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Introduction

AlphaGo, protein folding, chatGPT. There is little doubt the reader of these lecture notes has
crossed one of the most hot topics in artificial intelligence during the past years. Large companies
such as alphabet and Microsoft with their affiliated reinforcement learning teams have managed
to achieve unbelieble progress in artificial intelligence that goes far beyond computer science. One
piece amongst others is reinforcement learning, a mathematical concept to learn (near) optimal
decision making. The aim of these notes is to introduce the most important basic concepts that
should be understood before digging into the state of the art algorithms that lie behind this
fascinating technology. To get a first impression of all base ideas there is a wondeful book of
Sutton and Barton, being targeted to a wide audience the book skips essentially all details. Our
aim is to dig deeper into the details with the drawback of covering less topics.

• Multiarmed bandits, the simplest setting to understand some of the basic ideas like the
exploration/exploitation trade-off.

• Classical Markov decision process theory, the basics of optimal decision making that must
be well understood before proceeded to the advanced topics.

• Stochastic approximation and temporal difference techniques

1



Part I

Multiarmed Bandits
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Chapter 1

Stochastic bandits

Multiarmed bandits can be considered to be the simplest situation in which optimal decision
making can be learnt. Due to its simple structure many ideas get more visible that we will get
to know much later for the more general setup of Markov decision processes. In fact, a vast
literature of precise results exists for multiarmed bandits in contrast to many unproved methods
for the general Markov decision situation. What we will try to achieve in this first chapter is to
bridge the two worlds. We discuss ideas and methods that will be crucial for Markov decision
processes mostly in the precise language of multiarmed bandits. The aim is to find the right
compromise of the very imprecise Chapter 2 of Sutton and Barton and the very detailed book of
Lattimore and Szepesvári.

The chapter focuses only on algorithmic ideas towards the trade-off between explo-
ration and exploitation in optimal decision making. Topics like theoretical lower
bounds will not be touched even though their importance cannot be underestimated
at all.

The language used in this chapter will thus be a combination of bandit and reinforcement learning
(RL) notation. The chapter can also be seen as a motivation for later chapters to see how little
we actually understand about general reinforcement learning compared to the well-understood
case of multiarmed bandits.

1.1 A quick dive into two-stage stochastic experiments
steht im WT Skript

1.2 Model, examples, and the goals
As there is no need to loose the reader in the mathematical formalisation of multiarmed bandits
we will first gently introduce the ideas. For a multiarmed bandit there is a number of possible
experiments among which a learner (in RL called agent) has the target to identify the best
arm by observing random samples of the experiments. The goal is to learn efficiently which
experiment yields the best outcome. There are different ways of defining what best means, in
bandit theory best typically means the highest expectation. The simplest example to keep in
mind is a daily visit to the university cantine. Let’s say the cantine offers four choices: vegan,
vegetarian, classic, oriental. These are the four possible experiments, the random outcomes are
the quality of the dish (measured in some way, such as on a 1-10 scale). There are plenty of
other situations that immediately come to mind such as

• medical treatment of patients with different doses, outcome measures the success, for
instance 1 for healed and 0 otherwise,

3



1.2. MODEL, EXAMPLES, AND THE GOALS 4

• placing different advertisements on websites, outcome measures the click rates.

The wording multiarmed bandit is rather historic and comes from gambling. A one-armed bandit
is a gambling machine in which every round of the game yields a random reward. Typically there
are several one-armed bandits next to each other and a player aims to play the most favorable
bandit. Since every round has a fixed cost, say one Euro, the player tries to figure out as quickly
as possible which machine works best for him/her. In these notes we will only discuss so-called
stochastic bandits. These are bandits where the random experiements are stationary, i.e. the
distribution of the experiments do not change over time. More general bandit situations are
adversarial bandits and contextual bandits which we will not touch in this section.
Before we go into more details let us discuss what we want to optimize. Suppose we have a finite
set A = {a1, ..., aK} of experiments (arms to play) and denote by Qa the expectation of the
random outcome whose distribution we denote by Pa. Of course there could be other goals than
finding the arm with the highest average outcome, but this is what we decide to optimize. Now
fix a time-horizon n (which could be infinite), the number of rounds we can use for learning. A
learning strategy is a sequence (πt)t=1,...,n of probability distributions on A that only depend
on what has been played prior to time t. Here πt({a}) is the probability that the player choses
action a at time t and then receives the random outcome of the corresponding experiment.

Throughout these lecture notes we will be sloppy about measures on the power-set
of discrete (finite or countably infinite) sets. Instead of writing p({a}) we typically
write p(a) for probabilities of singleton sets if there is no danger of confusion.

The aim is to find a learning strategy that maximises the outcome of this procedure. To have
an idea in mind think of the example of the university canteen. During your studies you might
have n = 500 choices in total. If you are not vegan or vegetarian you probably started without
preferences, i.e. πt(vegan) = · · · = πt(oriental) = 1

4 , and over time learnt from experience how to
change the following distributions πt in order to maximise the lunch experience.
Let’s turn these basic ideas into mathematics.

Definition 1.2.1. Suppose A is an index-set and ν = {Pa}a∈A is a family of
real-valued distributions.

• The set ν is called a stochastic bandit model. In these lectures we will always
assume A = {a1, ..., aK} is finite, K is the number of arms.

• The action value (or Q-value) of an arm is defined by it’s expectation Qa :=∫
R x Pa(dx). A best arm, usually denoted by a∗, is an arm with highest

Q-value, i.e.
Qa∗ = argmaxa∈AQa.

Typically one abbreviates Q∗ for the largest action value Qa and if there are
several optimal arms the argmax choses any of them.

• A learning strategy for n rounds (n = +∞ is allowed) consists of

– an initial distribution π1 on A,
– a sequence (πt)t=2,...,n of kernels on Ωt−1 ×A,

where Ωt denotes all trajectories (a1, x1, a2, x2, ..., at, xt) ∈ (A×R)t. We will
write the kernels in reverse ordering of the arguments

πt

(
· ; a1, x1, a2, x2, ..., at, xt

)
with the meaning that πt

(
{a} ; a1, x1, a2, x2, ..., at, xt

)
is the probability

arm a is chosen at time t if the past rounds resulted in actions/rewards
a1, x1, a2, x2, ..., at, xt.
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Recall that a a probability distribution on a finite set is nothing but a probability vector (numbers
in [0, 1]) that sum up to 1. An important special case occurs if the vector consists of one 1 (and
0s otherwise), i.e. the measure is a Dirac measure.

We will always assume that the action values Qa are unknown but the bandit is a
generative model, i.e. the random variables can be sampled. Everything that can
be learnt about the model must be achieved by simulations (playing arms).

We will later see that learning strategies typically depend on different ingredients such as the
maximal time-horizon if this is known in advance or certain quantities of the underlying bandit
model. Of course it is desirable to have as little dependences as possible, but often additional
information is very useful.

Definition 1.2.2. A learning strategy is called an index strategy if all appearing
measures are Dirac measures, i.e. in all situations only a single arm is played with
probability 1. The learning strategy is called soft if in all situations all arms have
strictly positive probabilities.

Of course index strategies are just a small subset of all strategies but most algorithms we study
are index strategies.
Next, we introduce stochastic bandit processes. This is a bit in analogy to Markov chains where
first one introduces transition matrices and then defines a Markov chain and proves the existence.
Or a random variable where first one defines the distribution function and then proves the
existence of a random variable.

Definition 1.2.3. Suppose ν is a stochastic bandit model and (πt)t=1,...,n a
learning strategy for n rounds. Then a stochastic process (Aπ

t , Xπ
t )t=1,...,n on

a probability space (Ω,F ,P) is called a stochastic bandit process with learning
strategy π if Aπ

1 ∼ π1 and

• P
(
Aπ

t = a|Aπ
1 , Xπ

1 , ..., Aπ
t−1, Xπ

t−1
)

= πt

(
{a} ; Aπ

1 , Xπ
1 , ..., Aπ

t−1, Xt−1
)
,

• P
(
Xπ

t ∈ ·|Aπ
1 , Xπ

1 , ..., Aπ
t

)
∼ PAπ

t
,

where PAπ
t

is the (random) distribution
∑

a∈A Pa(·)1Aπ
t =a. We will call Aπ

t the
action (the chosen arm) at time t and Xπ

t the outcome (or reward) when playing
arm Aπ

t at time t. The superscripts π will always be dropped if the learning strategy
is clear from the context.

In words, a stochastic bandit process is a stochastic process that works in a two-step fashion.
Given a learning strategy π, in every round the strategy suggests probabilities for actions based
on the past behavior. The sampled action At is then used to play the corresponding arm and
observe the outcome. The process (At, Xt) thus describes the sequence of action/rewards over
time.
Just as for random variables or Markov chains it is not completely trivial that there is a probability
space and a stochastic process (At, Xt) that satisfies the defining property of a stochastic bandit
process.

Theorem 1.2.4. For every stochastic bandit model and every learning strategy
(πt)t=1,...,n there is a corresponding stochastic bandit process.

Proof. We give a construction that is known under the name random table model as the bandit
process is constructed from a table of independent random variables.
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Recall that sampling from a discrete distribution π on A can be performed using
U([0, 1)) random variables. Suppose π({ak}) = pk and [0, 1] is subdivided into
disjoint intervals Ik of lengths pk, then the discrete random variable defined by
Ū = ak if and only if U ∈ Ik is distributed according to π.

Now suppose (X(a)
t )a∈A,t∈N is a table of independent random variables such that X

(a)
t ∼ Pa for

all t and suppose (Ut)t∈N is a sequence of independent U([0, 1]). These random variables (all
defined on some joint probability space (Ω,F ,P) exist due to the Kolmogorov extension theorem.

A1 A2 A3 A4
↑ π1 ↑ π2 ↑ π3 ↑ π4
U1 U2 U3 U4 · · ·

X(a1)
1 X

(a1)
2 X

(a1)
3 X(a1)

4 · · ·
X

(a2)
1 X

(a2)
2 X(a2)

3 X
(a2)
4 · · ·

...
...

...
...

...
X

(aK )
1 X(aK)

2 X
(aK )
3 X

(aK)
4 · · ·

Construction of bandit processes: bold entries were selected as X1, X2, X3, X4, ...

If (πt)t∈N a learning strategy then the stochastic bandit process is constructed as follows:

• t = 1: Use U1 to sample from the discrete measure π1(·) an arm a, denote this arm by A1

and set X1 := X
(a)
1 .

• t 7→ t + 1: Use Ut+1 to sample from the discrete (random) measures π(· ; A1, X1, ..., At, Xt)
(relying only on the table to the left of column t + 1) an arm a, denote this arm by At and
use the ath row from the rewards table to define Xt, i.e. Xt =

∑
a∈A X

(a)
t 1At=a.

To have a picture in mind think of a large table of random variables. Only using the variables
to the left of column t, the uniform variable Ut is used to produce the action At and the Xt

is produced by chosing the reward from row At. To see that this process (A, X) is indeed a
bandit process with learning strategy π we need to check the defining properties. Let us denote
by Ia(a1, ..., xt−1) a partition of [0, 1] into K disjoint intervals with lengths πt({a} ; a1, ..., xt−1).
Then, using h(u, a1, ..., xt−1) := 1u∈Ia(a1,...,xt−1) and

κ(V, a1, ..., xt−1) := P(U ∈ V |A1 = a1, ..., Xt−1 = xt−1) ind.= λ(V ), V ∈ B([0, 1]),

yields

P
(
At = a

∣∣A1, X1, ..., At−1, Xt−1
)

= P
(
Ut ∈ Ia(A1, ..., Xt−1)

∣∣A1, X1, ..., At−1, Xt−1
)

= E
[
h(Ut, A1, ..., Xt−1)

∣∣A1, X1, ..., At−1, Xt−1
]

=
∫

h(u, A1, ..., Xt−1)κ( du, A1, ..., Xt−1)

=
∫

1u∈Ia(A1,...,Xt−1) du

= πt({a} ; A1, ..., Xt−1).
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The second property is derived as follows:

P
(
Xt ∈ ·|A1, X1, ..., At

)
=

∑
a∈A

P
(
Xt ∈ ·, At = a|A1, X1, ..., At

)
=

∑
a∈A

P
(
X

(a)
t ∈ ·, At = a|A1, X1, ..., At

)
ind., meas.=

∑
a∈A

P
(
X

(a)
t ∈ ·

)
1At=a

Def. PAt∼ PAt
.

There is an equivalent way of constructing the process that sometimes yields a more convenient
notation.

The random table model can be slightly modified to what is known as the stack
of rewards model. The only difference is that all random variables appearing in
the random table model are used. If the ath arm is played for the nth time then
the reward variable X

(a)
n is used instead of the reward variable corresponding to

the time at which the ath arm is played for the nth time. In formulas, one sets
Xt = X

(a)
Ta(t) instead of Xt = X

(a)
t , where Ta(t) =

∑
s≤t 1Xs=a is the number of

times the ath arm was played before time t.

In mathematics it is always good to have concrete examples in mind. Here are two examples to
keep in mind. These examples will always be used in the practical exercises.

Example 1.2.5. • Gaussian bandit: all arms are Gaussians N (µi, σ2
i ), for instance

(µ, σ) ∈
{

(0, 1), (1.1, 1), (0.9, 1), (2, 1), (−5, 1), (−3, 2)
}

.

• Bernoulli bandit: all arms take value 1 with probability pi and value 0 with probability
1− pi, for instance

p ∈ {0.9, 0.85, 0.8, 0.5, 0.1, 0.88, 0.7, 0.3, 0.88, 0.75}.

Now that bandit models are defined the next step is to discuss the questions of interest. In
fact, with the targets of this lecture course in mind this is not completely clear as the goals
of stochastic bandit theory and reinforcement learning are different. The reason is that the
research communities of statistics and AI traditionally have different examples in mind. While
the stochastic bandit community originates from statistical question of optimal experimantal
design in medicin the AI community is more focused on artificial decision making (of computers).
While both aim at developping and analysing algorithms that find the optimal arm, the different
goals yield in different optimization goal. As an guiding example we go back to the two examples
of medical treatment and advertisement. While in medical treatment every single round of
learning refers to the medical treatment of an individual (which has the highest priority and the
number of rounds is clearly limited say by n = 200) in online advertisement it might be much
less problematic to play many rounds (say n = 100k) in the training procedure and to waste
possible income. Here are three typical goals that we will formalise in due course:

(A) For fixed n ∈ N find an algorithm that produces a learning strategy (πt)t=1,...,n such that
the expected reward E[

∑n
k=1 Xk] is maximised.

(B) Find an algorithm that produces a learning strategy (πt)t∈N that converges (in some sense)
quickly towards a best arm, i.e. to a Dirac measur on a best arm or a mixture of Dirac
measures on best arms (if there are several). Try to minimize the computational complexity
of the algorithm so that extensions to much more complicated situations are feasible.



1.2. MODEL, EXAMPLES, AND THE GOALS 8

(C) For fixed n ∈ N find an algorithm that produces a learning strategy (πt)t=1,...,n such that
the probability of chosing wrong arms is minimized.

Checking papers and text books you will realise that the first goal is typical in the stochastic bandit
community (statistics), the second typical in AI, and the third somewhat in between. The aim of
these lecture notes is to introduce reinforcement learning, so why bother on discussing questions
from stochatic bandit theory? The reason is that a much better mathematical understanding is
available from the stochastic bandit community, optimal choices of parameters have been derived
theoretically for many bandit algorithms. In contrast, the AI community tends to deal with
more realistic (more complicated) models in which choices of parameters are found by comparing
simulations. It is the goal of these lecture to find the right compromise. To understand well
enough the important mechanisms in simple models to improve the educated guesses in realistic
models that might be untractable for a rigorous mathematical analysis.
Let us first discuss the classical stochastic bandit appraoch (A). We already defined an optimal
arm, an arm with maximal action value Qa. Of course there might be several best arms, then
a∗ is chosen as any of them. Since the index set is not ordered there is no preference in which
best arm to denote a∗. The goal is to maximise over all learning strategies the expectation
E[

∑n
t=1 Xt] =

∑n
t=1 E[Xt] for a fixed time-horizon n. There is a simple upper bound for the

reward until time n, which is Q∗. Hence, if all Qa would be known in advance then the stochastic
bandit optimization problem would be trivial, just chose the best arm a∗ in all rounds. Hence, we
always assume the expectations are unknown but the outcomes of the arms (random variables)
can be played (simulated). Since the expected rewards are upper bounded by nQ∗ it is common
practice not to maximise the expected reward but instead the difference to the best case as this
gives an objective criterion that does not depend on the bandit model itself.

Definition 1.2.6. Suppose ν is a bandit model and (πt)t=1,...,n a learning strategy.
Then the (cummulated) regret is defined by

Rn(π) := nQ∗ − E
[ n∑

t=1
Xt

]
.

The stochastic bandit problem consists in finding learning strategies that minimise
the regret. If π is clear from the context then we will shorten to Rn.

The regret is called regret because (in expectation) this is how much is lost by not playing the
best arm from the beginning. To get aquainted with the definition please check the following
facts:

• Suppose a two-armed bandit with Q1 = 1 and Q2 = −1 and a learning
strategy π given by

πt =
{

δ1 : t even,

δ2 : t odd.

Calculate the regret Rn(π).

• Define a stochastic bandit and a learning strategy such that the regret is 5
for all n ≥ 5.

• Show for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n <∞.

• Let Rn(π) = 0. Prove that π is deterministic, i.e. all πt are almost surely
constant and only chose the best arm.

What is considered to be a good learning strategy? Linear regret (as a function in n) is always
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possible by just uniformly choosing arms as this (stupid) learning strategy yields

Rn(π) = nQ∗ − nE[X1] = n
(

Q∗ −
K∑

k=1

1
K

Qa

)
.

Thus, a linearly incraesing regret can always be achieved when learning nothing. As a consequence
only learning strategies with sublinearly increasing regret are considered reasonable.

In stochastic bandit theory any algorithm that produces a learning strategies with
linearly growing regret is considered useless. The aim is to significantly improve on
linear regret.

There are different kind of bounds that one can aim for. First of all, one can aim for upper
bounds and lower bounds for regret. In these lectures notes we mainly focus on upper bounds.
Nonetheless, there are celebrated lower bounds due to Lai and Robbins that are not too hard
to prove. These theoretical lower bounds are important as they tell us if there is any hope to
search for better algorithms as the one we discuss (the actual answer is that one cannot do much
better than the UCB algorithm presented below). Furthermore, the kind of estimates differ:

• bounds that depend on the bandit model ν are called model-based, such bounds typically
involve the differences between the action values Qa,

• bounds that only depend on n are called model independent, they are typically proved for
entire classes of bandit models for which certain moment conditions are assumed.

For the committ-then-explore and UCB algorithms below model-based upper bounds will be
derived from which also model independent upper bounds can be deduced. We will see that it is
not too hard to obtain algorithms that achieve model-based upper bounds that are logarithmic in
n regret bounds that also involve differences of action values Qa that can make the estimates as
terrible as possible by chosing models where the best and second best arms are hard to distinguish.
In fact, the model independent Lai-Robbins lower bounds shows that the best algorithm on all
subgaussian bandits can only have a regret as good as C

√
Kn for some constant C.

From the practical perspect one might wonder why to deal with regret upper bounds.
If the bounds are reasonably good, then they can be used in order to tune appearing
parameters to optimize the algorithms with guaranteed performance bounds. As an
example, we will use the bounds for the explore-then-commit algorithm to tune the
exploration lengths. Even though the resulting parameters might involve unrealistic
quantities the understanding can still help us to understand how to work with the
algorithms.

In principle, algorithms could depend on a time-horizon n if n is specified in advance. In that
case asymptotic regret bounds are non-sense and we aim for finite n bounds only. Sometimes
algorithms also depend on the unknown expectations Qa through the so-called reward gaps.

Definition 1.2.7. The differences ∆a := Q∗ −Qa are called reward gaps.

Of course it is not desirable to have algorithms that depend on the reward gaps as a priori
knowledge of the expectations Qa would turn the stochastic bandit problem into a trivial one
(just chose the arm with the largest expectation). Nonetheless, the analysis of such algorithms
can be of theoretial interest to better understand the mechanism of learning strategies. Also we
will see some examples below, the explore-then-commit algorithm depends on the time-horizon
n, so does the simple UCB algorithm, wheras the εn-algorithm is independent of n but mildly
depends on the ∆a through a constant. Bounds on the regret typically depend on n and the
expecations µa often in the form ∆a := Q∗ −Qa.
In order to analyse the regret of a given algorithm in many instances (such as explore-then-commit
and UCB) one always uses the regret decomposition lemma:
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Lemma 1.2.8. (Regret decomposition lemma)
Defining Ta(n) :=

∑n
t=1 1At=a the following decomposition holds:

Rn(π) =
∑
a∈A

∆aE[Ta(n)].

Proof. If you know a bit of probability theory it is clear what we do, we insert a clever 1 that
distinguishes the appearing events:

Rn(π) = nQ∗ − E
[ ∑

t≤n

Xt

]
=

∑
t≤n

E[Q∗ −Xt] =
∑
t≤n

∑
a∈A

E
[
(Q∗ −Xt)1At=a

]
.

To compute the right hand side note that

E
[
(Q∗ −Xt) 1At=a | A1, X1, ..., At

]
= 1At=aE[Q∗ −Xt | A1, X1, ..., At]
= 1At=a(Q∗ −QAt)
= 1At=a(Q∗ −Qa)
= 1At=a∆a.

Using the tower property a combination of both computations yields

Rn =
∑
t≤n

∑
a∈A

E
[
E[(Q∗ −Xt)1At=a|A1, X1, ..., At]

]
=

∑
a∈A

∆aE
[ ∑

t≤n

1At=a︸ ︷︷ ︸
Ta(n)

]
.

The statistical regret analysis for many bandit algorithm follows the same appraoch, using the
regret decomposition lemma to reduce regret estimates to so-called concentration inequalities.
Under suitable assumptions on the distributions of the arms one can plug-in different concentration
inequalities from probability theory to derive regret bounds.
We continue our discussion with the second perspective on how to analyse bandit algorithms.
Approach (C) is more refined than (A), as an analogie to function (C) is similar to studying the
asymptotic behavior of a function through that of its derivative. To get this idea clear let us
introduce a new notation:

Definition 1.2.9. Suppose ν is a bandit model and π a learning strategy. Then
the probability the learner choses a suboptimal arm in round t, i.e.

τt(π) := P(QAt
̸= Q∗)

is called the failure probability in round t.

It is clearly desirable to have τt(π) decay to zero as fast as possible. Note that the failure proba-
bility is typically not the target for stochastic bandits but connects well to ideas in reinforcement
learning. Since E[Tn(a)] =

∑n
t=1 E[1Xt=a] =

∑n
t=1 P(Xt = a) the recret decomposition lemma

can be reformulated as follows:

Lemma 1.2.10.

Rn(π) =
n∑

t=1

∑
a∈A

∆aP(Xt = a),
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and, in particular,

Rn(π) ≤ max
a

∆a

n∑
t=1

τt(π) and Rn(π) ≥ min
a

∆a

n∑
t=1

τt(π).

As a consequence we see that the study of regret and failure probability is ultimately connected.
If we interprete the sum as an integral, then understanding the failure probability instead of the
regret is just as studying the asymptotics of a function by its derivate (which is typically harder).
Here are two observations that we will use later for the examples:

• If the failure probabilies do not decay to zero (no learning of the optimal arm),
then the regret grows linearly.

• If the failure probabilities behave (make this precise) like 1
n , then the regret

behaves like
∑

a∈A ∆a log(n) with constants that depend on the concrete
bandit model. Hint: Recall from basic analysis that

∫ t

1
1
x dx = log(t) and how

to relate sums and integrals for monotone integrands.

The abstract discussion will become more accessible when analysing in detail specific algorithms.
For explore-then-commit, using the regret-decomposition lemma, we will only estimate the regret
while for the εn-greedy algorithm we will chose appropriate exploration rates to even upper
bound the failure probabilities. The analysis is indeed crucial in order to improve the naive
ε-greedy algorithm. It seems like the approach (A) is more common in the statistical bandits
literature as there are not many examples for which the failure probabilities can be computed
whereas in the reinforcement learning literature the approach (C) is more popular as for the
most important example (ε-greedy) the failure rates are accessible.
For the reinforcement learning approach (B) there is actually not much (if at all) theory. We
will discuss below the example of softmax-exploration in which the optimal arm is learned using
gradient descent on a parametrised family of distributions on arms.

1.3 Algorithms: the exploration-exploitation trade-off
Lecture 2

We will now go into a few of the most popular algorithms. There is not much choice on how to
design an algorithm. Essentially, all that can be done is to learn about arms that one is not too
sure about (called exploration) and play arms that one expects to be good (called exloitation).
We will not only present algorithms but also discuss theoretical regret bounds. Even though
those won’t be directly useful for our later understanding of reinforcement learning there is one
important learning: theoretical results allow to understand how to chose optimally the parameters
involved, in contrast to learn by experimenting which is always restricted to particular examples.
In spirit we follow the exposition of Chapter 2 in Sutton and Barto, but we try to mix in more
mathematics to push the understanding further than just simulations.

1.3.1 Basic committ-then-exploit algorithm

Without any prior understanding of stochastic bandits here is a simple algorithm that everyone
would come up with himself/herself. Recalling the law of large numbers 1

n

∑n
t=1 Yt → E[Y1]

we first produce estimates Q̂a for the expectations Qa and then play the arm with the largest
estimated expectation. How do we use the law of large numbers? By just playing every arm
m times and for the remaining n−mk rounds play the best estimated arm. That’s it, that is
the commit-then-exploit algorithm. Before turning the basic idea into an algorithm let us fix a
notation that will occur again and again.
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Definition 1.3.1. If (At, Xt) is a stochastic bandit process for some learning
strategy π, then we define

Q̂a(t) :=
∑t

k=1 Xt1At=a

Ta(t) , a ∈ A,

and call Q̂ an estimated action value. Q̂a(t) is the average return from playing arm
a up to time t.

Here is a technical note on why estimated action values converge to the true action values if the
number of rounds is infinite and arms are played infinitely often. Using the stack of rewards
construction shows that the limit limt→∞ Q̂a(t) is nothing but limt→∞

1
t

∑t
k=1 X

(a)
k , an average

limit of an iid sequence which converges almost surely by the law of large numbers. The algorithm
can be written in different ways. Either to try all arms m-times in a row or to alternate between
the arms, for the pseudocode of Algorithm 1 we chose the latter. As a first example on how to

Algorithm 1: Basic m-rounds explore-then-commit algorithm
Data: m, n, bandit model ν, n
Result: actions A1, ..., An and rewards X1, ..., Xn

set Q̂(0) ≡ 0;
while t ≤ n do

At :=
{

at mod K+1 : t ≤ mK

argmaxaQ̂a(mK) : t > mK
;

Obtain reward Xt by playing arm At;
end

estimate the regret of bandit algorithms we prove the following simple upper bound. The notion
1-subgaussian will be introduced in the course of the proof, keep in mind Bernoulli bandits or
Gaussian bandits with variance at most σ2.

Theorem 1.3.2. (Regret bound for simple explore-then-commmit)
Suppose ν is a σ-subgaussian bandit model, i.e. all Pa are σ-subgaussian (see
below), with K arms and Km ≤ n for some n ∈ N, then

Rn(π) ≤ m
∑
a∈A

∆a︸ ︷︷ ︸
exploration

+ (n−mK)
∑
a∈A

∆a exp
(
− m∆2

a

4σ2

)
︸ ︷︷ ︸

exploitation

.

