lambda^{t}}{t!} \mathbb{E}\left[X^{t}\right]=0
$$

where we used that both sums are finite due to the finiteness of exp.
Finally for $\lambda>0$ dividing (2) by $1 / \lambda$ and taking the limits $\lambda \downarrow 0$ leads to

$$
\mathbb{E}[X] \leq \frac{\lambda \sigma^{2}}{2}+\frac{g(\lambda)}{\lambda}-\frac{\lambda}{2} \mathbb{E}\left[X^{2}\right] \rightarrow 0, \quad \lambda \downarrow 0
$$

and for $\lambda<0$ similarly

$$
\mathbb{E}[X] \geq \frac{\lambda \sigma^{2}}{2}+\frac{g(\lambda)}{\lambda}-\frac{\lambda}{2} \mathbb{E}\left[X^{2}\right] \rightarrow 0, \quad \lambda \uparrow 0
$$

Hence, $\mathbb{E}[X]=0$.
Rewriting (2) once again and deviding by λ^{2} results in

$$
\mathbb{E}\left[X^{2}\right] \leq 2\left(\frac{\sigma^{2}}{2}+\frac{g(\lambda)}{\lambda^{2}}\right) \rightarrow \sigma^{2}, \quad \lambda \rightarrow 0
$$

which proofs the second claim.
b) Suppose X is σ-sub-Gaussian. Prove that $c X$ is $|c| \sigma$-sub-Gaussian.

Solution:
We have

$$
M_{c X}(\lambda)=\mathbb{E}\left[e^{\lambda c X}\right] \leq e^{\frac{(c \lambda)^{2} \sigma^{2}}{2}}=e^{\frac{\lambda^{2}(c \sigma)^{2}}{2}}
$$

Thus, $c X$ is $|c| \sigma$-sub-Gaussian.
c) Show that $X_{1}+X_{2}$ is $\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$-sub-Gaussian if X_{1} and X_{2} are independent σ_{1}-subGaussian and σ_{2}-sub-Gaussian random variables.
Solution:
We have

$$
\begin{aligned}
M_{X_{1}+X_{2}}(\lambda) & =\mathbb{E}\left[e^{\lambda\left(X_{1}+X_{2}\right)}\right]=\mathbb{E}\left[e^{\lambda X_{1}} e^{\lambda X_{2}}\right] \\
& =\mathbb{E}\left[e^{\lambda X_{1}}\right] \mathbb{E}\left[e^{\lambda X_{2}}\right] \\
& \leq e^{\frac{\lambda^{2} \sigma_{1}^{2}}{2}} e^{\frac{\lambda^{2} \sigma_{2}^{2}}{2}} \\
& =\exp \left(\frac{\lambda^{2}\left(\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}{2}\right) .
\end{aligned}
$$

where the thrid equality follows from independence. This proofs the claim.
d) Show that a Bernoulli-variable is $\frac{1}{2}$-sub-Gaussian.

Solution:
Exactly as in the next exercise but with $a=0$ and $b=1$.
e) Show that every centered bounded random variable, say bounded below by a and above by b is $\frac{(b-a)}{2}$-sub-Gaussian.
Solution:
As $a \leq X \leq b$ we have almost surely

$$
e^{\lambda X} \leq \frac{b-X}{b-a} e^{\lambda a}+\frac{X-a}{b-a} e^{\lambda b}
$$

We follow

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda X}\right] & \leq \frac{b-\mathbb{E}[X]}{b-a} e^{\lambda a}+\frac{\mathbb{E}[X]-a}{b-a} e^{\lambda b} \\
& =\frac{b}{b-a} e^{\lambda a}-\frac{a}{b-a} e^{\lambda b} \\
& =\exp L(\lambda(b-a)),
\end{aligned}
$$

where we used $\mathbb{E}[X]=0$ and $L(h)$ is definied by

$$
L(h)=\frac{h a}{(b-a)}+\log \left(1+\frac{a-e^{h} a}{b-a}\right) .
$$

We will show that $L(h) \leq h^{2} / 8$, then it follows

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq \exp L(\lambda(b-a)) \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

which proofs that X is σ-sub-Gauss with $\sigma=\frac{(b-a)}{2}$.
So let us proof that $L(h) \leq h^{2} / 8$. Therefore we first calculate the first and second derivative.

$$
\begin{aligned}
& \nabla L(h)=\frac{a}{b-a}-\frac{e^{h} a}{b-e^{h} a}, \\
& \nabla^{2} L(h)=-\frac{e^{h} a b}{\left(b-e^{h} a\right)^{2}} .
\end{aligned}
$$

