
Prof. Dr. Leif Döring Reinforcement Learning

Sara Klein, Benedikt Wille 1. Exercise Sheet

1. The Regret - Part 1

Recall Definition 1.1.6 from the lecture. Suppose ν is a bandit model and (πt)t=1,...,n a learning

strategy. Then the regret is defined by

Rn(π) := nQ∗ − IEπ

[ n∑
t=1

Xt

]
, n ∈ IN,

where Q∗ :=
∫∞
−∞ xPa∗(dx) the expected reward of the best arm a∗ = argmaxaQa.

a) Suppose a two-armed bandit with Q1 = 1 and Q2 = −1 and a learning strategy π given by

πt =

{
δ1, t even,

δ2, t odd.

Calculate the regret Rn(π).

b) Define a stochastic bandit and a learning strategy such that the regret is 5 for all n ≥ 5.

c) Show for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n < ∞.

d) Let Rn(π) = 0. Suppose that the best arm is unique. Prove that π is deterministic, i.e. all

πt are almost surely constant and only chose the best arm.

e) Suppose ν is a 1-subgaussian bandit model with k arms and km ≤ n, then consider the

Explore then Commit algorithm and recall the regret bound:

Rn ≤ m
∑
a∈A

∆a︸ ︷︷ ︸
exploration

+(n−mk)
∑
a∈A

∆a exp
(
− m∆2

a

4

)
︸ ︷︷ ︸

exploitation

.

Assume now k = 2, such that ∆1 = 0 and ∆2 = ∆ then we get

Rn ≤ m∆+ (n−m2)∆ exp
(
− m∆2

4

)
≤ m∆+ n∆exp

(
− m∆2

4

)
.

Show that this upper bound is minimized for m = max
{
1,
⌈

4
∆2 log(

n∆2

4 )
⌉}

.

2. The Regret - Part 2

Show the following two claims.

a) If the failure probability do not decay to zero then the regret grows linearly.
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b) If the failure probability τn(π) behaves like
1
n , then the regret behaves like

∑
a∈A∆a log(n)

with constants that depend on the concrete bandit model.

Hint: Recall from basic analysis that
∫ n
1

1
xdx = log(n) and how to relate sums and integrals

for monotone integrands.

3. *Programming task: explore-then-commit Algorithm

The first algorithm from the lecture was the explore-then-commit algorithm. If you are not so

familiar with programming, you can find a standard implementation of the algorithm in the

Jupiter Notebook that we have provided on the website. Otherwise, you can also implement

your own explore-then-commit algorithm.

a) Implement the 10-armed bandit from Chapter 2.3 by Sutton and Barto. Therefore, you

should first implement a general Gaussian bandit using the code snippet below:

Listing 1: Gaussian Bandit

class GaussianBanditEnv (Env ) :

def i n i t ( s e l f , mean parameter , max steps ) :

””” c rea t e a multiarm band i t wi th ‘ l en ( p parameter ) ‘ arms

Args :

mean parameter ( l i s t ) : l i s t con ta in ing mean

parameter o f guass ian band i t arms

max steps ( i n t ) : number o f t o t a l s t e p s

f o r the band i t problem

”””

pass

def s tep ( s e l f , a c t i on ) :

””” p lay an ac t i on in the gauss ian band i t model l

Args :

ac t i on ( i n t ) : choosen arm

Returns :

l i s t : new s ta t e , reward ,

done ( boo l i f game i s f i n i s h e d ) , i n f o

”””

pass

def r e s e t ( s e l f ) :

””” r e s e t a l l s t a t i s t i c s to run a new game

”””

pass

Please ignore the return “new state” in the step function for now, we will need this later

for reinforcement learning.
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Then simulate 10 standard Gaussian random variables representing the expected value Qa

of each arm and create the Gaussian 10-arm bandit.

b) Play the bandit n = 10000 times with the explore-then-commit learning strategy for dif-

ferent choices of m and compute the corresponding rewards. Graph the regret in terms of

different m. Which m minimizes regret?

4. *Programming task advanced: explore-then-commit

Suppose the 10-armed bandit from Exercise 2 and use the regret bound from Theorem 1.2.2

to find an optimal m that minimizes the regret. If you cannot find an analytic form for the

optimal m, use a numerical method to determine the optimal m. Plot the rewards and make a

comparison to the previous exercise.

*The exercise sheets 1 to 5 contain programming tasks regarding bandits and dynamic programming

which will not be discussed in the exercise classes. If you are interested in coding you can find solutions

in this repository.

The solution to the theoretical exercises will be discussed in the exercise class in B4 on

February 22, 2024, at Seminar Room 110 in B6 30-36.
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https://github.com/aferdina/Solution_Exercise/