Since the regret bound looks a bit frightening on first view let us discuss the ingredients first.
What do we believe a bound should depend on? Certainly on the total number of rounds n, the
number of exploration rounds m, and the number of arms. Probably also on the distributions of
the arms. Why is this? If all arms have the same law, i.e. ∆a = 0 for all arms, then the regret
would be 0 as we always play an optimal arm. If the best arm is much better than other arms,
then the exploration phase forces a larger regret as we decided to also play the worst arm m
times. Looking into the regret bound, the summand m

∑
a∈A ∆a is clearly the regret from the

exploration phase.

Summands of the form
∑

a∈A ∆a must appear in all reasonable regret bounds as
every reasonable algorithm must try every arm at least once.

The interesting question is the regret obtained during the exploitation phase if a suboptimal arm
is played. It seems clear that the best arm is the most likely to be exploited as Q̂a(n) ≈ Qa(n)
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for large n by the law of large numbers. The regret thus comes from deviations of this large
n principle, if the rewards of an arm exceed what they would yield on average. Since the
simple explore-then-commit algorithm involves a lot of indepence probabilitites overestimation
of arms can easily be estimated by inequalities which are known as concentration inequalities in
probability theory.

Proof, decomposing exploration and exploitation: Without loss of generality (the order or the
arms does not matter) we may assume that Q∗ = Qa1 . Using the regret decomposition and the
algorithm yields the following decomposition into exploitation and exploration:

Rn(π) =
∑
a∈A

∆aE[Ta(n)] = m
∑
a∈A

∆a +
∑
a∈A

∆a(n−mK) P
(
Q̂a(mK) ≥ max

b∈A
Q̂b(mK)

)
.

Where does this come from? Each arm is explored m times and, if the arm was the best, then
another n −mK times. Hence, Ta(n) = m + (n −mk)1{a was best up to mK}. Computing the
expectation the probability appears due to the construction of the learning strategy π. The
probability can be estimated from above by replacing the maximal arm by some other arm (we
chose the first). This leads to

Rn(π) ≤ m
∑
a∈A

∆a + (n−mK)
∑
a∈A

∆aP(Q̂a(mK) ≥ Q̂a1(mK))

= m
∑
a∈A

∆a + (n−mK)
∑
a∈A

∆aP
(
(Q̂a(mK)− Q̂a1(mK))− (Qa −Qa1) ≥ ∆a

)
.

The appearing probability has the particularly nice form

P(Za − E[Za] ≥ ∆a), with Za = 1
m

∑
j≤m

(X(a)
j −X

(1)
j ),

where X
(a)
1 , . . . , X

(a)
m are distributed according to arm a and all of them are independent. If we

can estimate the probabilities by exp(−m∆2
a/4) the proof is complete. In order to do so we first

need an excursion to probability theory.

Let’s have a short excursion into the topic of concentration. A concentration inequality is a
bound on the deviation of a random variable from its mean, either in a two- or one-sided fashion:

c(a) ≤ P(|X − E[X]| > a) ≤ C(a) or c(a) ≤ P(X − E[X] > a) ≤ C(a).

The faster the function C(a) decreases in a the more the random variable is concentrated (takes
values close to its expectation with larger probability, the randomness is less significant). The
idea is that a random variable is stronger concentrated (has less mass away from its expectation)
if larger moments are finite. Where this idea comes from is easily seen from the expectation
formula

E[g(X)] =
{∫

R g(y)fX(y)dy : X has the probability density function fX∑N
k=1 g(ak)pk : X takes the values ak with probabilities pk

,

so that finite expectation for a (strongly) increasing function g such as an exponential function
forces the density (or probability weights) to decrease (strongly) at infinity and thus to be more
concentrated. Here is an example: Markov’s inequality states that

P(|X − E[X]| > a) ≤ V[X]
a2

for every random variable for which E[X2] <∞. Markov’s (concentration) inequality is useful as
it holds for many random variables but the concentration inequality is very bad, the upper bound
only decreases like a polynomial as we move away from the mean. A more useful inequality holds
for so-called subgaussian random variables.
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Definition 1.3.3. A random variable X on a probability space (Ω,A,P) is called
σ-subgaussian for σ > 0, if MX(λ) = E[eλ(X−E[X])] ≤ e

λ2σ2
2 for all λ ∈ R.

The wording subgaussian of course comes from the fact that E[eλX ] = eλ2σ2/2 if X ∼ N (0, σ2).
Here is a little exercise to get aquainted to the definition:

• Show that every σ-subgaussian random variable satisfies V[X] ≤ σ2.

• If X is σ-subgaussian, then cX is |c|σ-subgaussian.

• Show that X1 + X2 is
√

σ2
1 + σ2

2-subgaussian if X1 and X2 are independent
σ1-subgaussian and σ2-subgaussian random variables.

• Show that a Bernoulli-variable is 1
4 -subgaussian by explicitly computing

logMX−p(λ), checking for which p the formula for logMX−p(λ) is maximal
and then estimating the remaining function by λ2

8 .

• Every centered bounded random variable, say bounded below by a and above
by b is (b−a)

2 -subgaussian (this is called Hoeffding’s lemma).

It is important to note that every σ-subgaussian random variable is also σ′-subgaussian for every
σ′ > σ but this is not interesting as we will use σ to bound the variability (σ somehow measures
the variance) as good as possible. This becomes clear in the next proposition, using σ larger
than necessary only weakens the concentration inequality:

Proposition 1.3.4. If X is σ-subgaussian, then

P(X ≥ a) ≤ e− a2
2σ2 and P(|X| ≥ a) ≤ 2e− a2

2σ2 , ∀a > 0.

Proof. The proof is based on a trick called Cramér-Chernoff method. The trick uses the Markov
inequality for a parametrized family of functions and then optimising over the parameter to find
the best estimate:

P(X ≥ a) = P
(
eλX ≥ eλa

)
≤ E[eλX ]

eλa
≤ e

λ2σ2
2

eλa
= e

λ2σ2
2 −λa.

Minimizing the right hand side for λ (differentiation!) shows that λ = a
σ2 yields the smallest

bound and this is the first claim of the proposition. Since the same holds for −X we obtain the
second claim by writing P(|X| ≥ a) = P(X ≥ a or X ≤ −a) ≤ P(X ≥ a) + P(−X ≥ a).

As an application of the above we get a first simple concentration inequality for sums of random
variables:

Corollary 1.3.5. (Hoeffding’s inequality)
Suppose X1, . . . , Xn are iid random variables on a probability space (Ω,A,P) with
expectation µ = E[X1] such that X1 is σ-subgaussian. Then

P
( 1

n

n∑
k=1

Xk − µ ≥ a
)
≤ e− na2

2σ2 and P
(∣∣∣ 1

n

n∑
k=1

Xk − µ
∣∣∣ ≥ a

)
≤ 2e− na2

2σ2 , ∀a > 0.

Proof. This follows from the exercise and the proposition above because 1
n

∑n
k=1 Xk − µ =

1
n

∑n
k=1(Xk − E[Xk]) is a centered σ√

n
-subgaussian random variable.
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We can now combine the exploration exploration decomposition with the concentration inequality
to derive the upper bound of the regret in the explore-then-commit algorithm:

Completing the proof of Theorem 1.3.2. Since we assumed that the exploitation phase consists
of independent runs of the same arm we are exactly in the situation of Corollary 1.3.5. Hence,
with the notation from the first part of the proof we get the concentration bound

P(Za − E[Za] ≥ ∆a) ≤ exp
(
− ∆2

a

2 2
m

)
= exp

(
− m∆2

a

4

)
.

Plugging-in yields the upper bound from the theorem.

Also without the esimates the following logic is clear: If m is large (a lot of exploration) then the
exploration regret is large (this is the first summand) and the exploitation regret is small (second
summand). In the exercises you will explore numerically how to properly chose m in different
examples. Let’s explore the regret upper bound to find a reasonable choice of m. Of course, this
approach is only reasonable if the upper bound is reasonably good. Indeed, the first summand is
an equality, the second summand only uses Hoeffding’s inequality which is a reasonably good
estimate. To show how to find a good exploration length let us consider the simple case K = 2 of
two arms (again, the first arm is assumed to be the optimal one). Since ∆a1 = 0, we abbreviate
∆ = ∆a2 , the estimate simplifies to

Rn(π) ≤ m∆ + (n− 2m)∆ exp
(
− m∆2

4σ2

)
≤ ∆

(
m + n exp

(
− m∆2

4σ2

))
.

Pretending that m is a continuous parameter the righthand side can be minimized (in m) by
differentation. Do this to solve the following exercise:

The regret upper bound is minimized by

m = max
{

1,
⌈4σ2

∆2 log
(n∆2

4σ2

)⌉}
. (1.1)

Thus, in terms of regret optimisation, our best guess is the explore-then-committ
algorithm with this particular m. For this choice of m ther regret is upper bounded
by

Rn(π) ≤ min
{

n∆, ∆ + 4σ2

∆

(
1 + max

{
0, log

(n∆2

4σ2

)})}
, (1.2)

which for n ≥ 4
∆2 gives a model-dependent logarithmic regret bound Rn(π) ≤

C∆ + log(n)
∆ .

In the programming exercises you will be asked to compare this theoretical m with the best
m that can be „seen“ from simulations in a special example. No doubt, tuning parameters by
simulating examples is not very appealing as the parameter might be useless for other examples.

Do you think the explore-then-committ algorith with m from (1.1) is reasonable?
Well, in most situations it is not. The algorithm relies on n and ∆ through the
choice of m. While the number of rounds n might be fixed in advance for some
examples it might be not for other examples. The dependence on ∆ is much more
severe as the action values are never known in advance (otherwise we could just
chose a best arm to obtain zero regret). Hence, the only non-trivial situation is
that of unknown action values but known difference ∆ = Qa1 − Qa2 , but this is
extremely special.

Throughout these lectures notes we will again and again discuss dependences of algorithms and
model parameters. What does the algorithm depend on and sometimes even more important
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what does the algorithm not depend on? Sometimes it turns out that understanding proofs
is crucial in order to figure out what algorithms do not depend on, hence, understanding how
algorithms can be modified without destroying major properties such as convergence.

1.3.2 From greedy to UCB
A greedy learning strategy is a strategy that always choses the arm that has proven to be be
best in the past. Since such concepts will reappear in reinforcement learning in policy iteration
and generalised policy iteration algorithms we will spend some time on this topic. It will turn
out that pure greedy algorithms do not work at all, but modifications that force additional
exploitation work very well.

Purely greedy bandit algorithm

The pure greedy algorithm is complete non-sense if we think about it for a second or two.
Nonetheless, it is a good start into the discussion to get aquainted with the notation and simple
modifications give useful algorithms. The plain idea is as follows: Take the past observations
of each arm to define estimates Q̂a(t− 1) of the action values Qa at time t and then chose the
maximal estimated arm, i.e. At := argmaxaQ̂a(t− 1). As always, since there is no preference
order for the arms, if several estimated action values are equal we take any of them. The pure

Algorithm 2: Purely greedy bandit algorithm
Data: bandit model ν, initialisation Q̂(0), n
Result: actions A1, ..., An and rewards X1, ..., Xn

while t ≤ n do
Set At = argmaxaQ̂a(t− 1);
Obtain reward Xt by playing arm At;
Update the estimated action value function Q̂(t);

end

greedy algorithm depends extremely on the initiation of Q̂(0) and the distribution of the arms.
As an extreme szenario, suppose Q̂(0) ≡ 0. Suppose one arm only returns positive values and
this arm is chosen at the beginning. Then the estimated action value is increased to a positive
number and no other arm will be played in the future. Similarly, if an arm takes positive values
with high probability then future exploration is very unlikely to occur. Also for a Gaussian bandit
model a similar phenomenon arises. Suppose (at least) one arm has positive expectation and
suppose 3σ < µ. If initially that arm is played then with probability at least 0.997 (three-σ-rule)
the result will be positive so that the arm will be played again. Continuing like that it will take
a long time until eventually a different arm will be explored. Since that phenomenal will occur
again we give it a name:

Definition 1.3.6. The phenomenon that a bandit (later: reinforcement learning)
algorithm focuses too early on a suboptimal decision is called committal behavior.

From a practical point of view there are workarounds for instance using different initialisations
Q̂(0). As an example one might start with extremely large Q̂(0). In that case the algorithms
would start with many rounds of exploitation before starting the greedy update. A problem
remains: How large would be good without knowing details of the bandit model? If Q̂(0) is
chosen too large there would be too much exploitation before playing greedy the arms with the
largest estimated action values. If Q̂(0) would not be large enough then there would be too little
exploitation. A second workaround would be trying to center the distributions of all arms by
substracting the same constant from all arms to reduce the committal behavior effect described
above. Again, it is unclear what constant should be substracted without a priori knowledge on
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the action values. We will get back to this idea when we discuss the policy gradient method
where this idea will return as the base-line trick.

ε-greedy bandit algorithms

The simplest variant to make the pure greedy algorithm more reasonable is to force completely
random additional exploitation. The idea originates from the reinforcement learning community
as from the point of view of minimizing regret the algorithm is completely useles. To get a feeling

Algorithm 3: ε-greedy bandit algorithm
Data: bandit model ν, exploration rate ε ∈ (0, 1), initialisation Q̂(0), n
Result: actions A1, ..., An and rewards X1, ..., Xn

while t ≤ n do
Chose U ∼ U([0, 1]);
if U < ε then

[exploration part];
Uniformly chose an arm At;
Obtain reward Xt by playing arm At;
Update the estimated action value function Q̂(t);

end
if U ≥ ε then

[greedy part];
Set At = argmaxaQ̂a(t− 1);
Obtain reward Xt by playing arm At;
Update the estimated action value function Q̂(t);

end
end

Lecture 3
for the algorithm you will be asked to run different simulations in the exercises. Simulations of
this kind can be very useful to understand basic mechanisms, but not much more. Of course, for
this particular example we could repeat the simulations again and again to fine-tune the choice
of ε. But this does not result in further understanding of the basic mechanisms for an unknown
problem. So let us have a quick look at some theory. The following simple estimate shows that
ε-greedy is not interesting for regret minimisation. The exploitation phase only results in a lower
bound

τt(π) ≥ ε
(

1− K∗

K

)
for the failure probability, where K∗ denotes the number of arms with optimal action value Q∗.
Hence, from the point of view of stochastic bandit learning the ε-greedy strategy is useless, the
regret growth linearly (compare Lemma 1.2.10).
There are many versions of ε-greedy with reasonable regret bounds. We will only touch upon an
example (introduced an studied in Auer et al.1) that one could call „explore-then-ε-greedy with
decreasing exploitation rate“. The algorithm replaces in the simple ε-greedy algorithm ε by the
time-dependent exploration rate εt = min

{
1, CK

d2 t

}
. To justify the name note that for the first

CK
d2 rounds the exploration rate is 1. Thus, the algorithm first explores randomly and then plays

ε-greedy with decreasing exploration rate ε.

Theorem 1.3.7. (Explore-then-ε-greedy with decreasing ε)
Suppose that all arms take values in [0, 1], d < mina:Qa ̸=Qa∗

∆a, and C >

1P. Auer, N. Cesa-Bianchi, P. Fischer: „Finite-time Analysis of the Multiarmed Bandit Problem“, Machine
Learning, 47:235-256, (2002)
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max{5d2, 2}. Then the ε-greedy algorithm with decreasing exploration rate
εt = min

{
1, CK

d2 t

}
satisfies

lim sup
n→∞

τn(π)
n
≤ (K − 1)C

d2 .

Using Lemma 1.2.10 (note that ∆a ≤ 1 if the arms only take values in [0, 1]) a consequence of
the theorem is logarithmic upper bound

lim sup
n→∞

Rn(π)
log(n) ≤

(K − 1)C
d2 . (1.3)

While logarithmically growing regret is very good (compare the UCB algorithm in Theorem
1.3.8 below) there are two disadvantages. First, the constants are pretty big (the possibly very
small reward gap even appears twice in the numberator) and will dominate the logarithm for
reasonably sized n (log(100.000) ≈ 11.5 so that even an additional factor 5 matters quite a lot).
Secondly, with the appearing constant d the algorithm assumes prior knowledge on the bandit
model reward gaps, a feature that is highly unwanted. Compared to other algorithms there is
also a clear advantage. The number of rounds n does not enter the algorithm.

Proof (not part of the course). Auer et al. proved a much more precise estimate. Suppose j is a
suboptimal arm and n > CK

d2 . Then we prove for all C > 0 that

P(At = j) ≤ C

d2n
+ 2

( C

d2 log
( (n− 1)d2e1/2

CK

))( CK

(n− 1)d2e1/2

)C/(5d2)

+ 4e

d2

( CK

(n− 1)d2e1/2

)C/2
.

Since there are at most K − 1 suboptimal arms an upper bound for τt(π) is obtained by
multiplying by (K − 1). The choice C > 5 (C > 5d actually suffices) implies that the first
summand domminates in the limit.

The failure probability for the first CK
d2 rounds (uniform exploration) is easily seen

to be τt(π) = 1− K∗
K , the probability to chose one of the suboptimal arms.

The proof is mostly a brute force estimation of the probabilities plus Bernstein’s inequality a
concentration inequality that is a bit more general than Hoeffding’s inequality:

Suppose X1, ..., Xn are independent (not necessarily identically distributed!) random
variables with variances σ2

k and expectations µk = E[Xk]. If all Xi are bounded by
M , i.e. |Xi| ≤M for all i, σ2 :=

∑n
k=1 σ2

k, then

P
( 1

n

n∑
k=1

Xk −
1
n

n∑
k=1

µk ≥ a
)
≤ e

− n2a2

2(σ2+ 1
3 naM) .

In particular, if X1, ..., Xn are iid with variance σ2 and expectation µ then Bernstein’s
inequality becomes

P
( 1

n

n∑
k=1

Xk − µ ≥ a
)
≤ e

− na2

2(σ2+ 1
3 aM) .

Let x0 := 1
2K

∑t
s=1 εs with εn = CK

d2 n the exploration rate from the algorithm. Suppose j is a



1.3. ALGORITHMS: THE EXPLORATION-EXPLOITATION TRADE-OFF 19

suboptimal arm, we are going to estimate P(At = j). From the algorithm we obtain

P(At = j) = εn

K
+

(
1− εn

K

)
P

(
Q̂j(t− 1) ≥ max

a
Q̂a(t− 1)

)
≤ εn

K
+

(
1− εn

K

)
P

(
Q̂j(t− 1) ≥ Q̂∗(t− 1)

)
≤ εn

K
+

(
1− εn

K

)(
P

(
Q̂j(t− 1) ≥ Qj + ∆j/2

)
+ P

(
Q̂∗(t− 1) < Qa∗ −∆j/2

))
,

where Q∗ denotes the estimated action value for a fixed optimal arm, say the first. Here we used
that, by definition of ∆j , Q∗ −∆j/2 = Qj + ∆j/2 and the elementary estimate

P(X ≥ Y ) = P(X ≥ Y, Y ≥ a) + P(X ≥ Y, Y < a) ≤ P(X ≥ a) + P(Y < a).

From the above we estimate both probabilities separately (the argument is the same). Denote
by T R

j (t) the numbers of random explorations of the arm j before time t. Then

P
(
Q̂j(t) ≥ Qj + ∆j/2

)
=

t∑
s=1

P
(
Q̂j(t) ≥ Qj + ∆j/2, Tj(t) = s

)
=

t∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)
P

(
Q̂j(t) ≥ Qj + ∆j/2

)
1.3.5
≤

t∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)

e−∆2
j t/2,

using that random variables with values in [0, 1] are 1
2 -subgaussian. Splitting the sum into the

sum up to ⌊x0⌋ and the rest, using the estimate
∑∞

t=x+1 e−κt ≤ 1
κ e−κx (think of the integral!)

yields the upper bounded

⌊x0⌋∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)

+ 2
∆2

j

e−∆2
j ⌊x0⌋/2

≤
⌊x0⌋∑
s=1

P
(
T R

j (t) ≤ ⌊x0⌋
∣∣ Q̂j(T ) ≥ Qj + ∆j/2

)
+ 2

∆2
j

e−∆2
j ⌊x0⌋/2

= ⌊x0⌋P
(
T R

j (n) ≤ ⌊x0⌋
)

+ 2
∆2

j

e−∆2
j ⌊x0⌋/2,

where the conditioning could be dropped because the exploration is independent. Using Benaymé
and mean, variance of Bernoulli random variables yields

E
[
T R

j (t)
]

= 1
K

t∑
s=1

εs = 2x0 and V
[
T R

j (t)
]

=
t∑

s=1

εs

K

(
1− εs

K

)
≤ 1

K

t∑
s=1

εs

so that Bernstein’s inequality gives P
(
T R

j (t) ≤ ⌊x0⌋
)
≤ e−x0/5. In total we derived the bound

P
(
Q̂j(t) ≥ Qj + ∆j/2

)
≤ ⌊x0⌋e−x0/5 + 2

∆2
j

e−∆2
j ⌊x0⌋/2

From the probabilistic point the proof is complete but we have not taking into account the choice
of ε. It only remains to play around with x0 = 1

2K

∑n
t=1 εt to simpilfy the presentation. Recall

the choice of the exploitation rate εt and set n′ = CK
d2 . The exploitation rate is constant 1 up to

n′ and then equal to εt = CK
d2 t , hence,

x0 = 1
2K

n′∑
t=1

εt + 1
2K

n∑
t=n′+1

εt ≥
n′

2K
+ C

d2 log
( n

n′

)
≥ C

d2 log
(nd2e1/2

CK

)
.
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Putting everything together yields, x 7→ xe−x/5 is decreasing for x > 5, for a suboptimal arm j
and n ≥ n′,

P(At = j) ≤ εn

K
+ 2⌊x0⌋e−⌊x0⌋/5 + 4

∆2
j

e−∆2
j ⌊x0⌋/2

≤ C

d2n
+ 2

( C

d2 log
( (n− 1)d2e1/2

CK

))( CK

(n− 1)d2e1/2

)C/(5d2)

+ 4e

d2

( CK

(n− 1)d2e1/2

)C/2
.

We are not going to discuss further the ε-greedy algorithm. It turns out that that the dependence
on the parameters K, ∆a, C is horribly bad compared to the UCB algorithm that is discussed
next. Still, it is important to keep the previous algorithm in mind as ε-greedy algorithms are
used frequently in reinforcement learning.

UCB algorithm

The UCB algorithm (upper confidence bound algorithm) is usually not considered as a version
of the greedy algorithm but more a further development of explore-then-commit. UCB follows
similar ideas that involve concentration inequalities but with more thoughts. Still, since UCB
can also be seen as greedy with an additional exploration bonus we prefer to interprete UCB as
an extension of greedy. For that sake define the UCB function:

UCBa(t, δ) :=


∞ : Ta(t) = 0

Q̂a(t)︸ ︷︷ ︸
greedy

+

√
2 log(1/δ)

Ta(t)︸ ︷︷ ︸
exploration bonus

: Ta(t) ̸= 0 .

Algorithm 4: UCB algorithms
Data: bandit model ν, δ ∈ (0, 1), n
Result: actions A1, ..., An and rewards X1, ..., Xn

while t ≤ n do
At = argmaxaUCBa(t− 1, δ);
Obtain reward Xt by playing arm At;
Update the estimated action value function Q̂(t);

end

Note that the initialisation UCB(0, δ) ≡ +∞ forces the algorithm to explore every arm at least
once, a condition that reasonable algorithms should fulfill. A part from this is is important
to note that the algorithm does not use any model information, in contrast to the optimal
explore-then-committ and the explore-then-ε greedy with decreasing exploration rate.
The choice of δ is extremely crucial for the performance of the algorithm as can be seen very
well from simulations (do it!). When chosing δ to depend on n we can derive the following regret
upper bound.

Theorem 1.3.8. Suppose ν is a bandit model with 1-subgaussian arms, n ∈ N,
and δ = 1

n2 . Then the UCB algorithms has the following regret upper bound:

Rn(π) ≤ 3
∑
a∈A

∆a + 16 log(n)
∑

a:Qa ̸=Q∗

1
∆a

.
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The regret upper bound is better than the logarithmic regret bounds that we have seen for
the algorithms before. In fact, the simulation exercises show that the simple UCB algorithms
performs very well on most examples. The only drawback is the appearing δ = 1

n2 in the
algorithm to obtain the regret upper bound. If the time-horizon is not fixed in advance this
algorithmic choice is of course problematic.

Proof. Before we go into the estimates let’s have a quick look at the concentration inequalities
again. Chosing a suitably we can make the exponential dissapear:

P
(
X ≥ E[X] +

√
2 log(1/δ)

)
≤ δ, and P

(
|X − E[X]| ≥

√
2 log(1/δ)

)
≤ 2δ, (1.4)

if X is σ-subgaussian. In other words, if δ is small, then a σ-subgaussian random variable takes
with values in the confidence interval (−

√
2σ2 log(1/δ),

√
2σ2 log(1/δ) with high probability. In

essence, this inequality is the reason for the logarithmic regret boundes that will appear all the
time, most importantly in the UCB algorithm below. The concentration inequality for sums of
σ-subgaussian iid random variables with mean µ (Hoeffdings inequality 1.3.5) gives

P
( n∑

k=1
Xk ≥ µ +

√
2 log(1/δ)

n

)
≤ exp

(
−

n
(√

2 log(1/δ)
n

)2

2

)
= δ, (1.5)

which will explain the choice of the exploration bonus.
We will assume again without loss of generality that a∗ = a1 and estimate the expected times a
suboptimal arm a will be played. Combined with the regret decomposition Lemma 1.2.8 this will
give the upper bound on the regret. For the proof we will use the random table construction of
the bandit process (A, X). For that sake recall the array {X(a)

t }t≤n,a∈A of independent random
variables with X

(a)
t ∼ Pa. One way of expressing the bandit process Xt is as X

(At)
TAt (t). Now define

Q̄(a)
s = 1

s

∑
k≤s

X
(a)
k .

We will study the event Ga = G1 ∩Ga,2 with

G1 =
{

ω : Qa1 < min
t≤n

UCBa1(t, δ)(ω)
}

,

Ga,2 =
{

ω : Q̄(a)
ua

(ω) +

√
2 log(1/δ)

ua
< Qa1

}
,

with a natural number ua ≤ n to be specified later. The idea of the proof lies in the following
observation:

If ω ∈ Ga, then Ta(n)(ω) ≤ ua. (1.6)

Let’s first check why (1.6) holds by assuming the contrary. Suppose ω ∈ Ga but Ta(n)(ω) > ua

holds. Then there must be some time index t ≤ n with Ta(t− 1)(ω) = ua and At(ω) = a. Using
the definitions of G1, Ga,2, and UCB yields

UCBa(t− 1, δ)(ω) Def.= Q̂a(t− 1)(ω) +

√
2 log(1/δ)

Ta(t− 1)(ω)

(d)= Q̄(a)
ua

(ω) +

√
2 log(1/δ)

ua

Ga,2
< Qa1

G1
< UCBa1(t− 1, δ)(ω),
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a contradiction to a = At(ω) = argmaxbUCBb(t− 1, δ) which is correct by the definition of the
algorithm. Hence, (1.6) holds. Since Ta(n) is trivially bounded by n the following key estimate
holds:

E[Ta(n)] = E
[
Ta(n)1Ga

]
+ E

[
Ta(n)1GC

a

]
≤ ua + n

(
P(GC

1 ) + P(GC
a,2)

)
. (1.7)

Thus, in order to estimate the expected number of playing arms it is enough to estimate both
probabilities. It now suffices to estimate separately both summands on the right hand side of
(1.7). First, it holds that

P
(
GC

1
)

= P
(
Qa1 ≥ UCBa1(t, δ) for some t ≤ n

)
≤

∑
t≤n

P
(

Qa1 −
√

2 log(1/δ)
t

≥ Q̂a1(t)
)

(1.5)
≤

∑
t≤n

δ = nδ.

