
Prof. Dr. Leif Döring Reinforcement Learning

Sara Klein, Benedikt Wille 1. Exercise Sheet - Solutions

1. The Regret

Recall Definition 1.1.6 from the lecture. Suppose ν is a bandit model and (πt)t=1,...,n a learning

strategy. Then the regret is defined by

Rn(π) := nQ∗ − IEπ

[ n∑
t=1

Xt

]
, n ∈ IN,

where Q∗ :=
∫∞
−∞ xPa∗(dx) the expected reward of the best arm a∗ = argmaxaQa.

a) Suppose a two-armed bandit with Q1 = 1 and Q2 = −1 and a learning strategy π given by

πt =

{
δ1, t even,

δ2, t odd.

Calculate the regret Rn(π) for all n ∈ IN.

Solution:

If n ∈ IN is even, then

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]
= n ∗ 1−

(n
2
(−1)− n

2
1
)
= n (1)

and if n ∈ IN is odd, then

Rn(π) =nQ∗ − IEπ
[∑
t≤n

Xt

]
= (n− 1)Q∗ − IEπ

[ ∑
t≤n−1

Xt

]
+Q∗ − IEπ[Xn]

= Rn−1(π) + 1− (−1)

(1)
= n− 1 + 1 + 1 = n+ 1

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all n ≥ 5.

Solution:

Consider for example the 3-armed bandit with Q1 = 1, Q2 = −1, Q3 = 0 and a policy π with

π1 = π2 = δ2, π3 = δ3, πt = δ1 ∀t ≥ 4.
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Then for all n ≥ 4 we have

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]

= n ∗ 1−
(
(−1) + (−1) + 0 +

n∑
t=4

1
)
= n+ 2− (n− 3) = 5.

c) Show for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n < ∞.

Solution:

Claim: for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n < ∞.

Proof: Fix a learning strategy π. Then for the first Claim

Rn(π) = nQ∗ − IEπ
[∑
t≤n

Xt

]
= nQ∗ −

∑
t≤n

IEπ
[
Xt

]
= nQ∗ −

∑
t≤n

∑
a∈A

IEπ
[
Xt1{At=a}

]
= nQ∗ −

∑
t≤n

∑
a∈A

Pπ(At = a)IEπ
[
Xt

∣∣∣At = a
]

= nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Qa

≥ nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Q∗

= nQ∗ − nQ∗

= 0,

where we used the formular for conditional expectation in the forth line, the definition of

Qa in the fifth line and Qa ≤ Q∗ for all a ∈ A in the inequality.

For the second Claim we define Q−∗ := mina∈AQa. Then it holds similar to the calculation

above

Rn(π) = nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Qa

≤ nQ∗ −
∑
t≤n

∑
a∈A

Pπ(At = a)Q−∗

= nQ∗ − nQ−∗.

Thus

lim sup
n→∞

Rn(π)

n
≤ lim sup

n→∞

nQ∗ − nQ−∗
n

= Q∗ −Q−∗ < ∞.

d) Let Rn(π) = 0. Prove that π is deterministic, i.e. all πt are almost surely constant and

only chose the best arm.
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Solution:

Claim: If Rn(π) = 0 for all n ≥ 1, then π is deterministic and πt = δa∗ almost surely.

Proof: Let Rn(π) = 0 for all n ≥ 1 and assume there exists t ≥ 1 such that πt ̸= δa∗. Then

there exists an arm a ̸= a∗ with Qa < Qa∗ such that Pπ(At = a) > 0. We follow

IEπ[Xt] =
∑
a′∈A

Pπ(At = a′)Qa′

= Pπ(At = a)Qa +
∑
a′ ̸=a

Pπ(At = a′)Qa′

≤ Pπ(At = a)Qa + (1− Pπ(At = a))Q∗

= Q∗ + Pπ(At = a)(Qa −Q∗)

< Q∗.

Using this we have for all n ≥ t

Rn(π) = nQ∗ −
∑
t≤n

IEπ
[
Xt

]
≥ nQ∗ −

(
(n− 1)Q∗ + IEπ[Xt]

)
> Q∗ −Q∗ = 0.

This is a contradiction.

e) Suppose ν is a 1-subgaussian bandit model with k arms and km ≤ n, then consider the

Explore then Commit algorithm and recall the regret bound:

Rn ≤ m
∑
a∈A

∆a︸ ︷︷ ︸
exploration

+(n−mk)
∑
a∈A

∆a exp
(
− m∆2

a

4

)
︸ ︷︷ ︸

exploitation

.

