

Prof. Dr. Leif Döring Sara Klein, Benedikt Wille

2. Exercise Sheet

Reinforcement Learning

1. Sub-Gaussian random variables

Recall Definition 1.3.3. of a σ -sub-Gaussian random variable X.

- a) Show that every σ -sub-Gaussian random variable satisfies $\mathbb{E}[X] = 0$ and $\mathbb{V}[X] \leq \sigma^2$.
- b) Suppose X is σ -sub-Gaussian. Prove that cX is $|c|\sigma$ -sub-Gaussian.
- c) Show that $X_1 + X_2$ is $\sqrt{\sigma_1^2 + \sigma_2^2}$ -sub-Gaussian if X_1 and X_2 are independent σ_1 -sub-Gaussian and σ_2 -sub-Gaussian random variables.
- d) Show that a Bernoulli-variable is $\frac{1}{2}$ -sub-Gaussian.
- e) Show that every centered bounded random variable, say bounded below by a and above by b is $\frac{(b-a)}{2}$ -sub-Gaussian.

2. Regret Bound

Recall the upper bound on the regret for ETC in the case of two arms from the first exercise sheet. Show that

$$R_n(\pi) \le \Delta + C\sqrt{n}$$

for some model-free constant C so that, in particular, $R_n(\pi) \leq 1 + C\sqrt{n}$ for all bandit models with regret bound $\Delta \leq 1$ (for instance for Bernoulli bandits).

Hint: First show that Equation (1.2) in the lecture notes is true and then use the same trick as in the proof of Theorem 1.3.9.

3. Advanced: ϵ -greedy Regret

Let π the learning strategy that first explores each arm once and then continuous according to ϵ -greedy for some $\epsilon \in (0, 1)$ fixed. Furthermore, assume that ν is a 1-sub-gaussian bandit model. Show that the regret grows linearly:

$$\lim_{n \to \infty} \frac{R_n(\pi)}{n} = \frac{\epsilon}{K} \sum_{a \in \mathcal{A}} \Delta_a$$

4. Programming task*: ε -greedy and UCB

In this task, we want to implement the ε -greedy algorithm and the UCB algorithm of the lecture for the multi-armed bandit problem. As a reminder, we have written the two algorithms again on the exercise sheet.

- (a) Suppose we have a Gaussian bandit with 10 arms that walks for 1000 steps. Implement the ε -greedy algorithm and plot the regret and percentage of optimal actions for different ε -configurations. Perform the same experiment with the Bernoulli Bandit. Are there any differences?
- (b) Implement the UCB algorithm. Compare your results for different Gaussian Bandits (especially different variances) and use different δ . Especially compare different prefactors for the term $\log(1/\delta)$ with $\delta = \frac{1}{n^2}$ as discussed in the lecture. As a reminder, the UCB algorithm is given by

$$UCB_a(t,\delta) = \begin{cases} \hat{Q}_a(t) + \sqrt{\frac{2\log(1/\delta)}{T_a(t)}} &, T_a(t) \neq 0\\ \infty &, T_a(t) = 0 \end{cases}.$$

In addition, for the Bernoulli Bandit use the modified UCB for σ -subgaussian Bandits from the skript. Compare again different values for σ .

(c) In the lecture, the regret bound

$$R_n \le 3\sum_{a \in \mathcal{A}} \triangle_a + 16\log(n)\sum_{a:a \ne a*} \frac{1}{\triangle_a}$$

for $\delta = \frac{1}{n^2}$ was derived. Add this plot to the experiment from the previous experiment.

Input : Parameter δ , number of total timesteps n and number of arms k**Output:** Trajectory of Rewards $(X_t)_{t \in \{1,...,n\}}$ and actions $(A_t)_{t \in \{1,...,n\}}$ **begin**

for $t \leftarrow 1$ to n do

Choose action $A_t = \arg \max_i \text{UCB}_i(t-1, \delta);$

Observe reward X_t and update the upper confidence bounds;

 \mathbf{end}

return $(X_t)_{t \in \{1,...,n\}}, (A_t)_{t \in \{1,...,n\}}$;

 \mathbf{end}

Algorithm 1: UCB(δ) algorithm

Input : Parameter ε , number of arms n**Output:** Trajectory of Rewards $(X_t)_{t \in \{1,...,n\}}$ and actions $(A_t)_{t \in \{1,...,n\}}$ begin for $t \leftarrow 1$ to n do Choose $U \sim \mathcal{U}([0,1]);$ if $U < \varepsilon$ then Choose A_t uniformly; Obtain reward X_t by playing arm A_t ; Update the estimated action value function $\hat{Q}(t)$; end \mathbf{else} Set $A_t = \arg \max_a \tilde{Q}_a(t-1);$ Obtain reward X_t by playing arm A_t ; Update the estimated action value function $\tilde{Q}(t)$; \mathbf{end} $\quad \text{end} \quad$ return $(X_t)_{t \in \{1,...,n\}}, (A_t)_{t \in \{1,...,n\}};$ \mathbf{end} Algorithm 2: ε -greedy algorithm

3