FAKULTAT FUR WIRTSCHAFTSINFORMATIK
UND WIRTSCHAFTSMATHEMATIK

UNIVERSITAT
MANNHEIM

||

ImCECy

\s|_= |
<P

Prof. Dr. Leif Déring Reinforcement Learning
Sara Klein, Benedikt Wille 1. Exercise Sheet

1. The Regret - Part 1

Recall Definition 1.1.6 from the lecture. Suppose v is a bandit model and (m),_; ,, a learning

strategy. Then the regret is defined by

n

Rp(n) = nQ. — E, [th}, neN,
t=1

where Q, := f_oooo xP,, (dx) the expected reward of the best arm a, = argmax,Q,.

a) Suppose a two-armed bandit with Q1 = 1 and Q2 = —1 and a learning strategy 7 given by

61, teven,
Tt =
52, t odd.

Calculate the regret R, ().

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all n > 5.

c¢) Show for all learning strategies 7 that R, (7) > 0 and limsup,,_, . R"T(ﬂ) < 00

d) Let R, (m) = 0. Suppose that the best arm is unique. Prove that 7 is deterministic, i.e. all

m; are almost surely constant and only chose the best arm.

e) Suppose v is a l-subgaussian bandit model with k& arms and km < n, then consider the

Explore then Commit algorithm and recall the regret bound:
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Assume now k = 2, such that Ay =0 and Ay = A then we get
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Show that this upper bound is minimized for m = max {1, {% log(”TAz)—‘ }

2. The Regret - Part 2

Show the following two claims.

a) If the failure probability do not decay to zero then the regret grows linearly.



b) If the failure probability 7,(m) behaves like L, then the regret behaves like >° . 4 Aqlog(n)
with constants that depend on the concrete bandit model.
Hint: Recall from basic analysis that fln %daz = log(n) and how to relate sums and integrals

for monotone integrands.

3. *Programming task: explore-then-commit Algorithm

The first algorithm from the lecture was the explore-then-commit algorithm. If you are not so
familiar with programming, you can find a standard implementation of the algorithm in the
Jupiter Notebook that we have provided on the website. Otherwise, you can also implement

your own explore-then-commit algorithm.

a) Implement the 10-armed bandit from Chapter 2.3 by Sutton and Barto. Therefore, you

should first implement a general Gaussian bandit using the code snippet below:

Listing 1: Gaussian Bandit

class GaussianBanditEnv (Env):
def __init__(self, mean_parameter, max_steps):

777 create a multiarm bandit with ‘len(p_parameter)‘ arms

Args:
mean_parameter (list): list containing mean
parameter of guassian bandit arms
maz_steps (int): number of total steps
for the bandit problem
pass

def step (self, action):

200

play an action in the gaussian bandit modell

Args:
action (int): choosen arm
Returns:
list: new state, reward,
done (bool if game is finished), info
n o
pass

def reset(self):

777 reset all statistics to run a new game

» 0

pass

Please ignore the return “new state” in the step function for now, we will need this later

for reinforcement learning.



Then simulate 10 standard Gaussian random variables representing the expected value @,

of each arm and create the Gaussian 10-arm bandit.

b) Play the bandit n = 10000 times with the explore-then-commit learning strategy for dif-
ferent choices of m and compute the corresponding rewards. Graph the regret in terms of

different m. Which m minimizes regret?

4. *Programming task advanced: explore-then-commit

Suppose the 10-armed bandit from Exercise 2 and use the regret bound from Theorem 1.2.2
to find an optimal m that minimizes the regret. If you cannot find an analytic form for the
optimal m, use a numerical method to determine the optimal m. Plot the rewards and make a

comparison to the previous exercise.

*The exercise sheets 1 to 5 contain programming tasks regarding bandits and dynamic programming
which will not be discussed in the exercise classes. If you are interested in coding you can find solutions

i this repository.

The solution to the theoretical exercises will be discussed in the exercise class in B4 on
February 22, 2024, at Seminar Room 110 in B6 30-36.


https://github.com/aferdina/Solution_Exercise/