Next, we chose ua which so far was left unspecified. Let us chose ua large enough so that

∆a −

√
2 log(1/δ)

ua
≥ 1

2∆a (1.8)

holds, for instance ua = 2 log(1/δ)
1
4 ∆2

a
+ 1. Then

P
(
GC

a,2
)

= P
(

Q̄(a)
ua

+

√
2 log(1/δ)

ua
≥ Qa1

)
= P

(
Q̄(a)

ua
−Qa ≥ ∆a −

√
2 log(1/δ)

ua

)
(1.8)
≤ P

(
Q̄(a)

ua
≥ Qa + 1

2∆a

)
Hoeffding
≤ exp

(
− ua∆2

a

8

)
.

Combining the above yields

E
[
Ta(n)

]
≤ ua + n

(
nδ + exp

(
− ua∆2

a

8

))
. (1.9)

It remains to plug-in. Using δ = 1
n2 yields

ua = 1 + 2 log(n2)
1
4 ∆2

a

= 1 + 16 log(n)
∆2

a

and plugging-in yields

E[Ta(n)] ≤ ua + 1 + n n−2 ≤ ua + 2 ≤ 3 + 16 log(n)
∆2

a

.

Combined with the regret decomposition the claim follows.
Lecture 4

The previous bound is logarithmic in n with inverse reward gaps. While the dependency in n is
very good the inverse reward gaps can be arbitrarily large if the second best arm is close to the
best arm. Estimating slightly differently in the final step of the proof we can derive a different
upper bound which is less favorable in the dependency of n but more favorable in term of the
reward gap (which of course is a priori unknown).
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Theorem 1.3.9. Suppose ν is a bandit model with 1-subgaussian arms, n ∈ N,
and δ = 1

n2 . Then the UCB algorithms also has the alternative regret upper bound

Rn(π) ≤ 8
√

Kn log(n) + 3
∑
a∈A

∆a.

The term
∑

a∈A ∆a appearing in both bounds is very natural as every reasonable algorithm
plays each arm at least once and thus, by the regret decomposition lemma, gives

∑
a∈A ∆a. In

many examples the sum of the reward gaps can be bounded. If for instance all arms are Bernoulli
distributed, then the sum can be replaced by k and be neglected as it will be dominated by the
first summand. More interesting is the first summand for which one can decide to emphasie
more the dependence on n or the regret gap.

Proof. The proof of the regret bound given above revealed that E[Ta(n)] ≤ 3 + 16 log(n)
∆2

a
s. The

idea of the proof is as follows. From the regret decomposition we know that small reward gaps
should not pose problems as they appear multiplicatively. Separating the arms by a threshold
into those with small and those with large reward gaps we only use the estimate for the ones
with large reward gaps and then minimise over the threshold. Persuing this way leads to

Rn(π) =
∑
a∈A

∆aE[Ta(n)]

=
∑

a∈A:∆i<∆

∆aE[Ta(n)] +
∑

a∈A:∆i≥∆

∆aE[Ta(n)]

≤ n∆ +
∑

a∈A:∆i≥∆

(
∆a3 + 16 log(n)

∆a

)
≤ n∆ + 16K log(n)

∆ + 3
∑
a∈A

∆a.

Since ∆ can be chosen arbitrarily it suffices to minimise the righthand side as a function in ∆.
The minimum can be found easily by differentiation in ∆ to be located at ∆ =

√
16K log(n)/n.

Plugging-in yields

Rn(π) ≤ 8
√

Kn log(n) + 3
∑
a∈A

∆a.

For σ-subgaussian bandit models the UCB exploration bonus is modified as

UCBa(t, δ) :=


∞ : Ta(t) = 0

Q̂a(t)︸ ︷︷ ︸
greedy

+

√
2σ2 log(1/δ)

Ta(t)︸ ︷︷ ︸
exploration bonus

: Ta(t) ̸= 0 .

Check that the regret bound in Theorem 1.3.8 with the choice δ = 1
n2 changes to

Rn(π) ≤ 3
∑
a∈A

∆a + 16σ2 log(n)
∑

a:Qa ̸=Q∗

1
∆a

,

and this leads to

Rn(π) ≤ 8σ
√

Kn log(n) + 3
∑
a∈A

∆a



1.3. ALGORITHMS: THE EXPLORATION-EXPLOITATION TRADE-OFF 24

in Theorem 1.3.9. Thus, for Bernoulli bandits the exploration bonus should be√
1
4 log(n)

Ta(t) and, as you should check in simulations (!) the constant 1
4 is crucial for a

good performance.

The idea of the last proof is very important. The model based regret bounds are often com-
pletely useless as they emphasise too strongly small reward gaps which by means of the regret
decomposition should not be important at all. To get a better feeling please think a moment
about the following exercise:

Recall (1.2), the upper bound for ETC in the case of two arms. Use the idea from
the proof of Theorem 1.3.9 to derive the following upper bound of the ETC regret:

Rn(π) ≤ ∆ + C
√

n,

for some model-free constant C (for instance C = 8 + 2
e ) so that, in particular,

Rn(π) ≤ 1 + C
√

n for all bandit models with regret bound ∆ ≤ 1 (for instance for
Bernoulli bandits).

It is very crucial to compare the constants appearing in the regret bounds. As mathematicians
we tend to overestimate the importance of n and always think of n → ∞ (as we did in the
formulation of Theorem 1.3.7). Keeping in mind logarithmic growht one quickly realises the
importance of constants. As an example log(1.000.000) ≈ 13 so that a constant

√
K or even

worse 1/∆ can be much more interesting. As an example the constants (5 and 1/∆ appears
even squared) in the regret bound of explore-then-ε greedy are extremely bad even though the
logarithm in n is right order.

UCB is typically used as benchmark algorithm to compare other bandit algorithms.
The reason is that UCB is simple to state, simple to analyse, and also pretty
close to optimal both in the model-based and model-independent regret bounds.
Authors typically compare their bounds with the growth in n (typically logarithmic
model-based and square-root model-independent), the appearing generic constants
(such as 8 in UCB), and how the reward bounds enter the regret upper bounds.

Comparing with the Lai-Robbins lower bounds for subgaussian bandit algorithms shows that the
UCB algorithm is pretty close to optimal. There are more refined versions of the simple UCB
algorithm presented above, such as the MOOS algorithm. What changes are different choices for
additional exploitation. For further reading we refer to the wonderful book „Bandit Algorithms“
of Tor Lattimore and Csaba Szepesvári which is available online for free.

Memory optimised variants of the algorithms

As mentioned earlier it will be of fundamental importance to efficiently implement reinforcement
learning algorithms. All simple learning strategies involving Q̂ are useful for a first discussion.
How do we most efficiently handle the approximate action values Q̂a(t)? More generally, how do
we most efficiently handle sums of the form Qn = 1

n

∑n
k=1 Rk occurring in algorithms? On first

sight it may look like it is necessary to store the entire sequence R1, ... to compute the values



1.3. ALGORITHMS: THE EXPLORATION-EXPLOITATION TRADE-OFF 25

Qn. In fact, there is a simple patch. Rewriting

Qn = 1
n

n∑
k=1

Rk

= 1
n

(
Rn +

n−1∑
k=1

Rk

)
= 1

n

(
Rn + (n− 1) 1

n− 1

n−1∑
k=1

Rk

)
= 1

n

(
Rn + (n− 1)Qn−1)

= Qn−1 + 1
n

(
Rn −Qn−1

)
= n− 1

n
Qn−1 + 1

n
Rn,

(1.10)

we observe that in order to compute Qn only the values Qn and Rn are needed. Hence, if
estimated action values need to computed in loops, it is only necessary to store the current
estimated action value/reward in the memory. As an example here is a version of UCB that
only neesd to stort the current reward but not the past rewards.

Algorithm 5: memory optimized UCB algorithms
Data: bandit model ν, δ ∈ (0, 1), n
Result: actions A1, ..., An and rewards X1, ..., Xn

Initialise Q̂(0) ≡ 0, N ≡ 0;
while t ≤ n do

At = argmaxaUCBa(t− 1, δ);
Obtain reward Xt by playing arm At;
Set NAt

= NAt
+ 1;

Update the action value function using Q̂At(t) = Q̂At(t− 1) + 1
NAt

(
Xt − Q̂At(t− 1)

)
;

end

1.3.3 Boltzmann exploration
In this section we present a method that connects greedy exploration and the UCB algorithm in
a surprising way. Before explaining the algorithm the concept of softmax distributions is needed.

Definition 1.3.10. Suppose x, θ ∈ Rd, then x defines a discrete distribution
SM(θ, x) on {1, ..., d} in the following way:

pi := eθixi∑d
k=1 eθkxk

, i = 1, ..., d.

The weights are called Boltzmann weights of the vector x.

The wording comes from physics, where θ is called inverse temperature. The softmax distributions
is a so-called catagorial distribution, written Categorial(p1, ..., pd) which is also called a multinoulli
or generalised Bernoulli distribution with probabilities p1, ..., pd. For us, the following idea is much
more important. Sampling from SM(θ, x) is somewhat similar to the deterministic distribution Mx

that only charges mass on the index argmaxkxk because SM(θ, x) assigns the highest probabilities
to the coordinate with largest value xk. But unlike the deterministic maximum distribution the
softmax distribution only weights stronger the maximal element than the smaller elements. The
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role of θ is important: for large θ the softmax resembles the argmax distribution while for small
θ the distribution resembles the uniform distribution on {1, ..., d}.
Replacing sampling from the (deterministic) argmax distribution in the greedy algorithm yields
the Boltzmann exploration algorithm. In contrast to the greedy algorithm there is continuous

Algorithm 6: Simple Boltzmann exploration
Data: bandit model ν, initialisation Q̂(0), parameter θ
Result: actions A1, ..., An and rewards X1, ..., Xn

while t ≤ n do
Sample At from SM(θ, Q̂(t− 1));
Obtain reward Xt by playing arm At;
Update the estimated action value function Q̂(t);

end

exploration as all arms have positive probabilities. It is quite obvious that the choice of θ is
crucial as the algorithm resembles two unfavorable algorithms with linear regret, both for small
and large θ (uniform and greedy exploration). In fact2, both constant and decreasing choices of
θ are unfavorible. To guess a better choice for θ we need the following surprising lemma:

Lemma 1.3.11. Let x, θ ∈ Rd, then

SM(θ, x) (d)= argmaxk{θkxk + gk},

where g1, ..., gk are iid Gumbel random variables with scale 1 and mode 0, i.e. have
probability density function f(x) = e−(x+e−x) or CDF F (t) = e−e−t .

Proof. Reformulated right the proof is quite simple. We first prove very well-known statement
from elementary probability theory on exponential random variables. Suppose E1, E2 are
independent exponential random variables with parameters λ1, λ2. Then P(E1 ≤ E2) = λ1

λ1+λ2
.

This is a simple integration exercise: with A = {0 ≤ x1 ≤ x2} ∈ B(R2) the computation rules for
vectors of independent random variables yields

P(E1 ≤ E2) = E
[
1A(E1, E2)

]
=

∫
A

f(E1,E2)(x1, x2) d(x1, x2)

=
∫ ∞

0

∫ x2

0
λ1e−λ1x1λ2e−λ2x2 dx1 dx2

= λ1λ2

∫ ∞

0
e−λ2x2

1
λ1

(
1− e−λ1x2

)
dx2

= λ2

∫ ∞

0

(
e−λ2x2 − e−(λ1+λ2)x2

)
dx2

= 1− λ2

λ1 + λ2
= λ1

λ1 + λ2
.

Next, we can compute the argmin distribution of independent exponential variables. Sup-
pose E1, ..., En are independent exponential random variables with parameters λ1, ..., λn, then
P(argmini≤nEi = i) = λi

λi+
∑

k ̸=i
λk

. The identity is a direct consequence from the above:

P
(
argmini≤nEi = i

)
= P

(
Ei ≤ Ek,∀k ̸= i

)
= P(Ei ≤ E) = λi

λi +
∑

k ̸=i λk
,

2N. Cesa-Bianchi, C. Gentile, G. Lugosi, G. Neu: „Boltzmann exploration done right“, NeuRIPS, (2017)
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where E := mink ̸=i Ek is independent of Ei and exponentially distributed with parameter∑
k ̸=i λk. Here recall from elementary probability that the minimum of independent exponentials

is again exponential and the parameter is the sum of the parameters. The second ingredient is a
connection between exponential and Gumbel variables. If X ∼ Exp(1), then Z := − log(X) is
Gumbel with scale parameter β = 1 and mode µ = 0. The claim is checked by computing the
cummulative distribution function:

P(Z ≤ t) = P(X ≥ e−t) = e−e−t

, t ∈ R.

As a consequence, with g Gumbel with scale β = 1 and mode µ = 0 and Eλ ∼ Exp(λ), we obtain
the identity in law

c + g ∼ − log(e−c)− log(E1) = − log(e−cE1) ∼ − log(Eec).

For the last equality in law we have also used the scaling property of the exponential distribution.
If g1, ..., gk are iid Gumbel with scale β = 1 and mode µ = 0 we finally obtain

P
(
argmaxk≤n(θkxk + gk) = i

)
= P

(
argmaxk≤n − log(Eeθkxk ) = i

)
= P

(
argmink≤nEeθkxk = i

)
= eθixi∑

k eθkxk
.

In other words, the Gumbel argmax is distributed according to SM(θ, x).

Using the lemma the Boltzmann algorithm can now be interpreted differently: arms are chosen
according to the distribution

At ∼ argmaxa

{
θQ̂a + ga

}
= argmaxa

{
Q̂a + θ−1ga

}
,

where the ga are iid Gumbel and independent of Q̂. Does this look familiar? Of course, this is
the greedy strategy with an additional random exploration bonus as we have seen in the UCB
algorithm. Motivated by the UCB algorithm a first idea should immediately come to mind: θ

should be arm-dependent and
√

C
Ta

might be a good idea. In fact, that’s true as was shown in the
article of Cesa-Bianci et al. We will not go into detail here. The aim of this section was to link
the Boltzmann explortation with greedy-type algorithms. Here is an interesting research question
to think about. Let us forget that UCB-type exploration with Gumbel random exploration bonus
is linked to the rather natural exploitation strategy given by Boltzmann softmax weights. It is
then very natural to replace the Gumbel distribution by some other distribution. It seems most
plausible that non-negative distributions should be more reasonable as a negative value turns
the exploration bonus into an exploration malus which was never intended.

Use the simulation code provided for the exercises to play with different distributions
and see if replacing the Gumbel distribution can be favorable. Chosing distributions
that concentrate around 1 (Dirac measure at 1 gives UCB) might be reasonsble, such
as a Gamma distribution with shaper parameter larger than 1 and scale parameter
that forces expectation 1.

Lecture 5

1.3.4 Simple policy gradient for stochastic bandits
We now come to a completely different approach, the so-called policy gradient approach. The
approach presented here is not really part of the research field of multiarmed bandits but is a
very simple special case of which will later be called policy gradient method for non-tabular
reinforcement learning. We use the softmax policy gradient method to connect the topic of
multiarmed bandits with reinforcement learning that will be started in the next lecture. For that
sake, here is a new way of thinking of bandits . The bandit game is a one-step game, the game
of chosing one of the K arms and obtaining the corresponding outcome.
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Definition 1.3.12. A probability distribution π on A is called a policy for the
bandit game, the expected reward V (π) := Qπ :=

∑
a∈A Qaπ(a) when playing the

policy is called the value of the policy.

Keep in mind that since A is assumed to be finite a distribution on A is nothing but a probability
vector, a vector of non-negative numbers that sums up to 1. A vector (0, ..., 1, ...0) with 1 for
the ath arm (position) corresponds to playing only arm a and in this case Qπ = Qa. A policy
is optimal if the expected outcome Qπ is maximal, i.e. equals Q∗. If there are several optimal
arms, i.e. arms satisfying Qa = Q∗, then any policy is optimal that has mass only on optimal
arms. Still, chosing any of the optimal arms with probability 1 is always optimal.

The goal in reinforcement learning is similar to that of multiarmed bandits, but
different. In reinforcement learning we are typically concerned with identifying the
best policy (here: in the bandit game the best arm) as quickly as possible, not in
minimising the regret of the learning strategy for fixed n. Essentially, we do not
care if very bad arms are played as long as the best arm is found quickly.

One of the reasons for this different point of view is the field of applications. While one of the
main motivations for the multiarmed bandit stems from medicine where every single life counts a
major field of applications that pushed the development of reinforcment is automated learning of
optimal strategies in gaming or online advertisement where obviously the impact of suboptimal
attempts is much less severe.
In the much more general context of Markov decision processes we will get interested in so-called
policy gradient methods.

Definition 1.3.13. If Θ ⊆ Rd, then a set {πθ : θ ∈ Θ} of probability distributions
on A is called a parametrised family of policies.

The policy gradient idea is as follows: given a parametrised policy over a continuous index set
we aim to maximise the value function J over the parameter set:

θ 7→ J(θ) := Qπθ
=

∑
a∈A

πθ(a)Qa.

The value function J is nothing but a multidimensional function, hence, maximisation algorithms
can be used. If the parametric family can approximate Dirac-measures δa then one could hope
to identify the optimal arm using an optimisation procedure. So how can we find the optimal
arm with policy gradient? By typical optimization methods from lectures on numerical analysis.
One example is the classical gradient ascent method:

θn+1 := θn + α∇J(θn), n ∈ N.

Under suitable assumptions on J (such as convexity) that algorithm converges to a maximum θ∗
of J . Unfortunately, that approach has diverse difficulties which are topcis of ongoing research:

1. Given a bandit model, what is a good parametric family of policies?

2. If J is unknown (because the expectations Qa are unknown) how can gradient descent be
carried out (most efficiently)?

3. Even if the function J would be known explicitly, will the gradient ascent algorithm
converge to an optimal policy? How fast?

In this first section on the policy gradient method we will address the first two issues by a
discussion of one particular parametrised family and a sketch of what later will be discussed in
details in the chapter on the policy gradient method. The third question is widely open with
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some recent progress3. We will start with the second issue on how to deal with the gradient of
J if J is unknown but samples can be generated. The trick that will occur a few times in this
lecture course is the so-called log-trick, here in its simplest form:

The following short computation is typically called log-trick (or score-function trick):

∇J(θ) = ∇
∑
a∈A

Qaπθ(a)

=
∑
a∈A

Qa∇πθ(a)πθ(a)
πθ(a)

=
∑
a∈A

Qa∇ log(πθ(a))πθ(a)

= Eπθ
[QA∇ log(πθ(A))]

= Eπθ
[XA∇ log(πθ(A))],

where the last equality follows from the tower-property and E[XA|A] = QA for
instance by using Xt =

∑
a∈A X

(a)
t 1At=a the random table model from the proof of

Theorem 1.2.4. Note that whenever we take the expectation of a vector of random
variables (the gradient is a vector) the expectation is taken coordinate wise.

Now that the gradient is expressed as the expectation of a random vector the idea is to replace
in the gradient ascent algorithm the true gradient by samples of the underyling random variable.
Either by one sample

θ̃n+1 := θ̃n + αXAn∇ log(πθ̃n
(An)), n ∈ N, (1.11)

or by a so-called batch of independent samples:

θ̃n+1 := θ̃n + α
1
N

N∑
i=1

Xi
Ai

n
∇ log(πθ̃n

(Ai
n)), n ∈ N, (1.12)

where the Ai
n are independently sampled according to π̃θn and the Xi

Ai
n

are independent samples
from the arms Ai

n.

Definition 1.3.14. The appearing function a 7→ ∇ log πθ(a) is called the score-
function of πθ.

Of course the algorithm is most useful if the score-function is nice so that the gradient dissapears.
Here is the most prominent example:

Example 1.3.15. Suppose d = |A|, so that there is a parameter θa for each arm a. Furthermore,
define

πθ(a) = eτθa∑
k∈A eτθk

for some fixed parameter τ . Then the policies {πθ : θ ∈ Rd} are called the softmax family. If
the sequence of policies converges to a limiting policy that only plays one arm, say arm a, the
corresponding parameter θa must converge to infinity. This already indicates that the convergence
might be slow (indeed, the convergence is slow!). The score-function is easily computed to be(

∇ log πθ(a)
)

i
= τ1a=i −

(
∇ log

( ∑
a∈A

eτθa

))
i

= τ1a=i −
τeτθi∑
a∈A eτθa

= τ
(
1a=i − πθ(i)

)
.

3see for instance A. Agarwal, S. Kakade, J. Lee, G. Mahajan: „On the Theory of Policy Gradient Methods:
Optimality, Approximation, and Distribution Shift“, JMLR, 1-76, (2021)
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Plugging-into (1.11) yields the updates (now written component wise)

θ1,n+1 = θ1,n − ατXiπθ(1),
· · · = · · ·

θi,n+1 = θi,n + ατXi(1− πθ(i)),
· · · = · · ·

θd,n+1 = θd,n − ατXiπθ(d)

if N = 1, An = i, and Xi is a sample of arm i. Here is the first explanation why reinforcment
learning is called reinforcement learning. Remember that the θa are indirect parametrisations of
the probabilities to play arm a. If at time n the policy current policy decides to play arm i then
the probabilities are reinforced as follows. If the reward obtained by playing arm i is positive,
let’s interprete the positive reward as positive feedback, then the probability to play arm i is
increased and all other probabilities are decreased. Similarly, if the feedback from playing arm i
is negative, then the probability to do so in the next round is decreased and all other probabilities
are increased.

Here is a big problem that becomes immediately visible in the softmax policy gradient algorithm.
Suppose for instance that the starting vector is θ0 ≡ 0 and all arms mostly return positive values
(for instance Bernoulli bandits). Then the first arm is chosing uniformly as πθ0 is uniform. If the
first chosen arm, say a, yields a positive return then the the updated parameter vector θ1 only
has one positive entry, namely the ath entry. Hence, for the second update the ath arm is most
likely to be chosen again. As a consequence, the committal behavior seen for the simple greedy
is expected to occur again. It does occur! Now there is a trick that can improve the situation a
lot, called baseline:

Here is another representation for the gradient:

∇J(θ) = Eπθ
[(XA − b)∇ log(πθ(A))],

where b is any constant. The reason is simply that, using the same computation as
above,

Eπθ
[b∇ log(πθ(A))] = b

∑
a∈A
∇ log(πθ(a))πθ(a)

= b
∑
a∈A
∇πθ(a)πθ(a)

πθ(a)

= b∇
∑
a∈A

πθ(a)

= b∇1 = 0.

It is important to realise that b can be chosen arbitrary without changing the
gradient and as such not changing the gradient ascent algorithm

θn+1 := θn + α∇J(θ), n ∈ N.

Still, it drastically changes the stochastic version (here for the softmax parametrisa-
tion)

θ̃i,n+1 := θ̃i,n + α(XAn
− b)τ

(
1An=i − πθ̃n

(i)
)
, n ∈ N,

as now the effect of committal behavior can be reduced drastically. An important
question is what baseline to chose so that the algorithm is speed up the most. In
fact, that question is widely open. Usually people chose b to minimise the variance
of the estimator of ∇J , but on the pathwise level this choice is not optimal.
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Even though not optimal on a pathwise level it can be instructive to compute the minimum
variance baseline for every step of the policy gradient scheme with baseline:

The variance of a random vector X is defined by to be V[X] = E[||X2||]−E[X]TE[X].
Show by differentiation that

b∗ = Eπθ
[XA||∇ log πθ(A)||22]

Eπθ
[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of J(θ).

From the point of view of producing good estimates of the gradient this baseline is to be preferred.
Unfortunately, from the point of view of fast convergence the choice is suboptimal4.
To finish the discussion we might wish to estimate the regret Rn(π) of a learning strategy (πθn

)n≥1.
In fact, almost nothing is known, only some rough estimates for the softmax parametrisation can
be found in the literature. Give it a try!

1.4 Minimax lower bounds for stochastic bandits
kommt noch

4W. Chung, V. Thomas, M. Machado, N. Le Roux: „Beyond Variance Reduction: Understanding the True
Impact of Baselines on Policy Optimization“, ICML, (2021)



Chapter 2

More bandits

The assumtion of stationarity (same banidts at every time) and independence can be relaxed
significantly but still allows to write down (and analyse) bandit algorithms. For completeness
two more sections on adversarial and contextual bandits will be added but won’t be part of this
lecture course for time constraints.

2.1 Adverserial bandits
eine Vorlesung, naechstes Jahr

2.2 Contextual bandits
eine Vorlesung, naechstes Jahr
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Part II

Tabular Reinforcement Learning
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Chapter 3

Basics: Finite MDPs and
Dynamic Programming Methods

Lecture 6
3.1 Markov decision processes
After the first introductory chapter on bandits we will now turn towards the main topic of this
course: optimal decision making in which decisions also influence the system (in contrast to
stochastic bandits). This basic chapter covers the following topics:

• Introduce the basic setup for decision making in complex systems under uncertainty, we
will use so-called Markov decision processes (MDP).

• Understand optimal decision policies and their relations to Bellman optimality and expec-
tation equations.

• Understand how to turn the theoretical results into algorithms, so-called value and policy
iteration algorithms.

All topics covered here are old and standard, they can be found in the comprehensive overview
of Putterman1. One should only keep in mind that the appearing Q-functions are not popular in
stochastic optimal control, Q-functions are much more relevant to the reinforcement learning
approaches developed in the next chapters.

3.1.1 A quick dive into Markov chains
Before starting with Markov decision processes let us briefly recall some facts on Markov chains.
A finite-state Markov chain is a discrete-time stochastic process (St)t∈N0 with values in some
finite set S on a probability space (Ω,F ,P) that satisfies the Markov property:

P(St+1 = st+1 |S0 = s0, ..., St = st) = P(St+1 = st+1 |St = sn)

for all t ≥ 0 and s0, ..., st+1 ∈ S. In words, transitions from a state to another do not depend
on the past. The most important special case is that of a time-homogeneous Markov chain for
which transition probabilities do not change over time. Time-homogeneous Markov chains are
closely related to stochastic matrices (non-negative elements, all rows sum to 1). Given an initial
distribution µ on S and a stochastic |S| × |S|-matrix, a Markov chain on some probability space
(Ω,F ,P) with initial distribution µ and transition matrix P is uniquely determined through the
basic path probabilities

P(X0 = s0, ..., Xn = sn) = µ({s0})ps0,s1 · ... · psn−1,sn
. (3.1)

1M. Putterman: „Markov decision processes: discrete stochastic dynamic programming“, Wiley

34
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Alternatively, and this is how Markov chains are generalised to more than finitely many states,
the transition matrix can be interpreted as a Markov kernel on S × S, that is, a family of
probability measures P (·, s) for all s ∈ S. Then the path probabilities can be written as

P(X0 = s0, ..., Xn = sn) = µ({s0})P ({s1}, s0) · ... · P ({sn}, sn−1).

Many probabilities can be computed from the basic path formula, for instance

P(St+1 = st+1, ..., St+k = st+k |St = st) = pst,st+1 · ... · pst+k−1,st+k
.

The computation tricks are always the same. Spell out the conditional probability, write the
events of interest as disjoint union of simple paths, plug-in the path probability formula, and
finally cancel from the appearing products. We always imagine a Markov chain to jump on
a graph of states connected by arrows carrying the transition probabilities from states s to
s′. 2 Another way of expressing the Markov property is as follows: If P(St = k) > 0 and
P̃ := P(· |St = k), then on (Ω,F , P̃) the shifted process (S̃t)t≥0 := (St+k)t≥0 is again a Markov
chain with transition matrix P but started from k. To compute with the path probabilities
please check the previous claim:

Check that S̃ indeed is a Markov chain on (Ω,F , P̃) with transition matrix P .