Note now, that

$$
\begin{aligned}
& L(0)=0, \\
& \nabla L(0)=0 \text { and } \\
& \nabla^{2} L(h)=-\underbrace{\frac{e^{h} a b}{\left(b-e^{h} a\right)^{2}}}_{\geq-4\left(b e^{h} a\right)} \leq \frac{e^{h} a b}{4 e^{h} a b} \leq \frac{1}{4} .
\end{aligned}
$$

By Taylor we know there exists $\theta \in[0,1]$ such that

$$
L(h)=L(0)+h \nabla L(0)+\frac{1}{2} h^{2} \nabla^{2} L(h \theta)=\frac{1}{2} h^{2} \nabla^{2} L(h \theta) .
$$

As $\nabla^{2} L(h) \leq \frac{1}{4}$, we have

$$
L(h) \leq \frac{1}{2} h^{2} \frac{1}{4}=\frac{h^{2}}{8} .
$$

This conclues the proof.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise sheet. Show that

$$
R_{n}(\pi) \leq \Delta+C \sqrt{n}
$$

for some model-free constant C so that, in particular, $R_{n}(\pi) \leq 1+C \sqrt{n}$ for all bandit models with regret bound $\Delta \leq 1$ (for instance for Bernoulli bandits).
Hint: Use the same trick as in the proof of Theorem 1.2.10.
Solution:
We will first show that

$$
R_{n}(\pi) \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\}
$$

by plugging $m^{*}=\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}$ into the regret bound from the last exercise sheet

$$
R_{n} \leq m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{m^{*} \Delta^{2}}{4}\right) .
$$

This leads to

$$
\begin{aligned}
R_{n} & \leq m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4} \max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}\right) \\
& =m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \min \{\exp \left(-\frac{\Delta^{2}}{4}\right), \underbrace{\left.\exp \left(-\frac{\Delta^{2}}{4}\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right)\right\}}_{\leq \exp \left(-\frac{\Delta^{2}}{4} \frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right) \leq \frac{4}{\Delta^{2} n}} \\
& \leq m^{*} \Delta+\min \{\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4}\right),(n-\underbrace{2 m^{*}}_{>0}) \Delta \frac{4}{\Delta^{2} n}\} \\
& \leq m^{*} \Delta+\min \left\{\left(n-2 m^{*}\right) \Delta \exp \left(-\frac{\Delta^{2}}{4}\right), \frac{4}{\Delta}\right\} \\
& \leq \min \{m^{*} \Delta+\left(n-2 m^{*}\right) \Delta \underbrace{\exp \left(-\frac{\Delta^{2}}{4}\right)}_{\leq 1}, \frac{4}{\Delta}+\underbrace{\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\} \Delta}_{\leq\left(1+\max \left\{0, \frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right) \Delta}\} \\
& \leq \min \{\underbrace{-m^{*} \Delta}_{\leq 0}+n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\} \\
& \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\} .
\end{aligned}
$$

Using this we can devide in the cases $\Delta \leq \sqrt{\frac{c}{n}}$ and $\Delta>\sqrt{\frac{c}{n}}$, for some constant $c>0$ which we specify later. Thus, in the first case $\Delta \leq \sqrt{\frac{c}{n}}$ we have

$$
R_{n} \leq \min \left\{n \Delta, \Delta+\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right)\right\} \leq n \Delta \leq \sqrt{c n} .
$$

For the second case we consider the second term and rewrite

$$
\frac{4}{\Delta}\left(1+\max \left\{0, \log \left(\frac{n \Delta^{2}}{4}\right)\right\}\right) \leq 4\left(\frac{1}{\Delta}+\frac{\log \left(\frac{n \Delta^{2}}{4}\right)}{\Delta}\right)
$$

We define $f(x)=\frac{\log \left(\frac{n x^{2}}{4}\right)}{x}$, and prove $f(x) \leq 2$ for $x \geq \sqrt{\frac{e^{2} 4}{n}}$. If this is true we have for the second case with $c=e^{2} 4$ that

$$
\begin{aligned}
R_{n} & \leq \Delta+4\left(\frac{1}{\Delta}+\frac{\log \left(\frac{n \Delta^{2}}{4}\right)}{\Delta}\right) \\
& \leq \Delta+4\left(\sqrt{\frac{n}{c}}+2\right) \leq \Delta+\sqrt{n}\left(8+\frac{4}{\sqrt{c}}\right)=\Delta+\sqrt{n}\left(8+\frac{2}{e}\right) .
\end{aligned}
$$

