FAKULTAT FUR WIRTSCHAFTSINFORMATIK
UND WIRTSCHAFTSMATHEMATIK

UNIVERSITAT
MANNHEIM

||

ImCECy

\s|_= |
<P

Prof. Dr. Leif Déring Reinforcement Learning
Sara Klein, Benedikt Wille 2. Exercise Sheet

1. Sub-Gaussian random variables

Recall Definition 1.3.3. of a o-sub-Gaussian random variable X.

a) Show that every o-sub-Gaussian random variable satisfies IE[X] = 0 and V[X] < o2.
b) Suppose X is o-sub-Gaussian. Prove that cX is |c|o-sub-Gaussian.

¢) Show that X; + X is \/O’% —|—cr%-sub—Gaussian if X7 and Xy are independent oi-sub-

Gaussian and o9-sub-Gaussian random variables.

d) Show that a Bernoulli-variable is %—sub—Gaussian.

e) Show that every centered bounded random variable, say bounded below by a and above by

b is (b—a)

3 -sub-Gaussian.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise
sheet. Show that

R,(m) <A+ Cyn

for some model-free constant C' so that, in particular, R, () < 14 Cy/n for all bandit models
with regret bound A <1 (for instance for Bernoulli bandits).

Hint: First show that Equation (1.2) in the lecture notes is true and then use the same trick as
in the proof of Theorem 1.3.9.

3. Advanced: e-greedy Regret

Let 7 the learning strategy that first explores each arm once and then continuous according to
e-greedy for some € € (0,1) fixed. Furthermore, assume that v is a 1-sub-gaussian bandit model.

Show that the regret grows linearly:

. Ry(m) €
i T TR 2 A
acA

4. Programming task*: e-greedy and UCB
In this task, we want to implement the e-greedy algorithm and the UCB algorithm of the lecture
for the multi-armed bandit problem. As a reminder, we have written the two algorithms again

on the exercise sheet.

(a)

(b)

(c)

Input

Suppose we have a Gaussian bandit with 10 arms that walks for 1000 steps. Implement
the e-greedy algorithm and plot the regret and percentage of optimal actions for different
e-configurations. Perform the same experiment with the Bernoulli Bandit. Are there any

differences?

Implement the UCB algorithm. Compare your results for different Gaussian Bandits (espe-
cially different variances) and use different §. Especially compare different prefactors for the
term log(1/6) with § = # as discussed in the lecture. As a reminder, the UCB algorithm

is given by

A 2log(1/4)

all) + , o (t 0
vomut) < | @O+ VR 0 £
00 JTo(t) =0

In addition, for the Bernoulli Bandit use the modified UCB for o-subgaussian Bandits from

the skript. Compare again different values for o.

In the lecture, the regret bound

1
R, <3 Z Ng + 161og(n) Z ™~
acA aatax ¢

for § = # was derived. Add this plot to the experiment from the previous experiment.

: Parameter &, number of total timesteps n and number of arms k

Output: Trajectory of Rewards (Xt);eq1,...n) and actions (A¢)ieqi,.. 0}

begin

end

for t +— 1 ton do

Choose action A; = arg max; UCB;(t — 1, 6);

Observe reward X; and update the upper confidence bounds;

end

return (Xt)te{l,...,n}7 (At)te{l,.“,n} ;

Algorithm 1: UCB(4) algorithm

Input : Parameter &, number of arms n

Output: Trajectory of Rewards (X¢);eq1,....n) and actions (Ag)seqi,...

begin
fort+ 1 tondo
Choose U ~ U([0,1]);
if U < ¢ then
Choose A; uniformly;
Obtain reward X; by playing arm A;;
Update the estimated action value function Q(t);
end
else
Set A; = argmax, Q,(t — 1);
Obtain reward X; by playing arm A;;

Update the estimated action value function Q(t);

end
end

return (Xt)eq1,..n}» (At)iefn,...n}3
end

Algorithm 2: e-greedy algorithm