A Markov process can be seen as a process that we can observe from outside, for instance a game
that changes states over time. The concept of a Markov reward process is less well-known. A
Markov reward process is a Markov chain with an addition coordinate (Rt)t∈N0 such that R0 = 0
almost surely and Rt+1 ∼ h(· ; St), where h is a Markov kernel on R× S. This means that the
reward random variable Rt+1 is a random variable with dependence on the last state St of the
Markov chain. If we think of a Markov process as describing a game than the rewards might be
direct consequences of the rules such as Rt+1 = 1 if the player that we observe has scored a goal.

3.1.2 Markov decision processes
The situation of Markov decision processes (MDPs) is slightly more complicated. For MDPS we
do not observe a game but take the role of a particpant. We observe the Markov chain describing
the match but can influence the transitions by taking actions. As an example, by substituting as
a coach an additional attack player we increase the probability of players scoring goals (positive
reward) but decrease the probabilities of players winning duels which leads to larger probabilities
to receive a goal (negative reward). The target will be to find a strategy (called policy) that
maximises the expected reward of the game. Finding such a strategy, this is what reinforcement
learning is all about!
Unfortunately, the formal notion in Markov decision processes is more sophisticated. The
definition is kept quite general to emphasise that everything we will later prove in the discrete
setting could be kept much more general replacing vectors and matrices by Markov kernels. For
this course the intention is to keep the level of shophistication high enough to observe most
difficulties but stay simple enough to not disturb too much the understanding of concepts. We
will write down definitions and the existence theorem in a more general setting but then work
only with finite Markov decision processes which makes our lives much easier without loosing
most features of interest.

Definition 3.1.1. (Markov decision model)
A Markov decision model is a tuple (S,A,R, p) consisting of the following ingredi-
ents:

(i) (S, S̄) is a measurable space, called the state space,

(ii) For every s ∈ S, (As, Ās) is a measurable space, called the action space of

2drawing!
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state s. The entire action space is defined to be A =
⋃

s∈S

As, A contains all

actions and is equipped with the σ-algebra Ā = σ(
⋃

s∈S

Ās).

(iii) A measurable set R ⊆ R of rewards with 0 ∈ R, it’s restricted Borel-σ-algebra
denoted by R̄.

(iv) A function

p : S̄ ⊗ R̄ × (S ×A)→ [0, 1], (B, (s, a)) 7→ p(B ; s, a)

is called transition/reward-function if p is a Markov kernel on S̄ ⊗R×(S×A),
i.e.

• (s, a) 7→ p(B ; a, s) is (Ā ⊗ S̄)-R̄-measurable for all B,
• B 7→ p(B ; a, s) is a probability measure on S̄ ⊗ R̄ for all s, a.

A Markov decision model is called discrete if S,A,R are finite or countably infinite
and the σ-algebras are chosen to be the corresponding power sets.

No worries if measure theory is something that makes you want to cry. Once we go into the
algorithmic theory of reinforcement learning we will mostly assume the model to be discrete so
that all appearing functions are measurable and measures are nothing but vectors of non-negative
numbers that sum to 1.

The key ingredient of the definition is the kernel p with the following interpretation.
If the system is currently in state s and action a is played, then p(· ; s, a) is the joint
distribution of the next state s′ and the reward r obtained. If all sets are discrete
then p({(s′, r)}; s, a) is the probability to obtain reward r and go to state s′ if
action a was taken in state s. According to the definition the reward can depend on
the current state/action pair and the next state, but in most examples the reward
and the next state will be independent (see Example 3.1.5 below).

In most books you will find the notion p(· | s, a). In this course the notion „|“ will be used
exclusively for conditional probabilities. The function p defines the dynamics of the Markov
reward model. In order to arrive at a stochastic process we additionally have to define a of
protocol of how actions are chosen. These protocols are formalized by so called policies.

Definition 3.1.2. (Policy)
For a Markov decision model (S,A,R, p) a policy is

• an initial Markov kernel π0 on Ā × S,

• a sequence of probability kernels π = (πt)t∈N on Ā × ((S ×A)t−1 × S) such
that

πt(As; s0, a0, ..., st−1, at−1, s) = 1 (3.2)

for all (s0, a0, ..., st−1, at−1, s) ∈ (S ×A)t−1 × S.

The set of all policies is denoted by Π.

A policy governs the choices of actions given the current state and all previous states-action
pairs (not the rewards) seen before. Condition (3.2) means that only allowed actions from As

can be played in state s. Sometimes all As are identical but in most examples they are not. As
an example, playing a game like chess the allowed actions clearly depend strongly on the state of
the game.
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From now on we assume the Markov decison models are discrete and all σ-algebras
are powersets. In particular, all measures are discrete and need to be defined only
for singleton sets. The brackets for singleton sets will often be omitted.

With the definition of a policy we can now define a stochastic process on S×R×A whose dynamics
are entirely defined by the function p and policy π (plus an initial probability distribution over
which state the stochastic process will start in). Let us formalize this stochastic process and
prove its existence.

Theorem 3.1.3. (Existence of (discrete) MDPs)
Let (S,A,R, p) be a (discrete) Markov decision model, π a policy, µ a probability
measure on S. Then there exists a probability space (Ω,F ,Pπ

µ) carrying a stochastic
process (St, At, Rt)t∈N0 with values in S×R×A on the probability space (Ω,F ,Pπ

µ)
such that, for all t ∈ N0,

Pπ
µ(S0 ∈ B) = µ(B) and Pπ

µ(R0 = 0) = 1,

Pπ
µ(At ∈ C |S0 = s0, A0 = a0, ..., St = st) = πt(C ; s0, a0, ..., st),

Pπ
µ(St+1 ∈ B, Rt+1 ∈ D |St = s, At = a) = p(B ×D ; s, a),

for B ⊆ S, C ⊆ A, and D ⊆ R.

In words the mechanism goes as follows. In a state s an action is sampled according to the policy
which is allowed to refer to the entire past of states and actions (not to the rewards!). The
current and past state-action pairs (s, a) are used to sample the next state s′ and the reward.
Note: The reward is allowed to depend both on the current state-action pair (s, a) and the future
state s′! Typically, the reward will only depend on (s, a), not on s′, but some examples require
this greater generality.

Proof. We only give the proof in the discrete setting to safe quite a bit of time. The proof is
essentially identical to the existence proof for Markov chains.

Measure for finite time-horizon T <∞.

The probability space is written down explicitly as the set of trajectories, the σ-algebra is chosen
to be the power set, a canonical measure is defined for every element of the probability space by
an explicit definition, and the process using the identity mapping. Define the measurable space
(ΩT ,FT ) by Ω := (S ×R×A)T , the trajectories of length T , i.e.

ω = (s0, r0, a0, · · · , sT , rT , aT ),

and FT as the powerset. As for Markov chains the probabilities for paths are written down
explicitly:

PT ({(s0, r0, a0, . . . , sT , rT , aT )})

:= µ({s0}) · δ0(r0) · π0({a0} ; s0) ·
T∏

i=1
p({(si, ri)} ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si).

In words: An initial state is chosen by µ, the first action is sampled using π0, and the first reward
is set to 0. For every further time-step the new state si and the reward ri are determined by p,
an action ai is chosen according to πi.

Show that defining PT on the singletons as above yields a probability measure.

The exercise is important to get a feeling for the path probabilities. You will have to sum over all
possible paths, i.e. over

∑
a0,r0,s0

· · ·
∑

aT ,rT ,sT
, then pull out the factors that are independent of
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the summands to simplify backwards using the kernel property to obtain (here for the summands
corresponding to T )∑

aT ,rT ,sT

p({(sT , rT )} ; sT −1, aT −1) · πT ({aT } ; s0, a0, . . . , aT −1, sT )

=
∑

rT ,sT

p({(sT , rT )} ; sT −1, aT −1)
∑
aT

πT ({aT } ; s0, a0, . . . , aT −1, sT ) = 1.

Summing over all trajectories shows easily that PT is a probability measure on the paths.

Measure for infinite time-horizon.

The same construction cannot work for T =∞ as the infinite products would be zero. Instead,
Kolmogorov’s extension theorem is employed. Define the measurable space (Ω,F) by Ω := (S ×
R×A)∞, the trajectories of infinite length, and the corresponding σ-algebra F := (S̄⊗R̄⊗Ā)⊗∞,
the cylinder σ-algebra. The elements of Ω can be written as infinite sequences of the form

ω = (s0, r0, a0, · · · ).

Consider the projections πT +1
T : ΩT +1 → ΩT , ω 7→ ω|T and πT : Ω → ΩT , ω 7→ ω|T . The

projections simply remove the triple corresponding to time T + 1 from the sequence. We now
show the consistency property PT = PT +1 ◦ (πT +1

T )−1 for any T ∈ N. If the consistency can be
proved, then Kolmogorov’s extension theorem gives a unique probability measure P on (Ω,F)
such that PT = P ◦ (πT )−1. The consistency property simply follows from the product structure
in the measures PT defined above. Since the measures are discrete the equality can be checked
on all elements separately:

PT +1((πT +1
T )−1({s0, r0, a0, . . . sT , rT , aT }))

= PT +1(∪s∈S ∪a∈A ∪r∈R{(s0, r0, a0, . . . sT , rT , aT , s, a, r)}
)

=
∑
s∈S

∑
a∈A

∑
r∈R

PT +1({(s0, r0, a0, . . . sT , rT , aT , s, a, r)}
)

linearity= µ({s0}) · δ0(r0) · π0({a0} ; s0) ·
T∏

i=1
p({(si, ri)} ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)

×
∑
s∈S

∑
r∈R

p({s}, {r} ; sT , aT )︸ ︷︷ ︸
=1

·
∑
a∈A

πT +1({a} ; s0, a0, . . . , aT , sT +1)︸ ︷︷ ︸
=1

= µ({s0}) · π0({a0} ; s0) ·
T∏

i=1
p({(si, ri)} ; si−1, ai−1) · πT +1({ai} ; s0, a0, . . . , aT , sT +1)

= PT ({(s0, r0, a0, . . . sT , rT , aT )}).

Kolmogorov’s extension theorem now yields a unique measure P extending all PT . We set Pπ
µ := P

to indicate the dependency of µ and π.

Canonical construction (Ω,F ,Pπ
µ, (S, A, R)t∈N0).

The measurable space (Ω,F) has been defined above. On Ω we define (St, At, Rt)(ω) = (st, at, rt)
if ω takes the form (s0, a0, r0, ...).

The properties claimed in the theorem hold.

The first two claims follow directly from the definition of the measure Pπ
µ and (S0, A0, R0). We

check the claim for A and leave the claims for A and R as an exercise. Using the extension
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property of Pπ
µ (there is no dependence later than t) yields

Pπ
µ(At ∈ C, S0 = s0, A0 = a0, ..., At−1 = at−1, St = st)

= Pt(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st, At ∈ C, Rt ∈ R)

= µ({s0}) · π0({a0} ; s0) ·
t−1∏
i=1

p({si} ×R ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)

×
∑
r∈R

p({(st, r)} ; st−1, at−1) ·
∑
a∈C

πt({a}; s0, a0, ..., st−1, at−1, st)

and

Pπ
µ(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st)

= Pt(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st, At ∈ A, Rt ∈ R)

= µ({s0}) · π0({a0} ; s0) ·
t−1∏
i=1

p({si} ×R ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)

×
∑
r∈R

p({(st, r)} ; st−1, at−1) ·
∑
a∈A

πt({a}; s0, a0, ..., st−1, at−1, st)︸ ︷︷ ︸
=1

.

Hence, using the definition of conditional probability the fraction cancels to give

Pπ
µ(At ∈ C |S0 = s0, A0 = a0, ...At−1 = at−1, St = st) =

∑
a∈C

πt({a} ; s0, a0, ..., st−1, at−1, st).

Check the other two claimed conditional probability identities.

Definition 3.1.4. (Markov decision process (MDP))
Given a Markov decision model (S,A,R, p), a policy π, and an initial distribution µ
on S, the stochastic process (St, At)t∈N0 on (Ω,F ,Pπ

µ) is called discrete-time Markov
decision process (MDP), (Rt)t∈N0 the corresponding reward process. To abbreviate
we will write Pπ

s instead of Pπ
δs

. The super- and subscript are sometimes removed
from Eπ

µ and Pπ
µ if there is no possible confusion about the initial distribution of S

and the policy.

In the literature, a Markov decision model is mostly called an MDP directly and the terms model
and process are not distinguished. We keep in mind that the Markov decision model just provides
the prevailing instructions and together with any policy and initial distribution induces an MDP.
However, for reasons of convenience, we will mostly use the term MDP interchangeable, if we do
not want to emphasize the differences.

It is very important to remember the formula

P(S0 = s0, R0 = r0, A0 = a0, . . . , ST = sT , RT = rT , AT = aT )
:= µ({s0}) · δ0(r0) · π0({a0} ; s0)

×
T∏

i=1
p({(si, ri)} ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si),

(3.3)

which gives the probabilitites an MDP follows a given path (s0, a0, r0, ...., sT , aT , rT )
of states, actions, and rewards. The formula will later explain the practical impor-
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tance of the policy gradient theorem.

In is always very instructive to compare with the situation of an ordinary Markov chain that
appears as a special case if A = {a} and R = {r}. In that case then the process (St) is a Markov
chain with transition matrix psi,sj

= p({sj , r} ; si, a) and the path probabilities immediately
simplify to the Markov chain formula (3.1). No doubt, for MDPs the formula is more complicated
but many probabilities can be computed simmilarly to the situation of a Markov chain. Playing
with conditional probabilities it is instructive to check the following formulas (using a cancellation
of the form

∑
i(a · bi)/

∑
i bi = a):

P(St = st, Rt = rt, At = at, . . . , ST = sT , RT = rT , AT = aT |St−1 = st−1, At−1 = at−1)

=
T∏

i=t

p({(si, ri)} ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)

and

P(St = st, Rt = rt, At = at, . . . , ST = sT , RT = rT , AT = aT |St−1 = s)

=
∑

at−1∈As−1

πi({at−1} ; s0, a0, . . . , ai−1, s)
T∏

i=t−1
p({(si, ri)} ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si).

which are the analogues to the Markov chain formulas recalled above.
Here are two more special situations in which more simple Markov decision models can be
abstracted in our general definition:

Example 3.1.5. There are many situations in which the reward and the transition both only
depend on (s, a) but do not depend on each other. Suppose there are

• a kernel h on S̄ × (S ×A) for the transitions from (s, a) to s′,

• a kernel q on R̄ × (S ×A) for the rewards r obtained from (s, a).

Note that in the discrete setting measurability is always satisfied, kernel only means that h(· ; s, a)
and q(· ; s, a) are discrete measures for all state-action pairs (s, a). If both transitions are assumed
to be independent then we can define the product kernel

p({(s′, r)} ; a, s) := h({s′} ; a, s) · q({r} ; a, s) (3.4)

on S̄ ⊗ R̄ × (S ×A) and the corresponding Markov decision process samples next states/rewards
independently. Now the Markov decision model in the sense of Definition 3.1.1 with Markov deci-
sion process from Theorem 3.1.3 has exactly the claimed transitions. Plugging-in p immediately
gives

P(Rt+1 ∈ D |St = st, At = at, St+1 ∈ B) cond. prob.= P(St+1 ∈ B, Rt+1 ∈ D |St = st, At = at)
P(St+1 ∈ B |St = st, At = at)

3.1.3= p(B ×D ; st, at)
p(B ×R ; st, at)

(3.4)= p(S ×D ; st, at)
3.1.3= P(Rt+1 ∈ D |St = st, At = at),

so that the proclaimed independence of the reward from the future state indeed holds.

Example 3.1.6. There are many situations in which the rewards are deterministic functions
of state, actions, and next state but themselves do not influence the next state (say Rt+1 =
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R(st, at, st+1)). An example appears in the ice vendor example below. In that situation the
kernel p can be written as

p({s′} ×B ; s, a) = h({s′} ; s, a) · δB(R(s, a, s′)),

where h is the transition function from (s, a) to the next state s′. In that case one obtains
immediately

P(St+1 ∈ D |S0 = s0, A0 = a0, ..., At = at) = h(D ; st, at),
P(Rt+1 ∈ B |S0 = s0, A0 = a0, ..., At = at) = δB(R(s, a, s′)).

An even simpler situation that is very common is a relation Rt+1 = R(St, At) where the rewards
are determined deterministically by the prior state-action pair.

The discussion is sometimes reversed as follows, with slight abuse of notation:

Definition 3.1.7. For a Markov decision model we define state-action-state
probabilities and state-action expected rewards as follows:

p(s′; s, a) := p({s′} ×R ; s, a),

r(s, a) :=
∑
r∈R

r p(S × {r} ; s, a),

r(s, a, s′) :=
∑
r∈R

r
p({(s′, r)} ; s, a)

p(s′ ; s, a)

for s, s′ ∈ S and a ∈ A if the denominator is non-zero. Note that all p and r are
defined through the Markov decision model only they can always be assumed to be
known explicitly from the model only.

The notation will be used frequently, in reinforcement algorithms of the upcoming chapters.

Use the formal definition of the stochastic process (S, A, R) to check that

p(s′; s, a) = P(St+1 = s′ |St = s, At = a),
r(s, a) = E[Rt+1 |St = s, At = a],

r(s, a, s′) = E[Rt+1 |St = s, At = a, St+1 = s′]

holds if the events in the condition have positive probability.

To get an idea about Markov decision processes let us discuss two examples of simple Markov
decision models, an example with terminating states and and an example without terminating
states. 3

Example 3.1.8. (Grid world)
Suppose you have a robot that you would like to teach to walk through your garden. The garden
is set up as a small grid and at each time the robot can go up, down, left or right, however the
robot cannot move trough a wall (or additional obstacles). The aim is to move from the starting
position S to the target position G. To make the problem a bit more difficult, there is a pit B
just before the goal G. If the robot lands in the pit or in the target, the game is over. In more
brutal versions of the game, the pit is also interpreted as a bomb, which is why the abbreviation
B is used. In the following we will formulate this example as a Markov Decision Model. For this
purpose, the individual objects from Definition 3.1.1 must be determined.
The first step is to determine the state space. The state space should contain all relevant
information about the game. The garden can be represented by a two dimensional grid similar

3Leif: definiere terminating MDPs schon hier
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S

←→
xy

B
G

Figure 3.1: Illustration of Example 3.1.8 for a grid of length 5. The start of the robot is marked
by S, the pit by B, and the goal by G.

0,0 1,0 2,0 3,0 4,0
1,0 1,1 1,2 1,3 1,4
2,0 2,1 2,2 2,3 2,4
3,0 3,1 3,2 3,3 3,4
4,0 4,1 4,2 4,3 4,4

Figure 3.2: Representation of the state space of Example 3.1.8 for a grid of length 5.

to a chess board. Thus, for a grid with side length Z ∈ N, Z > 2, the state space is given by
S :=

{
(i, j), i, j ∈ {0, 1, . . . , Z − 1}

}
. Since the state space S is finite, we will use as σ-algebra

the power set, i.e. S := P(S). At this point we want to note that we use Python for the
implementation of the games, which is why we start counting from zero.

The second component of the Markov decision model is the entier action space A and the action
space As for a state s ∈ S. In many cases it is easier to first define the set of all possible actions
A and then exclude actions that are not possible for a certain state s ∈ S to determine As. In
this example we want to use this method to define the action spaces of the individual states as
well as the whole action space.
An action describes the movement of the robot down, up, right or left. Often actions in a Markov
decision problem are simply ‘counted through‘. For our example, the action space could be given
by the set {0, 1, 2, 3}, where action 0 describes the movement of the robot to the right, action 1
describes the movement of the robot downwards and so on. To describe the actions in a more
mathematically meaningful way and to relate them to the state space we describe the action
space by the following object:

{right, up, left, down} ≡ A :=
{

(1, 0), (0, 1), (−1, 0), (0,−1)
}
⊆ R2

The advantage of this definition is that by simply adding states and actions we get the new state
of the robot. In the following we want to determine the action space for a state s ∈ § using the
approach described above. The approach is also called masking. Let s = (i, j) ∈ S then the valid
actions for the state are given by

As = A(i,j) = A \


{2} : if i = 0
{1} : if i = Z − 1
∅ : otherwise

\


{0} : if j = 0
{3} : if j = Z − 1
∅ : otherwise

The idea here is relatively simple. The agent may play all actions, except the agent is on the
edge of the playing field. Then certain actions must be excluded.
The third components of the Markov decision model are the rewards. We introduce the rewards
and motivate them afterwards. Let R be given by {−10,−1, 0, 10} and R := P(R). If the agent
lands in the target, the reward is 10. If the agent falls into the pit, the reward is −10. We want
to determine the rewards in such a way that desirable scenarios are rewarded and undesirable
scenarios are punished. If the agent lands on another field, the agent should receive the reward
−1. In this way we want to avoid that the agent is not penalized for not choosing the fastest
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possible way to the destination. This will become clear when we deal with the optimization
problem in Markov decision problems in the following chapters. The 0 reward is used to construct
the stochastic process.
Next, we define the fourth and probably most complicated component of the Markov decision
process, the transition/reward-function

p : S̄ ⊗ R̄ × (S ×A)→ [0, 1], (B, (s, a)) 7→ p(B ; s, a).

To define this function, we will first define a helper function g : S → R which should return the
associated reward for a state s ∈ S. The function is given by

g : S → R, s 7→


10 : s = (Z − 1, Z − 1)
−10 : s = (Z − 2, Z − 2)
−1 : otherwise

.

In addition, we still need to define the set of terminal states T . In a terminal state s ∈ S the
agent is stuck, this means that playing any action a ∈ As does not lead to any change of the state.
In our example, the set of terminal states is given by T = {(Z − 2, Z − 2), (Z − 1, Z − 1)}, so the
goal position G and the pit position B. Let B ∈ S and C ∈ R, then we define the transition
function by

p(B × C; (s, a)) = 1T ({s}) · 1C

(
g(s)

)
+ 1T C ({s}) ·

(
1B(s + a) · 1C

(
g(s + a)

))
for (s, a) ∈ S ×As. As a small task, it can be recalculated that the transition/reward function is
a Markov kernel. The transition/reward function looks a bit confusing and complicated at first
sight. If we break the function down into its individual cases, we quickly realize that the function
has the desired properties. Thus all components of a Markov Decision Model are defined. Since
those will be used in algorithms discussed in future chapters let us compute the functions from
Definition 3.1.7. For (s, a) ∈ S ×As the transition probability to arrive in state s′ when playing
action a ∈ As in state s ∈ S is

p(s′; s, a) =
∑
r∈R

p
((
{s′}, {r}

)
; s, a

)
= 1T ({s}) + 1T C ({s}) ·

(
1B(s + a)

)
.

Furthermore, the expected reward when playing action a ∈ As in state s ∈ S is

r(s, a) = 1T ({s}) · g(s) + 1T C ({s}) · g(s + a).

Grid world is a standard example on which tabular reinforcement algorithms of the following
chapters will be tested.

We next formulate a simple supply optimisation problem in the setting of Markov decision
processes, an ice vendor who has to dedice every day about the amount of produced/bought ice
cream. In the course of these lecture notes it will be discussed how to optimise the production
decision in order to maximise the profit.

Example 3.1.9. (Ice vendor)
The ice vendor owns an ice cream truck that can store up to M ∈ N ice creams. Every morning
the ice vendor can produce/buy buy a discrete amount 0, 1, 2, . . . , M of ice cream. Throughout
the day, a random amount of ice cream is consumed, and the demand can be higher than the
stored amount of ice cream. In this simplified model, seasonality in demand is not considered.
If less ice cream is consumed then the ice vendor has in stock, the ice cream must be stored
overnight and can then be sold the next day. There are costs for storing ice cream overnight,
thus, the ice vendor should carefully decide about the amount of ice cream produced/bought in
the morning. In addition, there are costs for the production/purchase of ice cream. For the sale
of ice cream the vendor receives a fixed price per ice cream scoop. For simplicity, we also assume
that revenues and costs do not change over time (which is realistic for ice cream, the price is
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typically adjusted once per year). The trade-off in this problem is simple. How much ice should
be ordered order in the morning so that the vendor can maximize the revenue (serve demand)
but keep the costs low.
The ice vendor situation can be formulated as Markov decision process. The state space is given
by the stored amount of ice: S = {0, 1, . . . , M}. An action models the amount of ice cream
produced/ordered in a morning. If there are already s ∈ S scoops in stock, the vendor can
produce/order at most M − s many scoops. Thus, As = {0, 1, . . . , M − s} and A = {0, . . . , M}.
For demand, we assume that it is independently identically distributed regardless of timing.
Thus P(Dt = d) = pd for d ∈ N holds for all time t ∈ N. For simplicity, let us assume the demand
can only take values in {0, 1, . . . , M}. In order to define the transition reward function and the
reward, auxiliary functions are used to determine the revenues and costs. The selling price of a
scoop of ice cream is given by a function f : S → R+, for instance f(s) = c · s, where c > 0 is
the selling price for a scoop of ice cream. Similarly, we define a mapping o : A → R+ for the
production/purchase cost of the products and h : S → R+ for the storage cost. Thus, for a pair
(s, a) ∈ S ×As and another state s′ ∈ S, the gain is given by the mapping R : (S ×As)×S → R
with

R(s, a, s′) := f( s + a− s′︸ ︷︷ ︸
sold ice cream

)− o(a)︸︷︷︸
production costs

− h(s + a)︸ ︷︷ ︸
storage costs

.

Moreover, let us define a mapping h : S ×A× S → [0, 1]

h(s′ ; s, a) :=
{ ps+a−s′ : 1 ≤ s′ ≤ s + a∑

i≥0 ps+a+i : s′ = 0
0 : otherwise

and from this the transition probabilities

p({(s′, r)} ; s, a) := h(s′; s, a) · 1{r}
(
R(s, a, s′)

)
.

As for grid world we can compute the state-action-state transition probabilitites as

p(s′; s, a) = p({s′} ×R ; s, a) =
∑
r∈R

h(s′; s, a) · 1{r}
(
R(s, a, s′)

)
= h(s′; s, a)

and the reward expectations as

r(s, a) =
∑
r∈R

r p(S × {r} ; s, a)

=
∑
s′∈S

∑
r∈R

r p
(
({s′, r}) ; s, a

)
=

∑
s′∈S

∑
r∈R

r · h(s′; s, a) · 1{r}
(
R(s, a, s′)

)
=

∑
s′∈S

R(s, a, s′) · h(s′; s, a).

So far the definition of Markov decision models and policies is very general. It will later turn out
that much smaller classes of policies are necessary to solve optimal control problems in the MDP
setting.

Definition 3.1.10. (Markov and stationary policies)
A policy π = (πt)t∈N0 ∈ Π is called

(i) a Markov policy if there exists a sequence of kernels (φt)t∈N0 on Ā × S such
that

πt(· ; s0, a0, ..., st) = φt(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.
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The set of all Markov policies is denoted by ΠM .

(ii) a stationary policy if there exists a kernel φ on Ā × S such that

πt(· ; s0, a0, ..., st) = φ(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.

The set of all stationary policies is denoted by ΠS .

(iii) a deterministic stationary policy if there exists a kernel φ on Ā × S taking
only values in {0, 1} such that

πt(· ; s0, a0, ..., st) = φ(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.

The set of all deterministic stationary policies is denoted by ΠD
S .

In the stationary cases we typically write just π instead of φ.

From the definition it holds that
ΠD

S ⊆ ΠS ⊆ ΠM .

In words: A Markov policy only uses the actual state (not the past) to chose the action, a
stationary policy does not depend on time (and the past), a deterministic stationary policy
only choses one action (like an index strategy for bandits). In fact, it will turn out that only
deterministic stationary policies are needed to solve the central optimisation problem that will
be defined below.
A special type of policies will be used later, those policies always first chose a fixed action and
then proceed according to some policy.

Definition 3.1.11. We denote by Πa the set of all policies with π0(a ; s) = 1 for
all s ∈ S. For a given policy (πt)t∈N0 we denote by πa it’s modification in which π0
is replaced by the deterministic action distribution only charging a.