Now to our claim. We have

$$
f^{\prime}(x)=\frac{2-\log \left(\frac{n x^{2}}{4}\right)}{x^{2}}
$$

and so $f^{\prime}(x) \leq 0$ iff

$$
\log \left(\frac{n x^{2}}{4}\right) \geq 2 \quad \Leftrightarrow \quad x \geq \sqrt{\frac{e^{2} 4}{n}} .
$$

Thus f decreases in $\left[\sqrt{\frac{e^{2} 4}{n}}, \infty\right)$ and so $f(x) \leq f\left(\sqrt{\frac{e^{2} 4}{n}}\right)=2$.
Coosing $C=8+\frac{2}{e}$ concludes the proof, as for the first case with $c=e^{2} 4$ we have $R_{n} \leq 2 e \sqrt{n} \leq$ $\Delta+C \sqrt{n}$ and for the second case also $R_{n} \leq \Delta+C \sqrt{n}$.

3. Advanced: ϵ-greedy Regret

Let π the learning strategy that first explores each arm once and then continuous according to ϵ-greedy for some $\epsilon \in(0,1)$ fixed. Furthermore, assume that ν is a 1 -sub-gaussian bandit model. Show that the regret grows linearly:

$$
\lim _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n}=\frac{\epsilon}{K} \sum_{a \in \mathcal{A}} \Delta_{a}
$$

Solution:

We denote by π the learning strategy induced by the ϵ-greedy algorithm. Further, denote by $\hat{Q}_{a}(t)=\frac{1}{N_{a}(t)} \sum_{n=0}^{t} X_{n}^{\pi} \mathbf{1}_{A_{n}^{\pi}=a}$ the estimator for arm a after round t.
Then, for $n \geq K$

$$
\mathbb{P}\left(A_{t}^{\pi}=a\right)=\frac{\epsilon}{K}+(1-\epsilon) \mathbb{P}\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right)
$$

By the regret decomposition lemma we follow directly that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{a \in \mathcal{A}} \Delta_{a} \sum_{t=1}^{n} \mathbb{P}\left(A_{t}^{\pi}=a\right) \\
& \geq \sum_{a \in \mathcal{A}} \Delta_{a} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \frac{\epsilon}{K} \\
& =\frac{\epsilon}{K} \sum_{a \in \mathcal{A}} \Delta_{a}
\end{aligned}
$$

To show the upper bound we will prove that $\sum_{t=1}^{\infty} \mathbb{P}\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right) \leq C<\infty$. Then the claim follows again from the regret decomposition lemma:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{P}\left(A_{t}^{\pi}=a\right) \\
& =\lim _{n \rightarrow \infty} \sum_{a \in \mathcal{A}} \Delta_{a} \frac{1}{n} \sum_{t=1}^{n}\left(\frac{\epsilon}{K}+P\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right)\right) \\
& \leq \frac{\epsilon}{K} \sum_{a \in \mathcal{A}} \Delta_{a}+\lim _{n \rightarrow \infty} \frac{C}{n} \\
& =\frac{\epsilon}{K} \sum_{a \in \mathcal{A}} \Delta_{a}
\end{aligned}
$$

As the upper and lower bound on the limit coincide, this proves the claim.
It remains to show that $\sum_{t=1}^{\infty} \mathbb{P}\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right) \leq C<\infty$. Therefore, first note that

$$
\begin{aligned}
\mathbb{P}\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right) & \leq \mathbb{P}\left(\hat{Q}_{a}(t) \geq \hat{Q}_{a_{*}}(t)\right) \\
& \leq \mathbb{P}\left(\hat{Q}_{a}(t) \geq Q_{a}+\frac{\Delta_{a}}{2}\right)+\mathbb{P}\left(\hat{Q}_{a}(t)<Q_{a}+\frac{\Delta_{a}}{2}\right) \\
& =\mathbb{P}\left(\hat{Q}_{a}(t) \geq Q_{a}+\frac{\Delta_{a}}{2}\right)+\mathbb{P}\left(\hat{Q}_{a}(t)<Q_{a^{*}}-\frac{\Delta_{a}}{2}\right) \\
& \leq 2 \max _{a} \mathbb{P}\left(\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2}\right)
\end{aligned}
$$

for the last equality note that $Q_{a}+\frac{\Delta_{a}}{2}=Q_{a^{*}}-\frac{\Delta_{a}}{2}$ by definition of $\Delta_{a}=Q_{a^{*}}-Q_{a *}$ and in the second inequality we used that for two random variables X and Y it holds that

$$
\mathbb{P}(X \geq Y)=\mathbb{P}(X \geq Y, Y \geq a)+\mathbb{P}(X \geq Y, Y<a) \leq \mathbb{P}(X \geq a)+\mathbb{P}(Y<a) .
$$

