Prof. Dr. Leif Döring
Sara Klein, Benedikt Wille

1. Exercise Sheet - Solutions

1. The Regret

Recall Definition 1.1.6 from the lecture. Suppose ν is a bandit model and $\left(\pi_{t}\right)_{t=1, \ldots, n}$ a learning strategy. Then the regret is defined by

$$
R_{n}(\pi):=n Q_{*}-\mathbb{E}_{\pi}\left[\sum_{t=1}^{n} X_{t}\right], \quad n \in \mathbb{N},
$$

where $Q_{*}:=\int_{-\infty}^{\infty} x P_{a_{*}}(d x)$ the expected reward of the best arm $a_{*}=\operatorname{argmax}_{a} Q_{a}$.
a) Suppose a two-armed bandit with $Q_{1}=1$ and $Q_{2}=-1$ and a learning strategy π given by

$$
\pi_{t}=\left\{\begin{array}{cc}
\delta_{1}, & t \text { even } \\
\delta_{2}, & t \text { odd }
\end{array}\right.
$$

Calculate the regret $R_{n}(\pi)$ for all $n \in \mathbb{N}$.

Solution:

If $n \in \mathbb{N}$ is even, then

$$
\begin{equation*}
R_{n}(\pi)=n Q_{*}-\mathbb{E}^{\pi}\left[\sum_{t \leq n} X_{t}\right]=n * 1-\left(\frac{n}{2}(-1)-\frac{n}{2} 1\right)=n \tag{1}
\end{equation*}
$$

and if $n \in \mathbb{N}$ is odd, then

$$
\begin{aligned}
R_{n}(\pi)= & n Q_{*}-\mathbb{E}^{\pi}\left[\sum_{t \leq n} X_{t}\right] \\
& =(n-1) Q_{*}-\mathbb{E}^{\pi}\left[\sum_{t \leq n-1} X_{t}\right]+Q_{*}-\mathbb{E}^{\pi}\left[X_{n}\right] \\
& =R_{n-1}(\pi)+1-(-1) \\
& \stackrel{(1)}{=} n-1+1+1=n+1
\end{aligned}
$$

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all $n \geq 5$.

Solution:

Consider for example the 3 -armed bandit with $Q_{1}=1, Q_{2}=-1, Q_{3}=0$ and a policy π with

$$
\pi_{1}=\pi_{2}=\delta_{2}, \quad \pi_{3}=\delta_{3}, \quad \pi_{t}=\delta_{1} \forall t \geq 4
$$

Then for all $n \geq 4$ we have

$$
\begin{aligned}
R_{n}(\pi) & =n Q_{*}-\mathbb{E}^{\pi}\left[\sum_{t \leq n} X_{t}\right] \\
& =n * 1-\left((-1)+(-1)+0+\sum_{t=4}^{n} 1\right)=n+2-(n-3)=5
\end{aligned}
$$

c) Show for all learning strategies π that $R_{n}(\pi) \geq 0$ and $\limsup _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n}<\infty$.

Solution:

Claim: for all learning strategies π that $R_{n}(\pi) \geq 0$ and $\limsup _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n}<\infty$. Proof: Fix a learning strategy π. Then for the first Claim

$$
\begin{aligned}
R_{n}(\pi) & =n Q_{*}-\mathbb{E}^{\pi}\left[\sum_{t \leq n} X_{t}\right] \\
& =n Q_{*}-\sum_{t \leq n} \mathbb{E}^{\pi}\left[X_{t}\right] \\
& =n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{E}^{\pi}\left[X_{t} \mathbf{1}_{\left\{A_{t}=a\right\}}\right] \\
& =n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a\right) \mathbb{E}^{\pi}\left[X_{t} \mid A_{t}=a\right] \\
& =n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{a} \\
& \geq n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{*} \\
& =n Q_{*}-n Q_{*} \\
& =0,
\end{aligned}
$$

where we used the formular for conditional expectation in the forth line, the definition of Q_{a} in the fifth line and $Q_{a} \leq Q_{*}$ for all $a \in \mathcal{A}$ in the inequality.
For the second Claim we define $Q_{-*}:=\min _{a \in \mathcal{A}} Q_{a}$. Then it holds similar to the calculation above

$$
\begin{aligned}
R_{n}(\pi) & =n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{a} \\
& \leq n Q_{*}-\sum_{t \leq n} \sum_{a \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{-*} \\
& =n Q_{*}-n Q_{-*}
\end{aligned}
$$

Thus

$$
\limsup _{n \rightarrow \infty} \frac{R_{n}(\pi)}{n} \leq \limsup _{n \rightarrow \infty} \frac{n Q_{*}-n Q_{-*}}{n}=Q_{*}-Q_{-*}<\infty
$$

d) Let $R_{n}(\pi)=0$. Prove that π is deterministic, i.e. all π_{t} are almost surely constant and only chose the best arm.