We will call such policies one-step deterministic. Lecture 7

Example 3.1.12. (Multiarmed bandits)
A very trivial situation is a multiarmed bandits. There are actually two ways of interpreting
bandits as MDPs.

• If |S| = 1, then a one-step Markov decision model is nothing but a bandit model that is
played once. There are only actions (arms) that are played once according to a one-step
policy, R1 is the reward obtained by playing the arm.

• If |S| = 1 and T = n, then a Markov decision model is a bandit model and a policy is a
learning strategy. The rewards R1, ..., Rn are the outcomes of playing the arms chosen
according to π. The way a learning strategy was defined for bandits it is neither Markovian
nor stationary policy.

We now can prove that for a Markov policy, and hence also for (deterministic) stationary policies,
a Markov Decision Processes has the Markov Property.

Proposition 3.1.13. (Markov Property)
Let (S, A) be a Markov decision process on (Ω,F ,P) with Markov policy (πt) and
initial distribution µ. Then (St, At)t∈N0 satisfies the Markov Property, i.e.

P(St+1 = st+1, At+1 = at+1|S0 = s0, A0 = a0, . . . , St = st, At = at)
= P(St+1 = st+1, At+1 = at+1|St = st, At = at).

If π ∈ ΠS , then (S, A) is a time-homogeneous Markov chain on S×A with transition
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matrix

p(a,s),(a′,s′) = p({s′} ×R ; s, a) · π(a′; s′).

Proof. The main point of the proof (similarly to the above proofs) is to realise that∑
s∈S

∑
a∈A

p({s} ×R ; s′, a′) · φt(a; s) =
∑
s∈S

p({s} ×R ; s′, a′)
∑
a∈A

φt(a; s)

=
∑
s∈S

p({s} ×R ; s′, a′) · 1 = 1.

Then the proof is of the cancellation form
∑

i(a · bi)/
∑

i bi = a. Combined with the path
probabilities we obtain

P (St+1 = st+1, At+1 = at+1|St = st, At = at)

= P (St+1 = st+1, At+1 = at+1, St = st, At = at)
P(St = st, At = at)

=
∑

s0,a0
...

∑
st−1,at−1

P (S0 = s0, A0 = a0, ..., St+1 = st+1, At+1 = at+1)∑
s0,a0

...
∑

st−1,at−1
P (S0 = s0, A0 = a0, ..., St = st, At = at)

=
∑

s0,a0
...

∑
st−1,at−1

µ({s0})π0({a0} ; s0)∑
s0,a0

...
∑

st−1,at−1
µ({s0})π0({a0} ; s0)

×
∏t+1

i=1 p({si} ×R ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)∏t
i=1 p({si} ×R ; si−1, ai−1) · πi({ai} ; s0, a0, . . . , ai−1, si)

π∈ΠM=
∑

s0,a0
...

∑
st−1,at−1

µ({s0})π0({a0} ; s0)
∏t+1

i=1 p({si} ×R ; si−1, ai−1) · φi(ai; si)∑
s0,a0

...
∑

st−1,at−1
µ({s0})π0({a0} ; s0)

∏t
i=1 p({si},R ; si−1, ai−1) · φi(ai; si)

=
∑

s0,a0
...

∑
st−2,at−2

µ({s0}) · π0({a0} ; s0) ·
∏t+1

i=1 p({si} ×R ; si−1, ai−1) · φi(ai; si)∑
s0,a0

...
∑

st−1,at−1
µ({s0}) · π0({a0} ; s0) ·

∏t
i=1 p({si} ×R ; si−1, ai−1) · φi(ai; si)

= p({st+1} ×R ; st, at) · φt+1(at+1; st+1)

×
∑

s0,a0
...

∑
st−2,at−2

µ({s0}) · π0({a0} ; s0) ·
∏t

i=1 p({si} ×R ; si−1, ai−1) · φi(ai; si)∑
s0,a0

...
∑

st−1,at−1
µ({s0}) · π0({a0} ; s0) ·

∏t
i=1 p({si} ×R ; si−1, ai−1) · φi(ai; si)

= p({st+1} ×R ; st, at) · φt+1(at+1; st+1)

= P (S0 = s0, A0 = a0, . . . , St = st, At = at, St+1 = st+1, At+1 = at+1)
P (S0 = s0, A0 = a0, . . . , St = st, At = at)

= P
(
St+1 = st+1, At+1 = at+1|S0 = s0, A0 = a0, . . . , St = st, At = at

)
.

Finally, if φ = φ the computation (compare the third line from below) shows that P(St+1 =
s′, At+1 = s′|St = s, At = a) is independent of t.

3.1.3 Stochastic control theory
So far we have introduced the concept of a Markov decision processes for a given transition
function p and a policy π. But what is the actual question that we are after? The question is to
find a policy that maximise what we will call the expected discounted reward. Since a policy can
be used to control a system this problem is also known under stochastic optimal control. In order
to do so there will be two main steps. How to compute the expected discounted reward (this will
be called prediction) and then how to find the optimal policy (this will be called control). Here
is the optimization target that stochastic optimal control is about and reinforcement learning
trys to solve:
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Given a Markov reward model find a policy π that maximizes the expected sum of
discounted future rewards for all initial conditions s:

Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s
]
.

The parameter γ is a fixed positive number striclty smaller than 1 that ensures
convergence of the sum (as we will assume R to be bounded). As it’s choice does
not play a fundamental role the dependence on γ is typically ignored in all objects.

A little note on notation. We will frequently misuse notation and write P(· |S0 = s) instead
of Pδs(·) or Ps(·). This is justified for MDPs by the fact that Pµ(· |S0 = s) = Ps(·) whenenver
µ({s}) > 0 as can be seen from cancellations in the path probability formula (3.3).
There are other possible optimisation targets. If the time-horizon is finite then one might also be
interested in optimising Eπ[

∑T
k=1 Rk]. For infinite time-horizon alternatively one might aim to

optimise limT →∞
1
T Eπ[

∑T
k=1 Rk]. In these lecture notes we mainly focus on discounted rewards.

Before going into the details let us fix some conditions that we want to assume, mostly to make
our lives easier:
Assumption 1: The state space S and the action space A are finite, the set of rewards R is
discrete and bounded. All appearing σ-algebras are chosen to be the power sets.

The assumption of bounded rewards is not necessary but makes our lives much easier for the
presentation as everything will be finite and exchanging expectations and sums will always follow
from dominated convergence.

The assumption is not needed but makes the notation simpler. In reinforcement it is actually a
non-trivial but very important problem how to deal carefully with the sets of allowed actions.
Assumption 2: Given a state-action pair, the reward is independent of the next state, i.e.

P(Rt+1 ∈ D |St = st, At = at, St+1 ∈ B) = P(Rt+1 ∈ D |St = st, At = at).

This is the special case discussed in Example 3.1.5. Formulated in terms of the model transition
function this means

p({s, r} ; s, a) = p(S × {r} ; s, a) · p({s} ×R ; s, a).

Definition 3.1.14. (State value function)
For π ∈ Π and γ ∈ (0, 1), the function V π : S → R defined by

V π(s) := Eπ
s

[ ∞∑
t=0

γtRt+1

]
is called state-value function. Accasionally we will also use

V π(µ) = Eπ
s

[ ∞∑
t=0

γtRt+1

]
for the expected discounted reward for the MDP started in the distribution µ.

Recalling the notation πa for the policy π modified to first chose action a we also define the
state-action function (Q-function):
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Definition 3.1.15. (State-action value function - Q-function)
For π ∈ Π and γ ∈ (0, 1), the function Qπ : S ×A → R defined by

Qπ(s, a) = V πa

(s)

is called state-action value function; or Q-function.

In words: The state value functions is the expected discounted total reward when started in
s, the state-action function the expected total reward if started in s and a is the first action
played. It is important to note that the state and state-action value functions are typically
defined differently:

The typical definitions of V π and Qπ are as follows:

V π(s) = Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s
]

and Qπ = Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s, A0 = a
]

In fact, if µ is an initial condition with µ(s) > 0 and π is a policy with π(a ; s) > 0
then both definitions are equal and do not depend on µ!

The claim follows by a quick computation with (3.3). If µ(s) = 0 and/or π(a ; s) = 0 the typical
definition is not even defined! For V the problem can be solved easily by chosing µ to be uniform
on S. For Q we could chose µ uniform (or µ = δs) and modify π0 to only charge a. This is
exactly what the definition is about. A quick computation shows that our definition and the
classical definition is equal if µ(s) > 0 and π0(a ; s) > 0.
The general aim in the following is two-fold:

• How to compute the value and state-value function for a given policy?

• How to find an optimal policy, i.e. a policy that maximises (in the right sense) the value
function?

The Q-function is not the main object of interest but very useful to simplify appearing equations.
In the next chapter it will turn out to be more useful to numerically find the optimal Q-function.
In order to derive a set of linear equations for the value function (the so-called Bellman expectation
equation) we will start with the following lemma:

Lemma 3.1.16. Suppose s ∈ S, a ∈ A and s′ ∈ S is such that p(s′ ; s, a) > 0.
Then

sup
π∈Π

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]

= sup
π∈Π

V π(s′)

and, if π ∈ Π is stationary also

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]

= V π(s′).

Proof. The basic argument is the same for both claims. Define

R̃t := Rt+1, S̃t := St+1, Ãt := At+1, t ≥ 0,

the shifted policy

π̃t(ã ; s̃0, ã0, ..., s̃t) = πt+1(ã ; s, a, s̃0, ã0, ..., s̃t),
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and a new probability measure P̃π := Pπ(· |S0 = s, A0 = a, S1 = s′). Then on the probability
space (Ω,F , P̃π), the process (S̃t, Ãt)t≥0 is an MDP started in µ = δs′ , transition function p, and
policy (π̃t)t∈N0 . To see why, one only needs to compute the path probabilities:

P̃π(S̃0 = s0, Ã0 = a0, ..., S̃t = st, Ãt = at)

= Pπ(S1 = s0, A1 = a0, ..., St+1 = st, At+1 = at, S0 = s, A0 = a, S1 = s′)
Pπ(S0 = s, A0 = a, S1 = s′)

= δs′(s0) · µ(s) · π0(a0; s0) ·
∏t+1

i=1 p({si+1} ×R ; si, ai)πi({ai} ; s, a, s0, a0, ..., si−1, ai−1, si)
µ(s) · π0(a ; s) · p({s′} ×R ; s, a)

= δs′(s0) · π1(a1; s, a, s1) ·
t+1∏
i=2

p({si+1} ×R ; si, ai)πi({ai} ; s, a, s0, a0, ..., si−1, ai−1, si)

= δs′(s0) · π̃0(a1; s0) ·
t∏

i=1
p({si} ×R ; si−1, ai−1)π̃i({ai} ; s0, a0, ..., si−1, ai−1, si)

If π is stationary, then π = π̃ so that the shifted MDP (S̃, Ã) under Pπ(· |S0 = s, A0 = a, S1 = s′)
has the same law as (S, A). If the law of Rt+1 is determined by (St, At) only, then the law of
R̃t+1 is determined by S̃t, Ãt only. Hence, the second claim follows.
The first claim is a bit more delicate as the shifted process is an MDP with same transition
function p but diffferent policy π̃. If we denote by Π̃ all policies obtained from Pa (the policies
that always start with action a) by shifting by 1 (which is actually identical to Π), then

sup
π∈Π

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]

= sup
π∈Πa

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]

= sup
π∈Πa

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S0 = s, A0 = a, S1 = s′
]

= sup
π∈Πa

Ẽπa

s

[ ∞∑
t=0

γtR̃t+1

]
= sup

π̃∈Πa

Eπ̃
s

[ ∞∑
t=0

γtR̃t+1

]
= sup

π∈Π
V π(s).

The upcoming proves will always use conditioning on A0 = a which is problematic if π(a ; s) = 0.
To avoid trouble we will denote Aπ

s = {a ∈ A : π(a ; s) > 0}. The notation will only appear in
the proofs and usually drop out in the theorems. The following trick will be used a few times
with Aa = {A0 = a}:

If ∪aAa is a partition of Ω with P(Aa) > 0 for all a, then expanding the definition
of conditional probability yields

P(B|C) =
∑

a

P(Aa|C)P(B|C ∩Aa). (3.5)

Similarly, writing E[X|C] =
∫

Ω X(ω)P(dω|C) also yields

E[X|C] =
∑

a

P(Aa|C)E[X|C ∩Aa]. (3.6)

The next simple lemma is important, it shows how to relate value and state-value functions.
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Lemma 3.1.17. Given a stationary policy π ∈ ΠS , the following relations between
the state- and action-value functions hold:

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a), s ∈ S,

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V π(s′), s ∈ S, a ∈ A.

On first view the lemma shows that thinking of V π or Qπ is equivalent. There is an important
detail that will only become relevant in the next sections. To compute Qπ from V π the transition
function must be known. In so-called model free RL we will later try to remove that assumption
but then cannot simply compute Qπ from V π.

Proof. Writing out conditional probabilities (and discrete expectation as sum over conditional
probabilitites) yields the first claim:

V π(s) = Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s
]

=
∑

a∈As

Pπ(A0 = a|S0 = s)Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s, A0 = a
]

=
∑

a∈As

π0(a ; s)Qπ(s, a)

stationary=
∑

a∈As

π(a ; s)Qπ(s, a).

For the second equation we first do the same and use the definition of r:

Qπ(s, a) = Eπa

s

[ ∞∑
t=0

γtRt+1

]
= Eπa

[R1] + γEπ
[ ∞∑

t=0
γtRt+2

∣∣∣ S0 = s, A0 = a
]

= r(s, a) + γ
∑
s′∈S

p(s′; s, a)Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]
.

Using Lemma 3.1.16 yields the claim.

The classical theory of optimising Markov decision processes is very much about functional analysis.
For that sake we will always use the Banach space (U, || · ||∞) consisting of U := {u : S → R}
equipped with the maximum-norm. Since we assume that S is finite, U is nothing but R|S| where
a vector is written as a function (mapping indeces to coordinate values).

Definition 3.1.18. (Bellman expectation operator)
Given a Markov decision model and a stationary policy π the operator

(T πu)(s) :=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)u(s′)
)

,

mapping U into U is called the Bellmann expectation operator.

The Bellman expectation operator can also be written in a more compact form if we are willing
to use probabilities and assume that µ(s) > 0, e.g. µ uniform:

(T πu)(s) =
∑

a∈As

r(s, a)π(a ; s) + γ
∑
s′∈S

Pπ(S1 = s′|S0 = s)u(s′).
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To see this we only need to write the discrete conditional expectations:

Pπ(S1 = s′|S0 = s) =
∑

a∈As

Pπ(S1 = s′, S0 = s, A0 = a)
Pπ(S0 = s)

=
∑

a∈As

Pπ(S1 = s′ |S0 = s, A0 = a)Pπ(S0 = s, A0 = a)
Pπ(S0 = s)

=
∑

a∈As

p(s′ ; s, a)µ(s)π(a ; s)
µ(s) =

∑
a∈As

p(s′ ; s, a)π(a ; s).

One of the most fundamental results we need are the Bellmann expectation equations. The
value function solves a linear system of equations, alternatively, is a fixed point of the Bellman
expectation operator:

Theorem 3.1.19. (Bellman expectation equation)
For every stationary policy π the value function satisfies the linear system of
equations

V π(s) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V π(s′)
)

, s ∈ S.

In words, V π is a fixed point of the Bellman expectation operator T π, i.e. T πV π =
V π.

Proof. Easy: just apply Lemma 3.1.17 twice:

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V π(s′)
)

Note that in principle Bellman’s expectation equation can be solved to compute the value function
V π for a given stationary policy π. This is a linear equation for which linear algebra provides
plenty of explicit and approximate solution methods.

Derive the expectation equation for the Q-function of a stationary policy π:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π(a′ ; s)Qπ(s′, a′)

With the value functions we can define the concept of an optimal policies. The search for optimal
policies in MDPs will be the main content of the subsequent chapters.

Definition 3.1.20. (Optimal policy & optimal value function)
For a given Markov decision model the following quantities will be of central
importance:

(i) The function V ∗ : S → R that takes values

V ∗(s) := sup
π∈Π

V π(s), s ∈ S,

is called optimal (state) value function.

(ii) A policy π∗ ∈ Π that satisfies

V π∗
(s) = V ∗(s), s ∈ S,

is called optimal policy.
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(iii) The function Q∗ : S ×A → R that takes values

Q∗(s, a) := sup
π∈Π

Qπ(s, a), s ∈ S, a ∈ A,

is called optimal state-action value function.

It should be emphasised that we make our lives much simpler by assuming a finite Markov
decision model. In that case the maximum is always attained and plenty of technical problems
do not appear. In fact, the results that we are going to prove next do no necessarily hold for
infinite Markov decision models.

It is important to keep in mind that a priori V ∗ and Q∗ are not the value functions
for the best policy but instead pointwise the best possible expected rewards. In
fact, it will turn out that there is a policy π∗ (even stationary and deterministic!)
with value functions achieving the best possible, i.e. V π∗ = V ∗ and Qπ∗ = Q∗.
Even more, the policy can be obtained by solving a system of equations, Bellman’s
optimality equation.

The main result that is going to proved in this section is that there is an optimal policy π, a
policy that beats every other policy for every starting value. Even more, the policy is stationary
and deterministic and can be obtained by solving a non-linear system of equations (Bellman’s
optimality equation). Lecture 8

Lemma 3.1.21. The following holds for the optimal state-value function and the
optimal state-action-value function:

(i) V ∗(s) = maxa∈As Q∗(s, a) for s ∈ S

(ii) Q∗(s, a) = r(s, a) + γ
∑

s′∈S p(s′ ; s, a)V ∗(s′) for s ∈ S, a ∈ A

The lemma even holds for non-discrete setting by replacing the max operator by the sup operator.
Please keep already in mind the operation

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V (s′), s ∈ S, a ∈ A,

that turns the vector V into a matrix Q. The operation will occur frequently in what follows.

Proof. We start with the simpler task, obtaining V ∗ from Q∗:

max
a∈As

Q∗(s, a) = max
a∈As

sup
π∈Π

Qπ(s, a)

= max
a∈As

sup
π∈Π

Eπa

s

[ ∞∑
t=0

γtRt+1

]
= sup

π∈Π
max
a∈As

Eπa

s

[ ∞∑
t=0

γtRt+1

]
(∗)= sup

(πt)t∈N

sup
π0

Eπ
s

[ ∞∑
t=0

γtRt+1

]
= sup

(πt)t∈N0

Eπ
s

[ ∞∑
t=0

γtRt+1

]
= V ∗(s).

Checking (∗) is not hard: „≤“ is trivial, since the deterministic policy only charging a gives the
lower bound so that the supremum over all policies can only be larger. „≥“ follows from the
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inequality

Eπ
s

[ ∞∑
t=0

γtRt+1

]
=

∑
a∈As

Eπ
[ ∞∑

t=0
γtRt+1

∣∣∣ S0 = s, A0 = a
]
π0(a ; s)

≤ max
a∈As

Eπa

s

[ ∞∑
t=0

γtRt+1

] ∑
a∈As

π0(a ; s)︸ ︷︷ ︸
≤1

= max
a∈As

Eπa

s

[ ∞∑
t=0

γtRt+1

]
.

This proves (i). To prove (ii) we proceed similarly to the proof of Bellman’s expectation equation
(see the proof of Lemma 3.1.17) and recall that

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′; s, a)Eπa

s′

[ ∞∑
t=0

γtRt+2

]
holds for any fixed policy π. This implies

Q∗(s, a) = sup
π∈Π

Qπ(s, a)

= r(s, a) + sup
π∈Π

γ
∑
s′∈S

p(s′ ; s, a)Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]

= r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)sup
π∈Π

Eπa

s

[ ∞∑
t=0

γtRt+2

∣∣∣ S1 = s′
]
.

Applying Lemma 3.1.16 the proof is complete. There is only one last bit to justify. Why could
we interchange the final sum and supremum (generally this only gives an upper bound). To
justify let us check that

sup
π:S→R

∑
s∈S

h(s, π(s)) =
∑
s∈S

sup
π:S→R

h(s, π(s))

holds. Since „≤ “ always holds we show the contrary by contradiction. Let us suppose that

sup
π

∑
s

h(s, π(s)) <
∑

s

sup
π

h(s, π(s)),

4 and chose δ > 0 such that
∑

s supπ h(s, π(s))− δ > supπ

∑
s h(s, π(s)). Next chose some π∗(s)

and some ε > 0 such that h(s, π∗(s)) > supπ h(s, π(s))− ε
|S| holds for all s ∈ S. But then∑

s

sup
π

h(s, π(s)) ≤
∑

s

h(s, π∗(s)) + ε

< sup
π

∑
s

h(s, π(s)) + ε

≤
∑

s

sup
π

h(s, π(s)) + ε− δ.

Chosing ε < δ this gives a contradiction.

We now turn towards the second operator of Bellman, the optimality operator. As for the
expectation operator we work on U = {u : S → R} but also on the set of all state-action pairs
V := {v : S×A → R}. As long as we assume the Markov decision model to be finite U is nothing
but R|S| and V is R|S|×|A|. To make U and V Banach spaces we will fix the maximum-norm.

4warum nur π : SR? sonst nicht vertauschen von nur endlichen
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Definition 3.1.22. (Bellman optimality operators)
For a given Markov decision model we define the following operators:

(i) The non-linear system of equations

v(s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)v(s′)
}

, s ∈ S,

is called Bellman optimality equation. The operator T ∗ : U → U defined by

(T ∗v)(s) := max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)v(s′)
}

, s ∈ S,

is called the Bellman optimality operator (for state-value functions).

(ii) The non-linear system of equations

q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

q(s′, a′), (s, a) ∈ S ×A,

is called Bellman state-action optimality equation. The state-action Bellman
optimality operator T ∗ : V → V is defined as

(T ∗q)(s, a) := r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

q(s′, a′), (s, a) ∈ S ×A.

Warning: both optimality operators are denoted by T but are safely distinguised
by the number of arguments.

It will turn out that the Bellman optimality operators are directly linked to optimal value
functions and solving the corresponding fixed point equations (i.e. the Bellman optimality
equations) is equivalent to finding optimal policies. Unfortunately, the equations are non-linear
and as such not easy to solve.

Corollary 3.1.23. The optimal value functions (resp. state-action value functions)
are fixed points the Bellman optimality operators:

T ∗V ∗ = V ∗ and T ∗Q∗ = Q∗.

Proof. Both claims follow directly from Lemma 3.1.21 by applying (i) and (ii) in reversed order
respectively:

V ∗(s) = max
a∈As

Q∗(s, a) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V ∗(s)
}

= T ∗V ∗(s)

and

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V ∗(s) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a∈As

Q∗(s, a).

From basic analysis courses you might remember one of the most useful, yet simple, theorems
from functional analysis.



3.1. MARKOV DECISION PROCESSES 55

Theorem 3.1.24. (Banach fixed-point theorem)
Let (U, ||·||) be a Banach space, i.e. a complete normed vector space, and T : U → U
a contraction, i.e. there exists λ ∈ [0, 1) such that

∥Tv − Tu∥ ≤ λ ∥v − u∥

for all u, v ∈ U . Then

(i) there exists a unique fixed point, i.e. v∗ ∈ U such that Tv∗ = v∗; and

(ii) for arbitrary v0 ∈ U , the sequence (vn)n∈N defined by

vn+1 = Tvn = Tn+1v0

converges to v∗.

The Banach fixed-point is useful because the condition can be checked in many cases and
also the algorithm yields a fast converging algorithm. One of the major insights of optimal
control is that the Bellman operators are contractions so that the optimal value functions are
uniquely determined by the Bellman optimality equations. As a direct consequence there is also
a numerical scheme to find the optimal value functions, just iterate the Bellman operator again
and again.

Theorem 3.1.25. The optimal value function V ∗ is the unique solution to the
Bellman optimality equation, i.e.

V ∗(s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V ∗(s′)
}

, s ∈ S.

Similarly, the optimal state-action value function Q∗ is the unique solution to the
other Bellman state-action optimality equation, i.e.

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a∈As

Q∗(s′, a), (s, a) ∈ S ×A.

Proof. Recalling Corollary 3.1.23 it suffices to prove that the Bellman optimality equations
have unique fixed points. Using Banach’s fixed point theorem this boils down to proving the
contraction properties. To deal with the operators a simple inequality from analysis will be used:

|max
a∈A

f(a)−max
a∈A

g(a)| ≤ max
a∈A
|f(a)− g(a)|.

If the number in the absolute value of the left hand side is positive, then

|max
a∈A

f(a)−max
a∈A

g(a)| ≤ max
a∈A

(f(a)− g(a)) ≤ max
a∈A
|f(a)− g(a)|.

Otherwise, the role of f and g is reversed. With v, u ∈ U , the Bellman optimality operator yields

∥T ∗v − T ∗u∥∞ = max
s∈S
|T ∗v(s)− T ∗u(s)|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a)|v(s′)− u(s′|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a)||v − u||∞

= γ ∥v − u∥∞ .
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Hence, T ∗ is a contraction on U = {u : S → R} equipped with the maximum norm and thus has
a unique fixed point. Next, we show the same for T ∗ on V = {u : S ×A → R}: With v, u ∈ V ,
the second Bellman operator yields

∥T ∗v − T ∗u∥∞ = max
s∈S

max
a∈As

|T ∗v(s, a)− T ∗u(s, a)|

≤ max
s∈S

max
a∈A
|γ

∑
s′∈S

p(s′ ; s, a)
(

max
a′∈As

v(s′, a′)− max
a′∈As

u(s′, a′)
)
|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

|v(s′, a′)− u(s′, a′)|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a) max
s′∈S

max
a′∈As

|v(s′, a′)− u(s′, a′)|

= γ ∥v − u∥∞ .

Note that we used the general fact that |max an −max bn| ≤ maxn |an − bn|.

To train the argument please proof that Bellmann’s expectation operators are also
|| · ||∞-contractions.

Uniqueness for Bellmann’s optimality equations has important conseqeuences such as the following
corollary:

Corollary 3.1.26. A policy π∗ ∈ Π is optimal if and only if V π∗ and/or Qπ∗

satisfy the Bellman optimality equations from 3.1.22.

This section concludes with the most important piece of understanding of optimal state- and
action-value functions and their relation to optimal policies: Given an optimal state- or action-
value function, how would one get the good stuff, that is, the optimal policy?

Definition 3.1.27. (Greedy policy)
Given a function q : S ×A → R the deterministic stationary policy defined by

πq(a ; s) :=
{

1 : a = a∗(s)
0 : otherwise

with a∗(s) ∈ arg max
a∈As

q(s, a)

is called a greedy policy with respect to q. Sometimes we also write greedy(q)
instead of πq.

Keep in mind that the greedy policy is very special, only one action is proposed that maximises
the given q-function. In case several actions yield the same state-action value a fixed one of them
is chosen. As a consequence we learn how solving the Bellman state-action optimality equation
yields an optimal policy.

Theorem 3.1.28. An optimal policy π∗ always exist and can always be chosen
to be stationary and deterministic! Such a policy is given by solving the Bellman
state-action optimality equation and using the greedy policy with respect to the
solution.

Alternatively, a solution v to the Bellman optimality equation plugged-into the „V -Q-transfer
operator“

qv(s, a) := r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)v(s′), s ∈ S, a ∈ As,

yields Q∗ and, hence, the greedy optimal policy (compare Lemma 3.1.21).
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Proof. Suppose we have a solution q of Bellmann’s state-action optimality equation. By unique-
ness q equals Q∗. If π is the greedy policy obtained from q (thus of Q∗), then the definition of
greedy policies yields

V ∗(s) 3.1.21= max
s∈As

Q∗(s, a) = V π(s).5

Thus, π is optimal by definition of optimality.