Assume now k = 2, such that ∆1 = 0 and ∆2 = ∆ then we get

Rn ≤ m∆+ (n−m2)∆ exp
(
− m∆2

4

)
≤ m∆+ n∆exp

(
− m∆2

4

)
.

Show that this upper bound is minimized for m = max
{
1,
⌈

4
∆2 log(

n∆2

4 )
⌉}

.

Solution:

Define the function f(m) = m∆+n∆exp
(
− m∆2

4

)
with n > 0,∆ > 0. First show that f is

convex, then we can solve for a minimum in IR to find minimizers in the natural numbers.

Note therefore that

∇f(m) = ∆− n∆3

4
exp

(
− m∆2

4

)
∇2f(m) =

n∆5

16
exp

(
− m∆2

4

)
> 0 ∀m ∈ IR.
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Solving ∇f(m) = 0 yields

n∆3

4
exp

(
− m∆2

4

)
= ∆

⇔ m =
4

∆2
log
(n∆2

4

)
.

Defining our candidate m∗ = 4
∆2 log

(
n∆2

4

)
we conclude from

∇3f(m) = −n∆7

64
exp

(
− m∆2

4

)
< 0

that f increases to the left of m∗ faster than to the right, such that f(
⌈

4
∆2 log(

n∆2

4 )
⌉
) <

f(
⌊

4
∆2 log(

n∆2

4 )
⌋
). As m has to be a natural number we know m ≥ 1 and so

m = max
{
1,

⌈
4

∆2
log(

n∆2

4
)

⌉}
minimizes the regret.

2. The Regret - Part 2

Show the following two claims.

a) If the failure probabilities do not decay to zero then the regret grows linearly.

Solution:

By Lemma 1.2.10 in the lecture notes we know that

Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π).

Assume now that the failure probabilities do not decay to zero, i.e. there exist c > 0 and

T ≥ 1 such that τt(π) > c for all t ≥ T . Then for all n > T we have

Rn(π) ≥ min
a̸=a∗

∆a

(
T∑
t=1

τt(π) + (n− T )c

)
≥ (n− T )cmin

a̸=a∗
∆a.

Thus, we have shown that the regret grows at least linearly in n for n large enough.

To see that the regret also grows at most linearly in n, note that

Rn(π) ≤ max
a∈A

∆a

n∑
t=1

τt(π)

≤ nmax
a∈A

.

This proves the claim.
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b) If the failure probability τn(π) behaves like
1
n , then the regret behaves like

∑
a∈A∆a log(n)

with constants that depend on the concrete bandit model.

Hint: Recall from basic analysis that
∫ n
1

1
xdx = log(n) and how to relate sums and integrals

for monotone integrands.

Solution:

Again by Lemma 1.2.10 in the lecture notes we know that

Rn ≤ max
a∈A

∆a

n∑
t=1

τt(π) and Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π).

For τn(π) ≃ 1
n we will prove that log(n) ≤

∑n
t=1

1
t ≤ log(n) + 1.

First recall that I = {t}nt=1 can be interpreted as a disjoint decomposition of the interval

[1, n] each of length 1. Next, we upper and lower bound the integral
∫ t
1

1
xdx by taking into

accout that 1
x is monotonic decreasing and considering the upper-sum and lower-sum. We

obtain
n∑

t=2

1

t
≤
∫ t

1

1

x
dx ≤

n−1∑
t=1

1

t
.

Thus, we follow that
n∑

t=1

1

t
≥

n−1∑
t=1

1

t
≥ log(n)

and on the other hand
n∑

t=1

1

t
= 1 +

n∑
t=2

1

t
≤ 1 + log(n).

All in all we see that

Rn ≤ max
a∈A

∆a

n∑
t=1

τt(π) ≤ max
a∈A

∆a(1 + log(n))

and

Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π) ≥ min
a̸=a∗

∆a log(n).

We conclude the claim by realizing that mina̸=a∗ ∆a ≤
∑

a∆a ≤ Kmaxa∆a, where K is

the number of arms. Hence, there exists a constant C̃ (dependent on the ∆a’s) such that

Rn = C̃
∑

a∈A∆a log(n).
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