Solution:

Claim: If $R_{n}(\pi)=0$ for all $n \geq 1$, then π is deterministic and $\pi_{t}=\delta_{a^{*}}$ almost surely.
Proof: Let $R_{n}(\pi)=0$ for all $n \geq 1$ and assume there exists $t \geq 1$ such that $\pi_{t} \neq \delta_{a^{*}}$. Then there exists an arm $a \neq a^{*}$ with $Q_{a}<Q_{a^{*}}$ such that $\mathbb{P}^{\pi}\left(A_{t}=a\right)>0$. We follow

$$
\begin{aligned}
\mathbb{E}^{\pi}\left[X_{t}\right] & =\sum_{a^{\prime} \in \mathcal{A}} \mathbb{P}^{\pi}\left(A_{t}=a^{\prime}\right) Q_{a^{\prime}} \\
& =\mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{a}+\sum_{a^{\prime} \neq a} \mathbb{P}^{\pi}\left(A_{t}=a^{\prime}\right) Q_{a^{\prime}} \\
& \leq \mathbb{P}^{\pi}\left(A_{t}=a\right) Q_{a}+\left(1-\mathbb{P}^{\pi}\left(A_{t}=a\right)\right) Q_{*} \\
& =Q_{*}+\mathbb{P}^{\pi}\left(A_{t}=a\right)\left(Q_{a}-Q_{*}\right) \\
& <Q_{*} .
\end{aligned}
$$

Using this we have for all $n \geq t$

$$
\begin{aligned}
R_{n}(\pi) & =n Q_{*}-\sum_{t \leq n} \mathbb{E}^{\pi}\left[X_{t}\right] \\
& \geq n Q_{*}-\left((n-1) Q_{*}+\mathbb{E}^{\pi}\left[X_{t}\right]\right) \\
& >Q_{*}-Q_{*}=0 .
\end{aligned}
$$

This is a contradiction.
e) Suppose ν is a 1 -subgaussian bandit model with k arms and $k m \leq n$, then consider the Explore then Commit algorithm and recall the regret bound:

$$
R_{n} \leq \underbrace{m \sum_{a \in \mathcal{A}} \Delta_{a}}_{\text {exploration }}+\underbrace{(n-m k) \sum_{a \in \mathcal{A}} \Delta_{a} \exp \left(-\frac{m \Delta_{a}^{2}}{4}\right)}_{\text {exploitation }} .
$$

Assume now $k=2$, such that $\Delta_{1}=0$ and $\Delta_{2}=\Delta$ then we get

$$
R_{n} \leq m \Delta+(n-m 2) \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right) \leq m \Delta+n \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right)
$$

Show that this upper bound is minimized for $m=\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}$.

Solution:

Define the function $f(m)=m \Delta+n \Delta \exp \left(-\frac{m \Delta^{2}}{4}\right)$ with $n>0, \Delta>0$. First show that f is convex, then we can solve for a minimum in \mathbb{R} to find minimizers in the natural numbers. Note therefore that

$$
\begin{aligned}
& \nabla f(m)=\Delta-\frac{n \Delta^{3}}{4} \exp \left(-\frac{m \Delta^{2}}{4}\right) \\
& \nabla^{2} f(m)=\frac{n \Delta^{5}}{16} \exp \left(-\frac{m \Delta^{2}}{4}\right)>0 \quad \forall m \in \mathbb{R}
\end{aligned}
$$

Solving $\nabla f(m)=0$ yields

$$
\begin{aligned}
& \frac{n \Delta^{3}}{4} \exp \left(-\frac{m \Delta^{2}}{4}\right)=\Delta \\
\Leftrightarrow & m=\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right) .
\end{aligned}
$$

Defining our candidate $m^{*}=\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)$ we conclude from

$$
\nabla^{3} f(m)=-\frac{n \Delta^{7}}{64} \exp \left(-\frac{m \Delta^{2}}{4}\right)<0
$$

that f increases to the left of m^{*} faster than to the right, such that $f\left(\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right)<$ $f\left(\left\lfloor\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rfloor\right)$. As m has to be a natural number we know $m \geq 1$ and so

$$
m=\max \left\{1,\left\lceil\frac{4}{\Delta^{2}} \log \left(\frac{n \Delta^{2}}{4}\right)\right\rceil\right\}
$$

minimizes the regret.