Since this is the basic result on which many ideas of reinforcement learning are based let us
summarise the findings of this chapter:

Solving Bellman’s optimality equation (or state-value optimality equation) yields a
stationary deterministic policy π∗ as the greedy policy obtained from the solution.
Thus, all algorithms that approximatively solve the Bellman optimality equation
give rise to approximation algorithms that find an optimal policy of the stochastic
optimal control problem maxπ∈Π V π.

As the remark indicates we will be interested in learning the optimal policies by approximation.
Recalling the setting of stochastic bandits (interpreted as one-step MDP) this sounds familiar.
In that setting an optimal policy is nothing but a dirac measure on optimal arms, a learning
strategy a sequence of policies that learns (approximates) the optimal policy. To make the
connection to stochastic bandits let us define the notation of a learning strategy:

Definition 3.1.29. A sequence (πn)n∈N of policies for a Markov decision model
is called a learning strategy, if πn+1 only depends on everyting seen for the first n
rounds of learning.

We keep the definition extremely vague as it will not play any further role in what follows. The
aim is to find algorithms that produce learning strategies that converge quickly and efficiently
to the optimal strategy π∗. What we mean by convergence will depend on the context, the
minimal requirement is convergence of the value function to the optimal value function, i.e.
||V πn−V ∗||∞ → 0. In contrast to stochastic bandit theory the regret plays no role in reinforcement
learning, the situation is too complex.
There are two typical approaches that we will encounter in different setups:

• value function based learning,

• policy based learning.

For value function the idea is to learn the optimal value function V ∗ (or optimal state-value
function Q∗) and then infer the optimal policy π∗ by taking argmax (the greedy policy from
Theorem 3.1.28). In contrast, policy learning tries to approximate directly the optimal policy π∗.

The algorithms presented below are called dynamic programming algorithms,
they belong to a large class of algorithms that break down a problem into (hopefully
simpler) subproblems. Here, this means for instance to compute V π(s) from all other
V π(s′). Since for discounted MDP problems the subproblems do not immediately
simplify we do not go further into the ideas of dynamic programming but still refer
to all algorithms based on Bellman’s equations as dynamic programming algorithms.

Lecture 9

3.2 Basic value iteration algorithm
We have understood the problem and its ingredients and have learned that in order to act
optimally, that is to know the optimal policy, one only needs to know the optimal value function
(or the optimal state-action value function). The goal is now to develop methods to derive the
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optimal value function. As seen in the previous section, the Banach fixed point theorem gives not
only the existence of an unique fixed point of a contraction mapping T but also the convergence
of the sequence (T n+1v0)n∈N0 to that fixed point for arbitrary v0. We learned that for T ∗ the
unique fixed point corresponded to V ∗. The idea of value iteration is to use this convergence
property and turn the Bellman optimality equation into an update procedure.

Algorithm 7: Value iteration
Data: ε > 0
Result: Approximation V ≈ V∗
Initialize V ≡ 0, Vnew ≡ 0
∆ := ε (1−γ)

γ

while ∆ > ε (1−γ)
2γ do

for s ∈ S do
V (s) = Vnew(s)

end
for s ∈ S do

Vnew(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V (s′)
}

︸ ︷︷ ︸
(T ∗V )(s)

end
∆ := maxs∈S(|Vnew(s)− V (s)|)

end
return Vnew

Theorem 3.2.1. The value iteration Algorithm 7 terminates and ∥V − V ∗∥∞ ≤
ε
2 .

Proof. Suppose the sequence of vectors vn+1 = T ∗vn is obtained by iteratively applying Bellman’s
optimality operator and v∗ is the limit. The finite-time termination of the algorithm follows
immediately from Banach’s fixed point theorem as

||vn − vn+1||∞
∆
≤ ||vn − v∗||∞ + ||v∗ − vn+1||∞ → 0

for n→∞. Now suppose the algorithm terminated after n steps, i.e. V = vn and ||vn−vn−1||∞ <

ε (1−γ)
2γ . Using the contraction property of T ∗ yields, for m ∈ N,

∥vn − vn+m∥∞
∆
≤

m−1∑
k=0
∥vn+k − vn+k+1∥∞

=
m−1∑
k=0

∥∥(T ∗)kvn − (T ∗)kvn+1
∥∥

∞

≤
m−1∑
k=0

γk ∥vn − vn+1∥∞ .

Using continuity of the norm yields

∥V − V ∗∥∞ = lim
m→∞

∥vn − vn+m∥∞

≤ lim
m→∞

m−1∑
k=0

γk ∥vn+1 − vn∥∞

= γ

1− γ
∥vn+1 − vn∥∞ ≤

γ

1− γ
∥vn − vn−1∥∞ .
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Now the termination condition implies the claim.

The approximate value function from Algorithm 7 is clearly not equal to the optimal value
function V ∗. Hence, the effect on transferring to a policy needs to be analysed.

Definition 3.2.2. For ε > 0 a policy π ∈ Π is called ε-optimal if

V ∗(s) ≤ V π(s) + ε

for all s ∈ S.

Now recall from Lemmas 3.1.21 and 3.1.17 how transfer value-functions into state-value functions.
For both the optimal value functions and the value functions for a given policy the vector V is
transferred into the Q-matrix as

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V (s′). (3.7)

We now do the same and use (3.7) to define from the approximation V of V ∗ an approximate
Q-function. Then the corresponding greedy policy is ε-optimal:

Theorem 3.2.3. The greedy policy π obtained from Q is ε-optimal.

Proof. The main point of the argument is a relation of optimality and expectation operator in
the case of greedy policies. To emphasise the importance, let us highlight the trick once more:

Bellman’s optimality and expectation operators are closely connected for greedy
policies!

The crucial computation links the optimality operator with the expectation operator of the
greedy policy:

T ∗V (s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V (s′)
}

V =vn= max
a∈As

{qV (s, a)}

=
∑

a∈As

π(a ; s)1a=arg max qV (a′)(qV (a, s))

=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V (s′)
)

= T πV (s)

The rest of the proof is straight forward using fixed points and the contraction property. Suppose
the algorithm terminated after n steps, i.e. V = vn and ||vn − vn−1|| < ε (1−γ)

2γ . The identity
above yields

∥V π − V ∥∞ = ∥T πV π − V ∥∞

≤ ∥T πV π − T ∗V ∥∞ + ∥T ∗V − V ∥∞

= ∥T πV π − T πV ∥∞ + ∥T ∗V − T ∗vn−1∥∞

≤ γ ∥V π − V ∥∞ + γ ∥V − vn−1∥∞ .

Rearranging this equation yields

∥V π − V ∥∞ ≤
γ

1− γ
∥vn − vn−1∥∞ .
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In the proof of the previous theorem we have already shown that

∥V − V ∗∥∞ ≤
γ

1− γ
∥vn − vn+1∥∞ ≤

γ

1− γ
∥vn − vn−1∥∞ .

Finally, using the terminal condition of Algorithm 7 yields

∥V π − V ∗∥∞ ≤ ∥V
π − V ∥∞ + ∥V − V ∗∥∞ ≤ 2 γ

1− γ
∥V − vn∥∞ ≤ ε.

This proves the claim.

We next analyse the convergenc rates of the value iteration algorithm.

Definition 3.2.4. Suppose (V, || · ||) is a Banach space. For a sequence (yn) in V
with limit v∗ we say the convergence is of order α > 0 if there exists a constant
K < 1 for which

∥yn+1 − y∗∥ ≤ K ∥yn − y∗∥α
, n ∈ N. (3.8)

Linear convergence corresponds to α = 1.

Since the algorithm is based on Banach’s fixed point theorem it is clear that the convergence is
at least linear. A simple initialisation shows that the convergence generally cannot be improved.

Theorem 3.2.5. For all initialisations the convergence in Algorithm 7 (without
termination) is linear with constant K = γ. There is an initialisation for which the
speed of convergence is exactly linear.

Proof. Let us denote again vn for the nth update of the iteration vn = T ∗vn−1. The linear
convergence rate follows directly from the fixed point property of T ∗:

∥vn+1 − V ∗∥∞ = ∥T ∗vn − T ∗V ∗∥∞ ≤ γ ∥vn − V ∗∥∞ , n ∈ N. (3.9)

In fact, the rate cannot be better as the following example shows. If Algorithm 7 is initialised
with v0 := V ∗ + k1, it holds that

∥v1 − V ∗∥∞ = ∥T ∗v0 − T ∗V ∗∥∞ = ∥T ∗(V ∗ + k1)− T ∗V ∗∥∞
Def. T ∗

= ∥V ∗ + γk1− T ∗V ∗∥∞

= ∥V ∗ + γk1− V ∗∥∞

= γ ∥(V ∗ + k1)− V ∗∥∞ = γ ∥v0 − V ∗∥∞ .

An induction shows that for this example ∥vn+1 − V ∗∥∞ = γ ∥vn − V ∗∥∞ for all n ∈ N.

Of course we could equally use iterations obtained from Banach’s fixed point theorem
to directly approximate Q∗ instead of approximating V ∗ and then transferring to
Q∗. This will be done later for approximate dynamic programming (Q-learning and
SARSA) in which we do not assume explicit knowledge on the transition function,
thus, cannot transfer from V to Q. In the explicit case it is more reasonable to work
with vector iterations than matrix iterations and only transfer from V to Q once.
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3.3 Basic policy iteration algorithm
In this section we want to explore another method of reaching an optimal value function and
hence an optimal policy. The method is not part of the classical methodology of stochastic
control but much more common in the reinforcement learning community as it motivates some
of the most powerful approximation algorithms. The idea goes as follows. Iterate between the
following two steps:

• Policy evaluation: Compute or estimate Q (or V ) for the currently best known policy π.

• Policy improvement: Improve the best known policy by taking π′ = greedy(Q).

In the following both steps will be discussed separately and then alternated for the policy iteration
algorithm.

3.3.1 Policy evaluation
We are now going to address the question on how to compute V π(s) for a given policy π. There
are essentially three direct ideas that one might come up with:

• approximate the expectation by Monte Carlo,

• solve the (linear) Bellman expectation equation by matrix using linear algebra (e.g. matrix
inversion),

• find the fixed point of the Bellman expectation operator using Banach’s fixed point iteration.

The first idea and subtle variants will be topic of the next chapter, the latter two approaches
will be address below.
Recall the Bellman expectation operator for a stationary policy π ∈ Πs:

(T πu)(s) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)u(s′)
)

, s ∈ S.

We know from Lemma 3.1.19 that the value function V π is a fixed point of the Bellman operator
T π.

The one-step reward r(s, a) is a shortcut for r(s, a) =
∑

s′∈S
∑

r∈R r p(s′, r ; s, a),
sometimes we prefer to write the detailed form in order to emphasise more explicitly
the dependence on the Markov decision model. The Belman operator than takes
the form

(T πu)(s) =
∑

a∈As

π(a ; s)
∑
s′∈S

∑
r∈R

p(s′, r ; s, a)[r + γu(s′)], s ∈ S.

The equation looks complicated but (S is assumed finite) is just a system of linear equatinos
that can be solved by means of linear algebra techniques. This becomes directly evident when
we rewrite the fixed point equation in vector notation

V π = rπ + γP πV π,

where

P π =
( ∑

a∈As

π(a ; s)p(s′ ; s, a)
)

(s,s′)∈S×S

rπ =
( ∑

a∈As

π(a ; s)r(s, a)
)

s∈S

with Pπ ∈ R|S|×|S| and rπ, V π ∈ R|S|.
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Please check that indeed T π = rπ + γP π.

Given different use cases, each of these notations may be favorable. The reader may forgive our
shifty notation in favor of uncluttered statements.

Proposition 3.3.1. The linear equation V = rπ + γP πV has a unique solution.
Hence, V π can be computed explicitly as

V π = (I − γP π)−1rπ. (3.10)

Proof. This follows immediately as the Bellman expectation operator is a contraction (compare
the exercise after Theorem 3.1.25). To compute the solution is straightforward linear algebra
operation:

V π = rπ + γP πV π ⇔ (I − γP π)V π = rπ

⇔ V π = (I − γP π)−1rπ

The existence of the inverse is guaranteed as the linear equation has a unique solution.

As a consequence we see that the evaluation of a policy simply corresponds to the inversion of a
matrix. However, although this computation is straightforward, it is a tedious and expensive
computation. The complexity of matrix inversion (using Gauss-Jordan elimination) is O(n3) and
n = |S| can be huge. Thus we will also explore iterative solution methods.

As seen with value iteration we can use the convergence properties of the iterates of a contraction
mapping. We want to do the same for the operator T π for a stationary policy. Using Banach’s
fixed point theorem convergence (T π)nv0 → V π holds for any initialisation v0. Implemented as
an algorithm we obtain Algorithm 8.

Algorithm 8: Iterative policy evaluation (Naive)
Data: Policy π ∈ ΠS , ε > 0
Result: Approximation V ≈ V π

Initialize V ≡ 0, Vnew ≡ 0
∆ := 2ε (1−γ)

γ

while ∆ > ε (1−γ)
γ do

for s ∈ S do
V (s) = Vnew(s)

end
for s ∈ S do

Vnew(s) =
∑

a∈As
π(a ; s)

∑
s′∈S

∑
r∈R p(s′, r ; s, a) [r + γV (s′)]

end
∆ := maxs∈S(|Vnew(s)− V (s)|)

end
V := Vnew

Theorem 3.3.2. Algorithm 8 terminates and ∥V − V π∥∞ < ε.

Proof. The proof is identical to the proof of Theorem 3.2.1 which is only based on the fact that
T ∗ is a contraction with constant γ. Since T π is equally a contraction with constant γ the same
result holds.
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Algorithm 8 can be improved in terms of memory. The simple fixed point iteration algorithm
requires to occupy memory for 2|S| values since V has to be fully stored in order to compute every
value Vnew(s). This can be done more efficient by directly using available data, see Algorithm 9.
The algorithm does not perform the matrix computation with T π directly but row by row, it
updates coordinate by coordinate instead of all coordinates at once.

Algorithm 9: Iterative policy evaluation (totally asynchroneous updates)
Data: Policy π ∈ ΠS , ε > 0
Result: Approximation V ≈ V π

Initialize V (s) = 0 for all s ∈ S
∆ := 2ε
while ∆ > ε do

∆ := 0
for s ∈ S do

v := V (s)
V (s) :=

∑
a∈As

π(a ; s)
∑
s′∈S

∑
r∈R

p(s′, r ; s, a) [r + γV (s′)]︸ ︷︷ ︸
T πV (s)=(rπ+Pπ)V (s)

∆ := max(∆, |v − V (s)|)
end

end

Try to prove convergence of the totally asynchroneous policy evaluation algorithm
(without termination) to V π. To do label S by s1, ..., sK and define

T π
s V (s′) =

{
T πV (s) : s = s′

V (s) : s ̸= s′ ,

i.e. T π is only applied to coordinate s while leaving all other coordinates unchanged.
Then the inner loop of the algorithm performs nothing but the composition T̄ π :=
(T π

sK
◦ ... ◦ T π

s1
)(V ), which is not the same as applying T π! Show that V π is a fixed

point of the composition and the composition is a contraction on (U, || · ||∞), proceed
step by step using the estimates to show that Bellman operators are contractions.
Without the termination the outer loop is nothing but an iteration of T̄ π, hence,
without termination the algorithm converges to V π.

Algorithms in which coordinates s are treated differently are called asynchroneous algorithms.
In fact, there are other versions of the algorithm where coordinates are not sweeped in order
but randomly. We will come back to such asynchroneous algorithms in the next chapter (e.g.
Q-learning is of exactly that kind replacing Bellman’s expectation operator by the state-action
optimality operator). Lecture 10

3.3.2 Policy improvement
We now aim to improve a given policy, that is to slightly change it such that its value function
takes larger values. Mathematically speaking, for a policy π ∈ Π and value function V π we aim
to find a policy π′ ∈ Π such that

V π(s) ≤ V π′
(s), ∀s ∈ S,

and

V π(s) < V π′
(s) for at least one s ∈ S.
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If π is not optimal, there always exists such a policy, e.g. the optimal policy. We now want
do define a procedure to update a non-optimal policy to an improved policy. The key idea is
to change the policy at a single state s ∈ S to a particular action. For this we look at the
action-value function of a stationary policy π ∈ ΠS . Recalling from Lemma 3.1.17

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a)

it becomes apparent that

max
a∈As

Qπ(s, a) ≥ V π(s). (3.11)

In other words, the inequality above implies that choosing an action a ∈ A that maximizes the
expected reward in state s and the expected future value of following a policy π is at least as
good as following the policy π. Recalling Definition 3.1.27 this suggests to use the greedy policy
πQπ induced by the Q-function of the current policy π. This then leads to the simple policy
improvement algorithm. The improvement of the greedy policy improvement is a special case of

Algorithm 10: Greedy policy improvement
Data: policy π ∈ ΠS , Q-function Qπ

Result: improved policy π′ = greedy(Qπ)
π′ := π
for s ∈ S do

Choose a∗(s) ∈ arg maxa∈As Qπ(s, a)
π′(a∗(s) ; s) := 1
for a ∈ A \ {a∗(s)} do

π′(a ; s) = 0
end

end

the policy improvement theorem.

Theorem 3.3.3. (Policy improvement theorem)
Let π, π′ ∈ ΠS be two stationary policies and define

Qπ(s, π′(s)) :=
∑

a∈As

π′(a ; s)Qπ(s, a).

(i) If

V π(s) ≤ Qπ(s, π′(s)), ∀s ∈ S, (3.12)

then π′ is an improvement of π, i.e.

V π(s) ≤ V π′
(s), ∀s ∈ S. (3.13)

(ii) If there is a strict inequality in (3.12) for some state s then there must be a
strict inequality in (3.13) at that same state s.

In particular, for every policy π ∈ ΠS the greedy policy obtained from Qπ improves
π.

For a better understanding let’s spell out the condition of the policy improvement lemma. The
condition means that changing the policy π only in the very first step to the action probabilities
of π′ then the value function is improved by changing from π to π′. Hence, on a heuristic level
the theorem is trivial: if a stationary policy is better for one step (in all states) then (by the
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Markov property) it will also lead to a larger reward in all future time-steps. But then the value
function is clearly larger.

Proof. For the proof we use 3.1.17 to push the assumed one-step improvement successively
further:

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a)

≤
∑

a∈As

π′(a ; s)Qπ(s, a)

Lemma=
∑

a∈As

π′(a ; s)
[
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V π(s′)
]

= Eπ′

s [R1] + γEπ′

s [V π(S1)],

where the final equality stems from the definition of the (discrete) expectation and the MDP
path probability Pπ′

s (S1 = s′) =
∑

a∈As
π′(a ; s)p(s′ ; s, a). Proceeding as above yields

Eπ′

s [V π(S1)] =
∑
s′∈S

Pπ′

s (S1 = s′)V π(s′)

≤
∑
s′∈S

Pπ′

s (S1 = s′)
(
Eπ′

s′ [R1] + γEπ′

s′ [V π(S1)]
)

= Eπ′

s [R2] + γEπ′

s [V π(S2)].

Let us check the first summand, the computation for the second is similar:

Eπ′

s [R2] =
∑
r∈R

rPπ′

s (R2 = r)

=
∑
r∈R

∑
s′∈S

rPπ′

s (R2 = r |S1 = s′)Pπ′

s (S1 = s′)

(∗)=
∑
r∈R

∑
s′∈S

rPπ′

s′ (R1 = r)Pπ′

s (S1 = s′)

=
∑
s′∈S

Eπ′

s′ [R1]Pπ′

s (S1 = s′).

To be very careful note that the sum is only over those s′ for which the probability is positive so
that there is no problem in the condititioning. The justification of (∗) is the usual computation
with path probabilities (showing by cancellatings that both probabilities equal

∑
a∈As

p(S ×
{r} ; s′, a)π(a ; s′)). Continuing inductively (the notation becomes increasingly unpleasant) yields

V π(s) ≤
∞∑

t=0
γtEπ′

s [Rt+1] DCT= V π′
(s).

For strict inequalities the above steps imply strict inequalities in (3.13).
Checking the greedy policy update satisfies the general condition is easy. As defined in Algorithm
10, with a∗(s) ∈ arg maxa∈As

Qπ(s, a), the greedy policy π′ satisfies the improvement condition:∑
a∈As

π′(a ; s)Qπ(s, a) = Qπ(s, a∗(s)) = max
a∈As

Qπ(s, a) ≥
∑

a∈As

π(a ; s)Qπ(s, a) = V π(s)

For the following section we also want to proof the following lemma that links greedy policy
improvement to optimal policies. After all, this is still what we are on the look for.
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Lemma 3.3.4. Let π ∈ ΠS and π′ the greedy policy obtained from Qπ, then

V π = V π′
(or Qπ = Qπ′

) =⇒ π and π′ are optimal.

Proof. It follows from Lemma 3.1.17 that equality of the value functions implies equality of the
state-action value functions, hence, we work with Q. As in the previous proof we compute, using
a∗(s) ∈ arg maxa∈As

Qπ(s, a),

Qπ′
(s, a) = r(s, a) + γ

∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π′(a′ ; s)Qπ′
(s′, a′)

= r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)Qπ′
(s′, a∗(s)).

Now suppose that Qπ = Qπ′ , then the equation becomes

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

Qπ(s′, a′).

Hence, Qπ and Qπ′ both solve Belman’s state-action optimality equation. Since this has a unique
solution we deduce Q∗ = Qπ (and both are optimal).

Corollary 3.3.5. For a non-optimal policy π ∈ ΠS and the greedy policy π′ =
greedy(Qπ) obtained from Qπ it holds that there exists some s ∈ S such that

V π(s) < V π′
(s).

Proof. The claim follows directly by Lemma 3.3.4.

Apart from the greedy policies there is a second interesting application of the policy improvement
theorem. For that sake we need a bit of extra notation.

Definition 3.3.6. A policy π ∈ ΠS is called

• soft, if it fulfils
π(a ; s) > 0 ∀s ∈ S, a ∈ As,

• ε-soft for some 1 ≥ ε > 0, if it fulfils

π(a ; s) >
ε

|As|
∀s ∈ S, a ∈ As,

• ε-greedy with regard to Q, if it selects the greedy action with respect to Q
with probability (1− ε) and a (uniform) random action with probability ε,
i.e.

π(a ; s) =
{

(1− ε) + ε
|As| : a = a∗(s)

ε
|As| : a is not greedy

,

where a∗(s) ∈ arg maxa Q(s, a).

Let us recall the discussion of the ε-greedy learning strategies for stochastic bandits. Such
policies are considered suboptimal as they lead to linear regret, they play suboptimal arms with
probability ε. Similarly, ε-soft policies cannot be optimal as suboptimal actions must be played in
contrast to greedy policies that only play optimal actions. Hence, ε-greedy policies will typically
not improve policies, but they do improve all other ε-soft policies:
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Proposition 3.3.7. If π ∈ ΠS is ε-soft, then the ε-greedy policy π′ obtained from
Qπ improves π.

Proof. This follows by checking the condition from the policy improvement theorem:

V π(s) = ε

|As|
∑

a∈As

Qπ(s, a)− ε

|As|
∑

a∈As

Qπ(s, a) +
∑

a

π(a ; s)Qπ(s, a)

= ε

|As|
∑

a∈As

Qπ(s, a) + (1− ε)
∑

a

π(a ; s)− ε
|As|

1− ε
Qπ(s, a)

≤ ε

|As|
∑

a∈As

Qπ(s, a) + (1− ε) max
a

Qπ(s, a)

=
∑

a∈As

π′(a ; s)Qπ(s, a).

3.3.3 Exact and generalised policy iteration algorithms
The ingredients developed above can now be combined to obtain the policy iteration algorithm.
The idea is simple: alternate policy evaluation and improvement, compute V π and then improve
to π′ using the greedy strategy obtained from Qπ. The above results show that every improvement
step improves the policy and the limit of the procedure ist π∗. Here is an illustration of the
procedure:

π0 ↗ V π0 ↘ π1 ↗ V π1 ↘ π2 ↗ · · · ↘ π∗

The algorithm obtained this way is called policy iteration algorithm. Since there are many
variations how to perform the policy evaluation (exact or approximatedly) we will meet several
variants in the chapters below. We will first restrict ourselves to exact evaluations of V π using

Algorithm 11: Greedy exact policy iteration
Data: initial policy π ∈ ΠS , initial value function V
Result: optimal policy π∗ ∈ ΠD

S

initialise arbitrarily Vnew, πnew
stop = False
while stop = False do

Policy evaluation: Obtain V π by computing (3.10).
set Qπ(s, a) =

∑
s′∈S

∑
r∈R p(s′, r ; s, a) [r + γV π(s′)] for all a, s

Policy improvement: Obtain the improved greedy policy πnew from Qπ

if Qπnew = Qπ then
stop = True

end
end
return π∗ = π

the matrix inversion (3.10).

Theorem 3.3.8. (Greedy exact policy iteration)
Started in any policy the policy iteration Algorithm 17 with exact policy evaluation
and greedy policy update for finite MDPs terminates in a finite number of iterations
(at most |A| · |S|) with a solution of the optimality equation and an optimal policy
π∗.
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Proof. By Corollary 3.3.5 in each iteration there is a strict improvement of the next policy π′ (i.e.
there exists at least one s ∈ S such that V π(s) < V π′(s)) and the set of deterministic stationary
strategies is finite (|ΠD

S | ≤ |S||A| <∞) the algorithm has to terminate in finitely many steps. By
Lemma 3.3.4 the termination of the algorithm, thus V π = V π′ , implies that π′ is optimal.

Also for infinite state and action space the exact policy iteration algorithm converges monotonically
and in norm to the optimal policy. Since the exact policy evaluation is hardly possible if S
and/or A are huge we do not go further into the analysis

Typically the value functions V πn will not be computed explicitly but the policy
iteration algorithm will be used in an approximate manner where V π is estimated.
One example is to replace the explicite evaluation of V π by a few steps of the
Banach fixed point iteration corresponding to T π, compare Algorithms 8 or 9.
Other examples will be discussed in Chapter 4. All algorithms alternating between
value function estimation a policy improvement (not necessarily greedy)

π0 ↗ V̂ π0︸︷︷︸
≈V π0

↘ π1 ↗ V̂ π1︸︷︷︸
≈V π1

↘ π2 ↗ · · · ↘ π

will be called generalised policy iteration algorithm. The aim will be to
generate algorithms that converge as quickly as possible to a policy π which is as
close to π∗ as possible.

Algorithm 12: Generalised policy iteration paradigm
Data: initial policy π
Result: optimal policy π∗ (or approximation of π∗)
while not converged do

Policy evaluation: Obtain estimates for V̂ π and/or Q̂π from some algorithm.
Policy improvement: Obtain (hopefully improved) policy πnew by some algorithm.
Set π = πnew.

end
return π

It is not clear at all if a generalised policy iteration algorithm converges to an optimal policy and
when to stop the algorithm! The errors made by policy evaluation and improvement might easily
build up. It is a very non-trivial task to find and tune approximate algorithms that converge. In
Section 4.2.1 will come back to generalised policy iteration with ε-greedy policies.

The notion "while not converged" in algorithm pseudo code will always refer to a
non-specified termination condition. In many algorithms we will specify a concrete
termination condition.

An interesting version of generalised policy iteration comes in combination with ε-greedy policies
that will be useful later to introduce exploitation into some algorithms. Let us extend the notion
of optimality to the class of soft policies.

Definition 3.3.9. An ε-soft policy π∗ is called ε-soft optimal if

V π∗
(s) = sup

π ε-soft
V π(s) =: Ṽ ∗(s), ∀s ∈ S.