For any arm a we will now prove that

$$
\mathbb{P}\left(\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2}\right) \leq \frac{\epsilon t}{K} \exp \left(-\frac{\epsilon t}{5 K}\right)+\frac{16}{\Delta_{a}^{2}} \exp \left(-\frac{\Delta_{a}^{2} \epsilon t}{16 K}\right)
$$

Then it is obvious that $\sum_{t=1}^{\infty} \mathbb{P}\left(\hat{Q}_{a}(t) \geq \max _{b} \hat{Q}_{b}(t)\right) \leq C<\infty$. So, it holds

$$
\begin{aligned}
\mathbb{P}\left(\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2}\right) & =\sum_{s=1}^{t} \mathbb{P}\left(\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2}, T_{a}(t)=s\right) \\
& =\sum_{s=1}^{t} \mathbb{P}\left(\left.\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2} \right\rvert\, T_{a}(t)=s\right) \mathbb{P}\left(T_{a}(t)=s\right) \\
& \leq \sum_{s=1}^{t} 2 \exp \left(-\frac{\Delta_{a}^{2} s}{8}\right) \mathbb{P}\left(T_{a}(t)=s\right),
\end{aligned}
$$

where we applied Hoeffdings inequality in the last step. We divide into two sums as follows. Define $x=\left\lfloor\frac{\epsilon t}{2 K}\right\rfloor$, then

$$
\begin{aligned}
\mathbb{P}\left(\left|\hat{Q}_{a}(t)-Q_{a}\right| \geq \frac{\Delta_{a}}{2}\right) & \leq \sum_{s=1}^{x} 2 \exp \left(-\frac{\Delta_{a}^{2} s}{8}\right) \mathbb{P}\left(T_{a}(t)=s\right)+\sum_{s=x+1}^{t} 2 \exp \left(-\frac{\Delta_{a}^{2} s}{8}\right) \mathbb{P}\left(T_{a}(t)=s\right) \\
& \leq \sum_{s=1}^{x} 2 \mathbb{P}\left(T_{a}(t)=s\right)+\sum_{s=x+1}^{t} 2 \exp \left(-\frac{\Delta_{a}^{2} s}{8}\right) \\
& \leq \sum_{s=1}^{x} 2 \mathbb{P}\left(T_{a}(t)=s\right)+\frac{16}{\Delta_{a}^{2}} \exp \left(-\frac{\Delta_{a}^{2} x}{8}\right)
\end{aligned}
$$

In the last step we used that $\sum_{t=x+1}^{\infty} e^{-\kappa t} \leq \frac{1}{\kappa} e^{-\kappa x}$. Further, let $T_{a}^{R}(t)$ be the number of random explorations of the arm a before time t, then

$$
\begin{aligned}
\sum_{s=1}^{x} \mathbb{P}\left(T_{a}(t)=s\right) & \leq x \mathbb{P}\left(T_{a}^{R}(t) \leq x\right) \\
& \leq \frac{\epsilon t}{2 K} \mathbb{P}\left(T_{a}^{R}(t)-\mathbb{E}\left[T_{a}^{R}(t)\right] \leq\left\lfloor\frac{\epsilon t}{2 K}\right\rfloor-\frac{\epsilon t}{K}\right) \\
& \leq \frac{\epsilon t}{2 K} \mathbb{P}\left(T_{a}^{R}(t)-\mathbb{E}\left[T_{a}^{R}(t)\right] \leq-\frac{\epsilon t}{2 K}\right) \\
& =\frac{\epsilon t}{2 K} \mathbb{P}\left(T_{a}^{R}(t)-\mathbb{E}\left[T_{a}^{R}(t)\right] \geq \frac{\epsilon t}{2 K}\right) \\
& \leq \frac{\epsilon t}{2 K} e^{-\frac{\epsilon t}{K 10}} .
\end{aligned}
$$

The last inequality follows from Bernstein inequality and this is exactly what we wanted to prove. Bernstein inequality: Let X_{i} be i.i.d. r.v. with mean μ such that $\left|X_{i}-\mu\right| \leq M$ and $\mathbb{V}\left(\sum_{i=1}^{n} X_{i}\right)=$ σ^{2}, then

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu \geq b\right) \leq \exp \left(\frac{\frac{1}{2} b^{2}}{\sigma^{2}+\frac{1}{3} M b}\right) .
$$

In our case we have $b=\frac{\epsilon t}{2 K}, \sigma^{2} \leq \frac{t \epsilon}{K}$ and $M=1$.