2. The Regret - Part 2

Show the following two claims.
a) If the failure probabilities do not decay to zero then the regret grows linearly.

Solution:
By Lemma 1.2.10 in the lecture notes we know that

$$
R_{n}(\pi) \geq \min _{a \neq a^{*}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi)
$$

Assume now that the failure probabilities do not decay to zero, i.e. there exist $c>0$ and $T \geq 1$ such that $\tau_{t}(\pi)>c$ for all $t \geq T$. Then for all $n>T$ we have

$$
\begin{aligned}
R_{n}(\pi) & \geq \min _{a \neq a^{*}} \Delta_{a}\left(\sum_{t=1}^{T} \tau_{t}(\pi)+(n-T) c\right) \\
& \geq(n-T) c \min _{a \neq a^{*}} \Delta_{a}
\end{aligned}
$$

Thus, we have shown that the regret grows at least linearly in n for n large enough. To see that the regret also grows at most linearly in n, note that

$$
\begin{aligned}
& R_{n}(\pi) \leq \max _{a \in \mathcal{A}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi) \\
\leq & n \max _{a \in \mathcal{A}} .
\end{aligned}
$$

This proves the claim.
b) If the failure probability $\tau_{n}(\pi)$ behaves like $\frac{1}{n}$, then the regret behaves like $\sum_{a \in \mathcal{A}} \Delta_{a} \log (n)$ with constants that depend on the concrete bandit model.
Hint: Recall from basic analysis that $\int_{1}^{n} \frac{1}{x} d x=\log (n)$ and how to relate sums and integrals for monotone integrands.

Solution:

Again by Lemma 1.2.10 in the lecture notes we know that

$$
R_{n} \leq \max _{a \in \mathcal{A}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi) \quad \text { and } \quad R_{n}(\pi) \geq \min _{a \neq a^{*}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi)
$$

For $\tau_{n}(\pi) \simeq \frac{1}{n}$ we will prove that $\log (n) \leq \sum_{t=1}^{n} \frac{1}{t} \leq \log (n)+1$.
First recall that $I=\{t\}_{t=1}^{n}$ can be interpreted as a disjoint decomposition of the interval $[1, n]$ each of length 1. Next, we upper and lower bound the integral $\int_{1}^{t} \frac{1}{x} d x$ by taking into accout that $\frac{1}{x}$ is monotonic decreasing and considering the upper-sum and lower-sum. We obtain

$$
\sum_{t=2}^{n} \frac{1}{t} \leq \int_{1}^{t} \frac{1}{x} d x \leq \sum_{t=1}^{n-1} \frac{1}{t}
$$

Thus, we follow that

$$
\sum_{t=1}^{n} \frac{1}{t} \geq \sum_{t=1}^{n-1} \frac{1}{t} \geq \log (n)
$$

and on the other hand

$$
\sum_{t=1}^{n} \frac{1}{t}=1+\sum_{t=2}^{n} \frac{1}{t} \leq 1+\log (n)
$$

All in all we see that

$$
R_{n} \leq \max _{a \in \mathcal{A}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi) \leq \max _{a \in \mathcal{A}} \Delta_{a}(1+\log (n))
$$

and

$$
R_{n}(\pi) \geq \min _{a \neq a^{*}} \Delta_{a} \sum_{t=1}^{n} \tau_{t}(\pi) \geq \min _{a \neq a^{*}} \Delta_{a} \log (n)
$$

We conclude the claim by realizing that $\min _{a \neq a^{*}} \Delta_{a} \leq \sum_{a} \Delta_{a} \leq K \max _{a} \Delta_{a}$, where K is the number of arms. Hence, there exists a constant \tilde{C} (dependent on the Δ_{a} 's) such that $R_{n}=\tilde{C} \sum_{a \in \mathcal{A}} \Delta_{a} \log (n)$.