There is a nice trick how to show convergence of ε-greedy policy iteration. Since ε-greedy policies
play some action with probability ε they will never be optimal (except in trivial cases) so they
won’t converge to an optimal policy. Nonetheless, they do converge to a policy which is optimal
among the ε-soft policies.
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Theorem 3.3.10. (ε-greedy exact policy iteration)
Started in any ε-soft policy the generalised policy iteration algorithm with exact
policy evaluation and ε-greedy policy update converges to an ε-soft optimal policy.

Proof. To prove convergence of exact policy iteration with greedy policy update (Theorem 3.3.8)
used the Bellman equation to guarantee that no further improvement means that the current
policy is already optimal. This does not work for the ε-greedy policy iteration algorithm. To
circumvent this problem we use a trick and “move the ε-softness into the environment”. For that
sake let us define a new MDP with transition function

p̃(s′, r ; s, a) := (1− ε)p(s′, r ; s, a) + ε

|As|
∑

b∈As

p(s′, r ; s, b).

This means, that with probability ε, the transition kernel will ignore the selected action and
behave as if a uniformly random action was chosen. We can transform stationary ε-soft policies
π from the old MDP to stationary policies π̃ of the new MDP via

π̃(a ; s) :=
π(a ; s)− ε

|As|

1− ε
≥ 0.

Let us denote the mapping by f : π 7→ π̃. Conversely, for every stationary policy π̃ of the
transformed MDP we can define the ε-soft policy π by

π(a ; s) := (1− ε)π̃(a ; s) + ε

|As|
,

which is the inverse mapping. Therefore f is a bijection between the ε-soft policies in the old
MDP and all stationary policies in the new MDP. We now show, that the value functions V π

stay invariant with regard to this mapping. For that sake note that

p̃(s′ ; s, a) = (1− ε)p(s′ ; s, a) + ε

|As|
∑

b∈As

p(s′ ; s, b)

and

r̃(s, a) = (1− ε)r(s, a) + ε

|As|
∑

b∈As

r(s, b),

hence,

∑
a∈As

π̃(a ; s)r̃(s, a) =
∑

a∈As

(π(a ; s)− ε
|As|

1− ε

)(
(1− ε)r(s, a) + ε

|As|
∑

b∈As

r(s, b)
)

=
∑

a∈As

(
π(a ; s)− ε

|As|

)
r(s, a) + ε

|As|
∑

b∈As

r(s, b)
∑

a∈As

π(a ; s)− ε
|As|

1− ε︸ ︷︷ ︸
=1

=
∑

a∈As

π(a ; s)r(s, a).

Similarly:

∑
a∈As

π̃(a ; s)p̃(y ; s, a) =
∑

a∈As

(π(a ; s)− ε
|As|

1− ε

)(
(1− ε)p(y ; s, a) + ε

|As|
∑

b∈As

p(y ; s, b)
)

=
∑

a∈As

π(a ; s)p(y ; s, a)



3.4. STOCHASTIC CONTROL IN FINITE TIME 70

Combining the above yields

T̃ π̃V π(s) =
∑

a∈As

π̃(a ; s)
[
r̃(s, a) + γ

∑
y∈S

p̃(y ; s, a)V π(y)
]

=
∑

a∈As

π(a ; s)
[
r(s, a) + γ

∑
y∈S

p(y ; s, a)V π(y)
]

= T πV π(s) = V π(s).

Since the fixed point is unique it follows that Ṽ π̃ = V π and, as f is bijective,

sup
π̃∈Π̃S

Ṽ π̃(s) = sup
π ε-soft

V π(s), (3.14)

For the Q-functions we obtain

Q̃π̃(s, a) = r̃(s, a) + γ
∑
y∈S

p̃(y ; s, a)V π(y)

= (1− ε)
(

r(s, a) + γ
∑
y∈S

p(y ; s, a)V π(y)
)

+ ε

|As|
∑

b∈As

(
r(s, b) + γ

∑
y∈S

p(y ; s, b)
)

= (1− ε)Qπ(s, a) + ε

|As|
∑

b∈As

(
r(s, b) + γ

∑
y∈S

p(y ; s, b)
)

,

which implies that
arg max

a∈As

Q̃π̃(s, a) = arg max
a∈As

Qπ(s, a).

Therefore greedy with respect to Qπ and Q̃π̃ is the same. Let πn be an ε-soft policy, and let
πn+1 be ε-greedy with regard to Qπn . Then π̃n+1 := f(πn+1) is greedy with respect to Q̃π̃n :

π̃n+1(a ; s) =
π(a ; s)− ε

|As|

1− ε
=


(

(1−ε)+ ε
|As|

)
− ε

|As|
1−ε = 1 : a = a∗(s)

ε
|As| − ε

|As|
1−ε = 0 : a otherwise

.

Since we proved in Theorem 3.3.8 convergence of exact policy iteration with greedy policy updates
the proof can be finished:

sup
π ε-soft

V π(s) (3.14)= sup
π̃∈Π̃S

Ṽ π̃(s) = Ṽ π̃∗
(s) = lim

n→∞
Ṽ π̃n(s) = lim

n→∞
V πn(s)

On first view it is completely unclear why there might be any interest in ε-greedy policy iteration
if we already have greedy policy iteration that converges to an optimal policy. The reason, as we
will discuss in the next chapter, comes from the policy evaluation step. Greedy policies can be
very unfavorable to estimate Q-values or the value function if those cannot be computed explicitly.
In contrast, ε-greedy policies have pleasant exploration properties, they force the algorithm to
look at all actions and not only the ones that are already known to be good. The reader might
compare with the exploration-exploitation trade-off for stochastic bandits in Chapter 1.

3.4 Stochastic control in finite time
6 So far we discussed the setting of infinite Markov decision problems with discounted total
rewards. There are certainly many problems for which the time-horizon is finite. Such as
stochastic bandits, where the time-horizon is 1. In this section we quickly go through the theory
of non-discounted finite-time Markov decision problems.

6discuss stationary policies and examples (that will help for policy gradient theorems)
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3.4.1 Setting and dynamic programming
Suppose T is a fixed finite time-horizon and D = {0, . . . , T}. As before S denotes the state-space
and A the action space, both will be assumed finite again. Actions may depend on the state,
we write As for the allowed actions in state s, and p governs the transitions to a new state and
the distribution of the reward. For a given policy π = (πt : t ∈ D) we consider the finite-time
MDPs (St, At, Rt)t∈D and call them T -step MDPs. For simplicity we again assume that rewards
Rt only depend on St−1 and At−1 but not on St. The aim for finite-time MDPs is different,
non-discounted rewards Eπ

s [
∑T

t=1 Rt], i.e. γ = 1, are typically maximised over all policies because
finite time-horizon does not require discounting to have a finite total reward.

Example 3.4.1. An example to keep in mind is the ice vendor who has only three month
summer season (Germans also love ice cream during winter, most others don’t). Thus, the
production strategy of the vendor will depend upon the distance to the terminal day, there is no
need in having ice cream left after the last day of the season. An optimal policy of time-dependent
problems will henceforth never be stationary!

Compared to infinite time-horizon MDPs crucial differences appear. Most importantly, the idea
of dynamic programming (reduce the problem to simpler sub-problems) becomes much clearer.
The general idea of dynamic programming is to reduce a problem to a smaller problem and then
build a solution to a larger problem from solutions of smaller problems. For infinite horizon
control the idea did not become very explicit as the reduced problem (starting one time-step
later) is identical to the original problem (multiplied by γ). Thus, the reduction attempt only
yields a set of equations. Here, the finite time horizon forces the reduced problem (starting one
time-step later) to be simpler. The resulting set of equations will turn out to be a backwards
recursion instead of a closed system of equations.
To set up the
Let us write π ∈ ΠT

t to denote that π = (πi)T −1
i=t is a policy that runs from time t to T , i.e. π

consists of T − t kernels. The definition of the state value function for T -step MDPs is as follows.

Definition 3.4.2. For any policy π ∈ ΠT
t the functions (vectors) defined by

V π
T,T ≡ 0 and

V π
t,T : S → R, s 7→ Eπ̃

s

[ T −t∑
t′=1

Rt′

]
=: Eπ

St=s

[ T∑
t′=t+1

Rt′

]
,

for t < T are called time-state value functions, where π̃ is the policy π shifted by
t, i.e. π̃i = πt+i for i = 0, ..., T − t − 1. The function V π

0,T is called state value
function.

Typically the time-state value function is defined as V π
t,T (s) = E[

∑T −1
i=t Ri+1 |St = s]. To avoid

discussions of conditioning on zero-sets we shift the starting time to 0 and force the start in s.
This is rigorous (not pretty) and we keep in mind that V π

t,T is the total reward gained after time
t. We also have to redefine the state-action value function

Definition 3.4.3. For any policy π ∈ ΠT
t the functions (matrices) defined by

Qπ
T,T ≡ 0 and

Qπ
t,T : S ×A → R, (s, a) 7→ V πa

t,T (s),

for t < T are called time-state-action value functions. Here the policy πa plays
action a in the tth step and then continues according to π. The function Qπ

0,T (s, a)
is called state-action value function.

From now on we will drop the subscript T and simply write Qπ
t and V π

t . We will just write V π
t
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and Qπ
t , except in situation in which the emphasise lies. As for discounted MDPs the difference

between V and Q is that the first action is fixed to be a for Q. Similarly to Lemma 3.1.17, we
also get a lemma that discribes the relation between the state value function and the state-action
value function for a fixed policy:

Proposition 3.4.4. Given a Markovian policy π = (πt)t∈D and a T -step Markov
decision problem. Then the following relation between the state and state-action
value function hold

V π
t (s) =

∑
a∈As

πt(a ; s)Qπ
t (s, a),

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

for all t < T . In particular, the Bellman expectation equations (backwards recur-
sions)

V π
t (s) =

∑
a∈A

πt(a ; s)
[
r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

]
,

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

∑
a′∈As

p(s′ ; s, a)πt(a ; s′)Qπ
t+1(s′, a′)

hold for t < T .

Proof. 7 Prove the proposition by comparing with the discounted counterpart. Once the first
part is proved the second follows by plugging-in.

It is important to note that the system of equations is different from discounted MDP problems.
First, the discounting factor dissapears as γ = 1 and, secondly, the linear systems are actually
recursions that gradually simplify the system towards the terminal conditions Qπ

T ≡ 0, V π
T ≡ 0.

Similarly to the discounted setting the optimal value functions are defined, now depending on
the remaining time-horizon:

Definition 3.4.5. For any t ≤ T and a given Markov decision problem

• the function V ∗
t : S → R that takes values

V ∗
t (s) := sup

π∈ΠT
t

V π
t (s), s ∈ S,

is called optimal time-state value function.

• a policy π∗ ∈ ΠT
t that satisfies

V π
t (s) = V ∗

t (s), s ∈ S,

is called optimal policy for the time-state value function.

• the function Q∗
t : S ×A → R that takes values

Q∗
t (s, a) = sup

π∈ΠT
t

Qπ
t (s, a), s ∈ S, a ∈ A,

is calles optimal time-state-action value function.

7Sara, irgendwann reinschreiben
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As for discounted MDPs the optimal value functions are the best value functions that are
theoretically achievable by a policy. It is far from obvious that there is an optimal policy. As in
the discounted setting we get the following relations

Lemma 3.4.6. The following holds for the optimal time-state value function and
the optimal time-state-action value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As

Q∗
t (s, a) for all t < T

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s′) for all t < T

In particular, V ∗ and Q∗ satisfy the following Bellman optimality equa-
tions(backwards recursions):

V ∗
t (s) = max

a∈As

{
r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
t+1(s′)

}
, s ∈ S,

and

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s′, a′), s ∈ S, a ∈ As,

for all t < T .

Proof. 8 The proof of (i) and (ii) is similar to the discounted setting and left as an exercise. The
Bellman optimality equations are then a direct consequence of (i) and (ii) by plugging (i) into
(ii) and vice-versa.

For discounted infinite time horizion problems we could now show that it is suifficent to consider
stationary greedy policies. The stationarity is in general not true for finite time horizon
MDPs. Consider for example the ice-vendor MDP and assume that we close our store in the
winter. Then the amount of ice cream we want to order dependents stronly on the time horizion
up to the closing date. It is clear that we would like to order with a different stategy if we can
sell the ice cream for 6 weeks rather than just for 1 week. Given this observation it is clear that
we can no longer restrict the set of policies to stationary policies and it follows also that we have
no fixpoint relation in the value function. We can formulate the following theorem:

Theorem 3.4.7. Suppose vt : S → R, t = 0, ..., T , is a sequence of vectors that
fulfill the Bellman optimality equations (backwards recursions)

vt(s) =
{

0 : t = T

maxa∈As

{
r(s, a) +

∑
s′∈S p(s′; s, a)vt+1(s′)

}
: t < T

,

then vt = V ∗
t for all t = 0, ..., T . Similarly, if qt : S × A → R, t = 0, ..., T , is

a sequence of vectors that fulfill the Bellman state-action optimality equations
(backwards recursions)

qt(s, a) =
{

0 : t = T

r(s, a) +
∑

s′∈S p(s′; s, a) maxa′∈As′ qt+1(s′, a′) : t < t
,

then qt = Q∗
t for all t = 0, ..., T . Most importantly, an optimal (non-stationary)

policy is given by the greedy policy

π∗
t (a ; s) =

{
1 : a = a∗

t (s)
0 : otherwise

, where a∗
t (s) = arg max

a∈As

qt(s, a).

8Sara, irgendwann reinschreiben
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Proof. Not much needs to be proved. In contrast to the discounted infinite-time horizon case
the Bellman equations are no closed equations, they are recursions which uniquely determine the
solutions through the terminal conditions. Solutions are given by V ∗ and Q∗ due to the previous
lemma (the only non-trivial point of the theory). If π is the greedy policy obtained from q (thus
of Q∗), then the definition of greedy policies yields

V ∗
t (s) = max

a∈As

Q∗
t (s, a) = V π∗

t (s)

because qt = Q∗
t .

The key tool to solve finite time horizion MDPs follows from Theorem 3.4.7 and is called
backward induction. If the state-action space is not too large and we have access to the transition
probabilities, then the optimal control problem can be solved backwards iteration. Let us recall
the ice vendor example on finite time-horizon to get an idea why this is intuitive. In the last
timestep, there is no opportunity to sell any more ice cream, the summer season is over. In the
optimal situation we obviously have no more stock which corresponds to V ∗

T ≡ 0. Then we go
backwards in time step-by-step and consider what is optimal in every possible state. Suppose
one day is left. The recursion gives

Q∗
T −1(s, a) = r(s, a)︸ ︷︷ ︸

last days profit

+
∑
s′∈S

p(s′ ; s, a)V ∗
T (s′)︸ ︷︷ ︸

=0, no future to be considered

= r(s, a)

and the optimal policy becomes

π∗
T −1(s) = arg max

a∈As

r(s, a).

What does this mean? For the last step we need to chose the action that maximises the expected
reward without any thought about the future. No surprise! If the expectations are know, nothing
needs to be done. If not, this is nothing but the bandit problem! For the next time-step T − 2
the recursion gives

Q∗
T −2(s, a) = r(s, a)︸ ︷︷ ︸

todays profit

+
∑
s′∈S

p(s′ ; s, a) max
a′∈As′

Q∗
T −1(s′, a′)︸ ︷︷ ︸

next days profit

and optimally the ice vendor orders/produces ice cream according to

π∗
T −2(s) = arg max

a∈As

Q∗
T −2(s, a).

If one could carry out explicitly the recursion till t = 0 the sequence (π∗
t )t=1,...,T is an optimal

time-dependent policy.

3.4.2 Dynamic programming algorithms
In the context of fully available dynamics the dynamic programming algorithms are very simple
for finite MDPs. No equations must be solved, only recursion followed backwards from the
terminal conditions.
Theorem 3.4.7 immediately translates into a simple optimal control algorithm.
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Algorithm 13: Policy evaluation for finite-time MDPs
Data: MDP with finite time-horizon T , policy π ∈ ΠT

0
Result: V π

t and Qπ
t for all t = 0, . . . , T − 1

Set backward induction start V π
T ≡ 0

for t = T − 1, . . . , 0 do
for s ∈ S do

for a ∈ As do
Qπ

t (s, a) := r(s, a) +
∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

end

V π
t (s) :=

∑
a∈As

πt(a ; s)Qπ
t (s, a)

end
end

Algorithm 14: Optimal control for finite-time MDPs
Data: MDP with finite time-horizon T
Result: V ∗

t and Q∗
t for all t = 0, . . . , T and optimal policy π∗

Set induction beginning V ∗
T ≡ 0

for t = T − 1, . . . , 0 do
for s ∈ S do

for a ∈ Asafely do
Q∗

t (s, a) := r(s, a) +
∑
s′∈S

p(s′ ; s, a)V ∗
t+1(s′)

end

V ∗
t (s) :=

∑
a∈A

π∗
t (a ; s)Q∗

t (s, a)

π∗
t := greedy(Q∗

t )

end
end



Chapter 4

Approximate dynamic
programming methods

In this section we assume the rewards Rt+1 only depend on (St, At) and write R(s, a)
for the reward distribution given (St, At) = (s, a) and r(s, a) for its expectation.

The aim of this chapter is to turn the theoretical solution methods from the previous chapter
into more useful algorithms that suit better to real-world situations. To understand what this
means let us discuss major drawbacks of using Bellman equations that we try to overcome in
this chapter:

• Since the dynamic programming algorithms are based on iterating Bellman operators the
operators must be known andaccessible. Most importantly, the transition function p (the
environment of the problem) must be known explicity. In many situations this is not the
case. This sounds weird, on first glance one might think that there is no way to formulate
Markov decision problems without knowing the decision problem. Indeed, this is not the
case. There might be a physical model underlying a decision problem but the learning
agent has no access to the physical model. We can play a computer game without knowing
the transitions, we can drive a car without knowing the outcome of a steering decision.
What can be done in both examples (and this is what we do in real life!) is to learn the
transition probabilities by sampling (playing).

• There is theoretical access to all ingredients of the decision problem but state (and/or
action) space might be too big to be repeatadly usable, or even worse, too big to be stored
at all. The state space might also be too big to learn about all possible decisions, but
perhaps most states and actions are irrelevant.

In both cases there is no way to uses the standad dynamic programming algorithms as they need
explicit knowledge of the transitions and treat all states/actions simultaneously. In this chapter
we discuss approximation ideas that mostly deal with the first problem, the second problem is
attacked later in non-tabular RL by approximating the decision problem by smaller decision
problems.

Definition 4.0.1. A solution algorithm is called model-based if the algorithm
requires explicit knowledge on the Markov decision model. A solution algorithm
is called model-free if the algorithm only requires the ability to simulate all
appearing random variables.

Comparing the situation to stochastic bandits all algorithms were model-free. In fact, knowing
all probabilities explicitliy allows to compute the action values Qa which then allows to use
the trivial algorithm that compares the action values and only plays the optimal arm. The

76
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situation might be different in practice if all probabilities are known but the expectations cannot
be computet. Then one would also use a model-free algorithm even if the model is known.
In what follows we develop approximate dynamic programming algorithms for the tasks we
addressed with the dynamic programming algorithms based on Bellman’s equations:

• policy evaluation, i.e. estimate V π(s) for a given policy π,

• optimal control, solve the stochastic control problem (i.e. find the optimal V ∗, Q∗, π∗).

The chapter is organised as follows. We start with a quick naive discussion on how to evaluate
policies using Monte Carlo. The procedure leads to an obvious disadvantage (roll-outs of the
MDP need to be sampled till the end) which is tackled in the rest of the chapter. For this sake
a stochastic version of Banachs fixed point theorem is proved from which a couple of different
approximation algorithms is derived.

4.1 A guiding example
We start the discussion with a guiding example that should provide some intuition why the
mathematical concepts introduced below are completely intuitive1. Suppose we have two high-way
navigation systems that are supposed to bring us back to Mannheim. Which one is better?

Temporal differences of 1, 2, and 3 steps

To formulate the problems the state space consists for instance of autobahn junctions or drive-ups
or cities. The actions are the possible decisions of the navigation systems. The MDP has a
terminating state, Mannheim. The rewards are the times it takes to reach the next state (city,
junction, etc.). Since the terminal state is reached sufficiently fast, a discounting faction 0.99 has

1For a real-world example with Taxis on the streets of Pittsburgh (in a different context) see Ziebart, Maas,
Bagnell, Dey: "Maximum Entropy Inverse Reinforcement Learning", AAAI Conference on Artificial Intelligence,
2008
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not much effect (.9920 ≈ .82) so the total discounted reward is a good approximation of the time
it takes from city s (e.g. Berlin) to Mannheim. To compare two navigation systems π and π′ we
should compute V π(Berlin) and V π′(Berlin) for all cities. There are two approaches that are
natural.

• Drive the car repeatadly from every city to Mannheim and take the average time of arrival
as estimator for V (s). Well, only a Mathematician would suggest such a stupid approach.
The simple Monte Carlo approach does not reuse estimates (this is called bootstrapping).
Looking at the visualisation this is clearly not clever, many trajectories have common
sections. The simplest improvement is to use the strong Markov property of an MDP and
also reuse the remaining time from all cities s′ on the way to estimate V (s′).

• Intuitively, as a human being we would proceed much smarter. Typically we have a good
feeling of the time it takes between two cities because we bootstrap a lot more information.
Whenever we drive any segment we remember times and intuitively use new information to
update all other information. Imagine we take the autobahn from Wolfsburg to Frankfurt
and observe a new construction site then we will automatically use the estimate for the time
from Wolfsburg to Frankfurt (this is called a temporal difference) to update the current
estimate of the time it takes from Berlin to Mannheim. In the Mathematics below we will
use temporal differences of different length, 1, n, but also infinitely many. Now think about
the idea, that’s what we do! Thinking practical, it’s easy to imagine how much information
can be extract from all trucks that constantly move around on the autobahn and yield
estimates for all kind of temporal differences. Using

This chapter consists of different approaches to turn such ideas into algorithms. Monte Carlo is
rather obvious, while temporal difference methods require a bit of Mathematics. In fact, it turns
out that temporal difference methods are random versions of the Bellman equation, justifying
their name approximate dynamic programming methods. There are always two questions that
are optimally solved. Policy evaluation and optimal control.

With the bootstrapping ideas sketched above try to improve decision making (i.e.
improve the navigation systems) of the current system using only temporal difference
observations. It’s not completely unlikely that you will develop an idea of what
later will be called Q-learning.

To be honest, this navigation system example is not very realistic. A naviation system developed
this way won’t be competitive as it does not incorporate live-data which we all know is crucial
and why google maps is as strong as it is. Also to be honest, the Mathematics will be more
restricted than the example above. The use of new estimates for temporal differences (driving
times between cities) will not be as generic as some truck drivers performing their duty. Still,
the example captures the main ideas of this chapter.

4.2 Monte Carlo policy evaluation and control
The aim of this short section is to get a glimps on what it means to use Monte Carlo for policy
evaluation without any further thoughts. Recall that policy evaluation is important to know
the value of a policy but also to perform generalised policy iteration (alternate between policy
evaluation and policy improvement). In the chapter on dynamic programming we did not care
much about feasability of computational issues, we pretended that everything is availabe and
can be computed. As discusse above this is not always possible. Since the value function by
definition is an expectation the most obvious model-free variant for policy evaluation is Monte
Carlo estimate with independent roll-outs of the MDP:

V̂ π(s) = 1
N

N∑
i=1

T∑
t=0

γtR(Si
t , Ai

t) (4.1)
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for some large T and N . This naive approach is extremely inefficient as roll-outs (Si, Ai) of the
MDP are needed for all starting point s and initial action a. Nonetheless, the usual advantage
of Monte Carlo methods still holds, Monte Carlo methods are very robust. In the following we
discuss more clever ways to improve the sample efficiency of the Monte Carlo method.

Sample efficiency means that algorithms are supposed to use as few random
samples as possible. In the context of Monte Carlo this means to extract as much
information as possible from any roll-out (S, A) of the Markov decision process.

4.2.1 First visit Monte Carlo policy evaluation
Before we proceed note that the truncation in the estimate of V π by (4.1) automatically induces
a bias (i.e. the expectation of the estimator V̂ π(s) is different from V π(s)). While there might
be no way around such a truncation in practice (we cannot simulate an infinite length MDP) the
problem does not occur in many situations. For examples most games do not run forever but
stop in a state in which the game is over.

Definition 4.2.1. A state s′ ∈ S is called terminating if

p(s′ ; s′, a) = 1 and R(s′, a) = 0, ∀a ∈ As′ .

An MDP is called terminating if there is a terminating state (possibly several)
which is hit in finite time almost surely. The (random) time of termination is
typically denoted by T .

A terminating MDP hits a terminating state almost surely in finite time and then stays in the
state without generating any further reward. In case of a game that might be any state in which
the play won/lost. In contrast to general MDPs the discounted total reward of a terminating
MDP can be simulated (in finite time). For the theory that follows we wil either assume we
could simulate an MDP of infinite length or the MDP is terminating even though in practice it
might be necessary to stop the roll-outs after a finite number of steps.
Here is the clever idea, so-called first visit Monte Carlo policy evaluation:

The strong Markov property of an MDP (every Markov chain is strong Markov!)
implies that restarted when first hitting a state s′ the process (S′

t, A′
t) :=

(STs′ +t, ATs′ +t) is an MDP with the same transitions but initial condition S′
0 = s′.

Hence, we can extract from one roll-out (correlated) estimates of V π for many
different starting points. Similarly, restarting first visit of a given state-action pair
it is possible to extract from one roll-out (correlated) estimates of Qπ for several
different state-action pairs.

The idea is easy to implement. Run a number of roll-out and for every roll-out store the future
discounted reward if a state is visited for the first time. Next, for every state take the average
future discounted reward. For the latter recall from (1.10) a memory efficient way to avoid
storing all past rewards.
Thinking for a moment it becomes clear how to modify the algorithm to obtain a first visit
algorithm that estimates Qπ. Since (S, A) is Markov for stationary policies the algorithm uses
all future discounted rewards when first hitting a state-action pair (s, a). First visit Monte Carlo
converges to the true value function (state-action value function) if infinitely many updates can
be guaranteed. For every visit of a state s (resp. state-action pair (s, a)) the algorithm produces
a sample of the discounted total reward, thus, the law of large number implies convergence.

Theorem 4.2.2. The first visit Monte Carlo algorithms satisfy the following
convergence properties for s ∈ S and a ∈ A:
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Algorithm 15: First visit Monte Carlo policy evaluation of V π for terminating MDPs
Data: Policy π ∈ ΠS , initial condition µ
Result: Approximation V ≈ V π

Initialize V0 ≡ 0 and N ≡ 0
n = 0
while not converged do

Sample s0 from µ.
Generate trajectory (s0, a0, s1, ...) until termination point T using policy π.
for t = 0, 1, 2, ..., T do

if st /∈ {s0, s1, ...st−1} then
v = R(st, at) +

∑∞
k=t+1 γk−tR(sk, ak)

Vn+1(st) = 1
N(st)+1 v + N(st)

N(st)+1 Vn(st)
N(st) = N(st) + 1

end
end
n = n + 1

end

Algorithm 16: First visit Monte Carlo policy evaluation of Qπ

Data: Policy π ∈ ΠS , initial condition µ
Result: Approximation Q ≈ Qπ

Initialize Q0 ≡ 0 and M ≡ 0
n = 0
while not converged do

Sample s0 from µ
Generate trajectory (s0, a0, s1, ...) until termination point T using policy π.
for t = 0, 1, 2, ..., T do

if (st, at) /∈ {(s0, a0), (s1, a1), ...(st−1, at−1)} then
q = R(st, at) +

∑∞
k=t+1 γk−tR(sk, ak)

Qn+1(st, at) = 1
M(st,at)+1 q + M(st,at)

M(st,at)+1 Qn(st, at)
M(st, at) = M(st, at) + 1

end
end
n = n + 1

end

• If N(s)→∞ almost surely, then Vn(s)→ V π(s) almost surely.

• If M(s, a)→∞ almost surely, then Qn(s, a)→ Qπ(s, a) almost surely.

Proof. Strong Markov property, law of large numbers

How can we achieve the condition of the theorem? There is not much we can manipulate, only
the initial condition µ and the policy π:

• Chose an initial distribution µ (such as uniform) that puts mass on all states, this is called
exploring start.

• Chose a policy π′ that distributes mass more evenly on all possible actions than the target
policy π, this is called policy exploration.

Comparing with stochastic bandits there is a similar exploration vs. exploitation trade-off for
first visit Monte Carlo, playing with µ and π has different advantages and disadvantages: Forcing
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more exploration through µ and/or π improves the Monte Carlo convergence for states that are
less favorable under µ and/or π but downgrades convergence for states that are more favorable
under µ and π. Additionally, an error occurs as the Monte Carlo procedure estimates V π′ (resp.
Qπ′) instead of V π (resp. Qπ). Nonetheless, if the evaluation is used for a generalised policy
iteration scheme it might be favorable to estimate (explore) more carefully actions that are less
likely for the policy π that is currently believed to be best. As for bandits, in practice one will
first force more exploration by π and during the learning process decrease the exploration bonus.

There is another version of Monte Carlo that is used in practice but theoretically
much more problematic. Instead of updating at first visits of states, the discounted
future reward is taken as a sample of the discounted total reward for every visit of
every state. For samples obtained from the same roll-out the sampled discounted
rewards are clearly strongly dependent, thus, not allowing the use of the law of
large numbers. The corresponding (biased) algorithm is called every visit Monte
Carlo.

The Monte Carlo policy evaluation algorithm is only written for episodic (terminating) MDPs.
For infinite horizon one would have to truncate the update at some finite time. An alternative
using stopping at independent geometric times is discussed below in Section 4.5.2.

4.2.2 Generalised policy iteration with first visit Monte Carlo estima-
tion

We have introduced an algorithm that can estimate the Q-values of a given policy only by
simulation. Thus, there is a natural model-free procedure to approximate an optimal policy π∗

by interacting with the environment (i.e. running the MDP for a given policy). The algorithm
would start with a policy π ∈ ΠS , estimate Q-values Q̂π by performing the first visit Monte
Carlo procedure up to some termination condition (or till the end of the MDP terminates) and
then improve the policy. According to the discussion above the procedure has an exploitation-
exploration trade-off. Unfortunately, there is an exploration problem. Suppose we start with a
greedy policy with weights on suboptimal actions only. Then the first visit algorithm will continue
to update the suboptimal Q-values and the greedy policy update will continue playing those
actions. In order to force more exploration we will exchange the greedy policy update from policy
iteration by ε-greedy policy update. Similarly to stochastic bandits, ε-greedy puts mass ε to
randomly chosen actions which defavours the policy. Still, comparing with the decreased cost of
Monte Carlo policy evaluation it can still be suitable to force exploration using soft-policies. Since

Algorithm 17: Monte Carlo generalised ε-greedy policy iteration
Data: initial policy π
Result: approximation of π∗

while not converged do
Policy evaluation: Obtain estimates Q̂π from first visit Monte Carlo.
Policy improvement: Obtain the ε-greedy policy πnew from Q̂π

Set π = πnew.
end
return π

the algorithms is not very practical we leave open the question of convergence (in some sense)
and cost analysis (in some sense) for generalised policy iteration with ε-greedy policy update
and first visit Monte Carlos policy evaluation. Such a discussion should combine the advantage
in effort/precision of first visit Monte Carlo policy evaluation with exploitation with the error
committed by chosing ε-greedy policy update. As for bandits one should expect decreasing ε to
be advantegous.
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Simulate Monte Carlo generalised ε-greedy policy iteration for some MDP example
with different choices of ε fixed or εn ↓ 0.

No doubt, other exploration strategies such as Boltzman exploration can be equally reasonable.
But to the best of our knowledge not much is known for theoretical results in generalised policy
iteration with with different exploration schemes2.

4.3 Asynchroneous stochastic fixed point iterations
In order to justify the convergence of approximate dynamic programming algorithms we will
use arguments that are mostly due to John Tsitsiklis and coauthors. The idea of the following
is simple. Suppose we aim at solving the fixed point equation F (x) = x using Banachs fixed
point iteration but cannot compute F (x) exactly but only have stochastic approximations F̂ (x)
(such as Monte Carlo estimates of an expectation). Can we still perform Banachs fixed point
iteration as x(n + 1) = ̂F (x(n)) and converge (almost surely) to the unique fixed point of F?
The answer is no but the update scheme x(n + 1) = (1− α(n))x(n) + α(n)F̂ (s(n) converges to
x∗ if the estimats are unbiased with well-behaved second moments and the so-called step-sizes α
decay with a suitable rate. Writing Bellman operators with expectations this will readily lead us
to different numerical schemes for policy evaluation and optimal control.
We will first discuss in the most simple settings the ideas of Robbins and Monro3 to find
roots of functions that can only be approximated and then turn towards Tsitsiklis’ stochastic
approximation theorem that serves as the main tool to prove convergence for all approximate
dynamic programming algorithms.

4.3.1 Basic stochastic approximation theorem
The simple Robbins Monro algorithm adresses the task to find zeros G(x) = 0 for very particular
functions G. From lectures on numerical analysis different algorithms (such as Newton’s method
xn+1 = xn + G(xn)

G′(xn) ) might be known to the reader. The situation that Robbins and Monro
addressed is different in the sense that they considered functions G for which there is no access
to the true values G(x) but only to unbiased approximations G̃(x) = G(x) + ε, where ε is a
mean-zero error. The situation to keep in mind is that of a function G that is defined as an
expectation (such as V π(s) or Qπ(s, a)) that can be approximated for instance by Monte Carlo.
The most generic Robbins/Monro approximation scheme is

xn+1 = xn − αnyn, (4.2)

where αn are step-sizes specified below and yn are stochastic approximations of G(xn). Here is a
first simple convergence theorem, introducing the first stochastic approximation (SA) algorithm
to approximate roots of nice enough functions:

Theorem 4.3.1. (Simplest Robbins-Monro algorithm)
Suppose there is some κ > 0 such that G(x)−G(y) ≥ κ(x−y) for all x, y ∈ R and the
stochastic process (xn) is defined by (4.2), where yn are stochastic approximations
of G(xn):

yn = G(xn) + εn

and the processes are defined on a filtered probability space (Ω,A,P, (Fn)) carrying
all appearing random variables. Assume that there are deterministic step-sizes (αn)

2Check here for some results: https://arxiv.org/pdf/1903.05926.pdf
3H. Robbins and S. Monro: A stochastic approximation method. The Annals of Mathematical Statistics,

22:400–407, 1951.
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satisfying the so-called Robbins-Monro conditions
∞∑

n=1
αn =∞ and

∞∑
n=1

α2
n <∞

and Fn+1-measurable errors satisfying E[εn | Fn] = 0. Suppose furthermore that∑∞
n=0 E[y2

n]α2
n <∞, then xn

L2

→ x∗ for n→∞, where G(x∗) = 0.

The condition
∑∞

n=0 E[y2
n]α2

n <∞ is satisfied for instance if G is bounded and the errors have
bounded conditional second moments, a condition that will occur in all theorems below.

The most important sequence satisfying the Robbins-Monro conditions is αn = 1
n .

Other obvious choices are αn = 1
np for all 1

2 < p ≤ 1.

The assumption on G is way too strong and the convergence mode weak (only L2, thus, in
probability), we discuss this simple version as it allows us to give a simple proof. We will later
give a much more general version of the Robbins-Monro theorem but need to involve stability
theory of ordinary differential equations. Here are two (very similar) classical situations:

• If G = F ′, then the assumption on G is what is typically called strongly convex of F and
the algorithm converges (in L2) to a critical point of F . If G is differentiable then the
condition implies F ′′ ≥ κ, a condition that is stronger than convex.

• If G is defined on [a, b] then the condition is for instance satisfied if G(a) < 0 < G(b) and
has a unique root x∗ where G′ ≥ κ.

In fact, the second example shows that Robbins-Monro is not really made for strongly convex
functions. The most important situation to keep in mind is the one of functions defined through
(unknown) expectations of random variables that can be sampled:

Example 4.3.2. Suppose G(x) = E[f(x, Y )] for some random variable Y (and all expectations
are finite). If we have access to f and samples Ỹ of Y then we have access to stochastic
approximations f(x, Ỹ ) = G(x) + (f(x, Ỹ )−G(x)) =: G(x) + ε of f(x). Keeping in mind that
reinforcement learning is about reward functions (expectations) it might be little surprising that
stochastic approximation is related to reinforcement learning.

Proof of simple Robbins Monro. The proof mostly relies on a simple recursion result on positive
sequences:

Suppose that zn is a positive sequence such that zn+1 ≤ (1 − an)zn + cn, where
an, cn are positive sequences satisfying

∞∑
n=1

an =∞ and
∞∑

n=1
cn <∞.

Then limn→∞ zn = 0.

Without loss of generality we can assume equality in the assumption as otherwise we could
decrese cn or increase an which does not change the summation tests. The positivity assumptions
lead to the lower bound

−z0 ≤ zn − z0 =
n−1∑
k=0

(zk+1 − zk) =
n−1∑
k=0

ck −
n−1∑
k=0

akzk.

Since the left hand side is finite and
∑∞

k=0 ck <∞ by assumption it follows that
∑∞

k=0 akzk <∞.
Finally, since

∑∞
k=0 ak =∞ it follows that limn→∞ zn = 0.
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A positive recursion for the L2-error.

Define zn = E[(xn − x∗)2], en = E[y2
n], and dn = E[(xn − x∗)(G(xn) − G(x∗))]. Then simple

algebra leads to

zn+1 = E
[
(xn+1 − xn + xn − x∗)2]

= E
[
(xn+1 − xn)2]

+ 2E
[
(xn+1 − xn)(xn − x∗)

]
+ E

[
(xn − x∗)2]

= E
[
(αnyn)2]

+ 2E
[
(−αnyn)(xn − x∗)

]
+ E

[
(xn − x∗)2]

= α2
nE

[
(y2

n

]
− 2αn(E

[
(G(xn))(xn − x∗)

]
+ E

[
(εn)(xn − x∗)

]
) + E

[
(xn − x∗)2]

= α2
nE

[
(y2

n

]
− 2αn(E

[
(G(xn)−G(x∗))(xn − x∗)

]
+ E

[
E

[
εn | Fn

]
(xn − x∗)

]
) + E

[
(xn − x∗)2]

= α2
nen − 2αndn + zn.

Now the assumption on G implies that

dn ≥ κE[(xn − x∗)(xn − x∗)] = κzn,

so that in total we derived the positive recursion

zn+1 ≤ zn(1− 2αnκ) + α2
nen.

Hence, the claim follows from the first step and shows very clearly the origin of the summability
condition on the step sizes.

From the probabilistic point of view it is important to note that almost nothing (like independence,
adaptivity, etc.) was assumed on the stochastic approximations yn, the catch is the weak L2-
convergence mode. We will later see a version with almost sure convergence that rely on the
almost sure (super)martingale convergence theorem. In that case much more needs to be assumed.

Robbins-Monro type algorithms can equally be used to find roots of G(x) = a, the
corresponding algorithm becomes

xn+1 = xn − αn(yn − a), (4.3)

where y are again approximations of G(xn).

We finish the first discussion of the stochastic approximation algorithms with an important
example that shows that stochastic approximation can not expected to have good convergence
rate:

Example 4.3.3. Suppose Z1, Z2, ... is an iid sequence with finite mean µ. Then

θn+1 = θn + 1
n + 1

(
Zn − θn)

can be solved explicitely as

θn = 1
n

θ0 + 1
n

n−1∑
k=0

Zk

and the righthand side converges to µ by the law of large numbers. In fact, the convergence is
even almost surely and in L2 if Zi have finite variance. This way of writing the law of large
numbers can be considered a stochastic approximation iteration to find a zero for G(θ) = µ− θ
with the Robbins-Monro iteration with step-sizes αn = 1

n+1 and unbiased approximations Zn−θn

of G(θn). Keeping in mind that the convergence in the law of large numbers is very slow (order√
n) the example gives a first hint that stochastic approximation is a robust but slow algorithm.
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4.3.2 Asynchroneous stochastic approximation
We will now develop the main tools to prove convergence of Q-learning by proving a much more
interesting version of the Robbins-Monro algorithm that results in almost sure conevergence
to fixedpoints. The proof is very interesting as it makes very transparent how the learning
algorithms can be modified and still converge to the optimal state-action function.
The asynchroneous stochastic approximation theorem that is needed to prove convergence of
Q-learning must be an almost sure convergence theorem to give a useful convergence statement
of Q-learning. Comparing with the proof of the simple Robbins-Monro theorem a stochastic
version (with almost sure convergence) of the first step of the proof is needed. Formulated in the
right way this is a consequence of the almost sure (super)martingale convergence theorem: 4

Theorem 4.3.4. (Robbins-Siegmund Theorem)
Suppose (Ω,A,P, (Fn)) is a filtered probability space carrying a non-negative
adapted stochastic process (Zn). If

E[Zn+1 | Fn] ≤ (1− an + bn)Zn + cn (4.4)

for some non-negative (Fn)-adaptive random variables an, bn, cn such that almost
surely

∞∑
n=1

an =∞,

∞∑
n=1

bn <∞, and
∞∑

n=1
cn <∞,

then limn→∞ Zn = 0 almost surely.

Proof. The proof5 is a nice application of Doob’s almost sure martingale convergence theorem.

Without loss of generality b can be assumed to be equal to 0.

If we divide both sides of the assumption by
∏n

m=0(1 + bm), then we get

E[Z ′
n+1 | Fn] ≤ (1− a′

n)Z ′
n + c′

n,

where a′
n = an

1+bn
, c′

n = cn∏n

m=0
(1+bm)

and Z ′
n+1 = Zn∏n−1

m=0
(1+bm)

. Note that since
∑

bn converges

then so does
∏

(1 + bm):

log
( n−1∏

m=0
(1 + bm)

)
=

n−1∑
m=0

(log(1 + bm)) ≤
n−1∑
m=0

bm ≤
∞∑

m=0
bm <∞.

Thus, a′
n, c′

n and Z ′
n have the same convergence properties as those required for an, cn, and Zn.

Auxiliary limit through (super)martingale convergence theorem.

From now on we assume b ≡ 0. The crucial observation of the proof is that

Yn := Zn +
n−1∑
k=0

akZk −
n−1∑
k=0

ck

4put Simons version, diese Version aus Korollar
5H. Robbins and D. Siegmund. „A convergence theorem for non-negative almost supermartingales and some

applications“, Optimizing methods in statistics, pages 233-257, Elsevier, 1971.
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is a supermartingale because

E[Yn+1 | Fn] = E[Zn+1 | Fn] + E
[ n∑

k=0
akZk

∣∣∣Fn

]
−

n∑
k=0

ck

= E[Zn+1 | Fn] +
n∑

k=0
akZk −

n∑
k=0

ck

≤ (1− an)Zn + cn +
n∑

k=0
akZk −

n∑
k=0

ck

= Zn +
n−1∑
k=0

akZk −
n−1∑
k=0

ck = Yn.

In order to apply the supermartingale convergence theorem little thought is needed. The
supermartingale convergence theorem applies if supn E

[
Y −

n

]
<∞, in particular, if Y would be

bounded below. Since both assumptions are not necessarily satisfied we proceed by localising.
The assumed adaptivity implies that τm := inf{n :

∑n
k=0 ck > m} is a stopping-time for every

m ∈ N. Hence, the stopped process Y τm
n := Yτm∧n is a supermartingale which is bounded below

by −m because

Yn∧τm
≥ −

n∧τm−1∑
k=0

ck ≥ −m.

Thus, for all m ∈ N the limits limn→∞ Y τm
n exist. Define Ωm := {ω ∈ Ω : limn→∞ Y τm

n exists}
with P(Ωm) = 1. Let

Ω̃ :=
⋂

m∈N
Ωm

and Ωc := {ω ∈ Ω :
∑∞

k=0 ck(ω) < ∞} ∩ Ω̃. It holds P({Ωc) = 1 by assumption. Let ω ∈ Ωc,
then there exists m ∈ N with

∑∞
k=0 ck(ω) ≤ m and therefore, Yn(ω) = Y τm

n (ω) for every n ∈ N.
Hence,

lim
n→∞

Yn(ω) = lim
n→∞

Y τm
n (ω) <∞

because ω ∈ Ω̃ ⊆ Ωm. Therefore, limn→∞ Yn exists for every ω ∈ Ωc and hence, almost surely.

Limit of Z equals 0 almost surely.

Rewriting gives
n∑

k=1
ck −

n∑
k=1

akZk = Zn+1 − Yn+1 ≥ −Yn+1.

Since the right hand side converges almost surely and the series
∑n

k=1 ck is assumed to be
convergent we can deduce that

∑∞
k=1 akZk converges. Since

∑∞
k=1 ak = ∞ almost surely by

assumption we can deduce that limn→∞ Zn = 0 almost surely.

Lemma 4.3.5. Suppose (Ω,A,P, (Ft)) is a filtered probability space carrying all
appearing random variables. Suppose

• ε(t) are Ft+1-measurable with E[ε(t) | Ft] = 0 and E[ε2(t) | Ft] ≤ C for all
t ∈ N,
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• the step-sizes α(t) are adapted with
∞∑

t=1
α(t) =∞ and

∞∑
t=1

α2(t) <∞

almost surely.

Then the stochastic process W defined by some F0-measurable initial condition
W (0) and the recursion

W (t + 1) = (1− α(t))W (t) + α(t)ε(t), t ∈ N,

converges to 0 almost surely.

Proof. We are going to apply the Robbins-Siegmund theorem to the sequence W 2:

E
[
W (t + 1)2 ∣∣Ft

]
= E

[
(1− α(t))2W 2(t) + α2(t)ε2(t) + 2α(t)(1− α(t))W (t)ε(t)

∣∣Ft

]
= (1− 2α(t) + α2(t))W 2(t) + E

[
α2(t)ε2(t) + 2α(t)(1− α(t))W (t)ε(t)

∣∣Ft

]
≤ (1− at + bt)W 2(t) + ct,

with at = −2αi(t), bt = α2(t), and ct = α2(t)C2. Now the claim follows from Robbins-
Siegmund.

Note that assuming bounded conditional second moments makes our lives much easier, the
theorem also holds under much less restricted assumption on the error. The condition is very
strong and typically not satisfied for applications of stochastic approximation. Nonetheless, for
convergenc of Q-learning and TD-algorithms the assumption will turn out to be enough.

Lemma 4.3.6. Suppose (Ω,A,P, (Ft)) is a filtered probability space carrying
all appearing random variables. Suppose the step-sizes α(t) are adapted with∑∞

t=1 α(t) = ∞ almost surely. If A is a non-negative constant, then the non-
negative stochastic process Y defined by some F0-measurable initial condition
Y (0) ≥ 0 and the recursion

Y (t + 1) = (1− α(t))Y (t) + α(t)A, t ∈ N,

converges to A almost surely as t→∞.

Proof. The non-negativity of Y follows from the recursive definition. Substracting and iterating
yields

Y (t + 1)−A = (1− α(t))(Y (t)−A) = ... =
t∏

s=1
(1− αs)(Y (0)−A).

The right hand side vanishes almost surely in the limit because
∑∞

t=1 αt =∞ almost surely:

log
( t∏

s=1
(1− α(s))

)
=

t∑
s=1

log(1− α(s)) ≤
t∑

s=1
−α(s)→ −∞, t→∞.

Before proceeding with asynchroneous stochastic approximation let us think for a moment about
the previous two lemmas. The formulation is extremely robust, all random variables are only
assumed to be measurable, there is no more precise assumption. Also it is important to note
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that the recursive algorithms are very explicit. For example, there is no problem looking at the
processes started at times (random or deterministic) different from 0, the convergence will still
hold. In the proofs we will for instance use the notation (W (t : t0))t≥t0 for the stochastic process
with a given initial condition W (t0 : t0), similarly for Y , at time t0 and recursive update

W (t + 1 : t0) = (1− α(t))W (t : t0) + α(t)ε(t), t ≥ t0. (4.5)

It obviously holds that W = W (· : 0). The convergence property of W (· : t0) is identical to
that of W (· : 0). Since different W (· : t0) are defined through the same error variables these
processes can be compared on a pathwise level („coupled“), a feature that will be crucial to
prove asynchroneous stochastic approximation below. Here is a first useful property:

Lemma 4.3.7. In the setting of Lemma 4.3.5 we consider for all t0 ∈ N the
stochastic processes (W (t : t0))t≥t0 from (4.5) with initial conditions W (t0 : t0) = 0.
For every δ > 0 there exists some random variable T with values in N such that
|W (t : t0)| < δ for all T ≤ t0 ≤ t almost surely.

Proof. From Lemma 4.3.5 we know that limt→∞ W (t : 0) = 0 almost surely. Next, we note that

W (t : 0) = (1− α(t− 1))W (t− 1 : 0) + α(t− 1)ε′(t− 1)
= (1− α(t− 1))(1− α(t− 2))W (t− 2 : 0) + α(t− 2)ε(t− 2)) + α(t− 1)ε(t− 1)
= ...

=
t−1∏
s=t0

(1− α(s))W (t0 : 0) +
t−1∑
s=t0

α(s)
t−2∏
k=s

(1− α(k))ε(s)

=
t−1∏
s=t0

(1− α(s))W (t0 : 0) +
t−1∏
s=t0

(1− α(s))W (t0 : t0)︸ ︷︷ ︸
=0

+
t−1∑
s=t0

α(s)
t−2∏
k=s

(1− α(k))ε(s)

=
t−1∏
s=t0

(1− α(s))︸ ︷︷ ︸
≤1

W (t0 : 0) + W (t : t0)

holds for all t > t0. Hence, |W (t : t0)| ≤ |W (t : 0)|+ |W (t0 : 0)| almost surely, i.e. W (t : t0) can
be controlled by W (t : 0). Since for every ω ∈ Ω, W (t : 0)(ω) vanishes in the limit we can chose
T (ω) large enough so that |W (t : 0)(ω)| < δ

2 for all t ≥ T (ω). This implies the claim.

For didactic reasons we next prove a theorem on fixed points of real-valued contractions. In a
way the theorem is an approximate version of Banachs fixedpoint iteration set up for situations
in which the contraction operator cannot be computed explictly but only with an error. The
theorem is not particularly interesting itself (do you know any interesting contraction on R?),
but it will become much more interesting when extended to (Rd, || · ||∞) to prove convergence of
temporal difference schemes.

Theorem 4.3.8. (Stochastic fixed point iteration for contractions on R)
Suppose (Ω,A,P, (Fn)) is a filtered probability space on which all appearing random
variables are defined. Suppose that

• F : R→ R is a contraction, i.e. there is some β < 1 such that |F (x)−F (y)| ≤
β|x− y| for all x, y ∈ R,

• ε(t) are Ft+1-measurable with E[ε(t) | Ft] = 0 and E[ε2(t) | Ft] ≤ C for all
t ∈ N,
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• the step-sizes α(t) are only (!) adapted with
∞∑

t=1
α(t) =∞ and

∞∑
t=1

α2(t) <∞.

Then the stochastic process defined through some F0-measurable initial condition
x(0) and the recursion

x(t + 1) = x(t) + α(t)
(
F (x(t)) + ε(t)− x(t)

)
, t ∈ N,

converges almost surely to the unique fixed point x∗ of F .

Before going into the proof let us quickly motivate why we call the iterative scheme a stochastic
fixed point iteration. For known F a Banach’s fixed point iteration with approximated F looks
like

x(t + 1) = F (x(t)) = x(t) + (F (x(t))− x(t)) ≈ x(t) + (F (x(t)) + ε(t)− x(t)).

Little surpisingly the scheme would not converge as the errors are not assumed to diminuish and
the scheme would fluctuate around x∗ without converging. This is circumvented by decreasing
the update size using α(t). Knowing other approximation schemes that find zeros or fixed points
of real-valued functions one might ask why the scheme is so simple. For instance, there are
no derivatives in the update scheme. The reason is the particulary simple class of functions.
Real-valued contractions are simple functions, the bisecting line can never be crossed bottom-up,
it must be crossed downwards (see the drawing).

contraction vs. non-contraction

Hence, if x > x∗, then F (x) is below the disecting line implying F (x) − x < 0. Similarly,
F (x)− x > 0 if x < x∗. Thus, the scheme is set up such that x(t) is pushed left if x(t) > x∗ and
pushed right if x(t) < x∗. This little graphic discussion shows why fixed points of contractions
(even in the approximate case) can be obtained using very simple approximation schemes that
do not involve anything but (approximate) evaluations of the function.

Proof. The main idea of the proof is to compare the stochastic processes x to the stochastic
processes W and Y from the previous lemmas. These processes are much simpler and we already
know their almost sure limits.

Without loss of generality we can assume that F (x∗) = x∗ = 0.

6 This follows by defining the auxiliarly function F̃ (x) = F (x + x∗)− x∗ which has fixed point 0.
Suppose the statement holds for F̃ . Then, substracting x∗ on both sides of the recursion yields

x(t + 1)− x∗ = xi(t)− x∗ + α(t)
(
(F̃ (x(t)− x∗)− x∗))− (x(t) + ε(t)− x∗)

)
, t ∈ N,

6nochmal checken
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so that x̃(t) := x(t)− x∗ satisfies the original recursion with x∗ = 0. Since convergence of the
shifted recursion to 0 is equivalent to convergence of the original recursion to x∗ we may assume
x∗ = 0. Assuming x∗ = 0 is useful as we can use the estimate

|F (x)| = |F (x)− 0| = |F (x)− F (x∗)| ≤ β|x− x∗| = β|x|

below.

supt≥0 |x(t)| is finite almost surely, say by the (random) constants D0.

7 First chose η > 0 such that β(1 + η) = 1 and define M(t) := max{1, maxs≤t |x(s)|} as well as
ε̄(t) = ε(t)

M(t) . Then ε̄(t) is again Ft+1-measurable with

E[ε̄(t)|Ft] = 1
Mt

E[ε(t)|Ft] = 0 and E
[
ε̄2(t) | Ft] ≤

C

Mt
< C.

Hence, ε̄ is again an error sequence to which the above lemmas apply. Now let W̄ (· : t0) the
recursively defined process from Lemma 4.3.7 started in W̄ (t0 : t0) = 0. Since limt→∞ W̄ (t :
t0) = 0 almost surely there is some t0 such that |W̄ (t : t0)| < η for all t ≥ t0. We are next going
to show that

|x(t)| ≤M(t0) + W̄ (t : t0)M(t0) ≤ (1 + η)M(t0), t ≥ t0, (4.6)

holds almost surely. By the choice of t0 we only need to prove the first inequality, which we will
achieve by induction in t ≥ t0.
Induction start: The inequality clearly holds for t = t0 as W̄ (t0 : t0) = 0 by definition and
x(t) ≤M(t) holds for every t ∈ N.
Induction step: For the induction step we will use the recursion to transfer the inequality from t
to t + 1:

x(t + 1) = (1− α(t))x(t) + α(t)F (x(t)) + α(t)ε(t)
contraction
≤ (1− α(t))x(t) + α(t)β|x(t)|+ α(t)ε(t)

induction
≤ (1− α(t))(M(t0) + W̄ (t : t0)M(t0)) + α(t)β(1 + η)M(t0) + α(t)ε(t)

rearranging=
(
(1− α(t))W̄ (t : t0) + α(t)ε̄(t)

)
M(t0) + (1− α(t))M(t0) + α(t) β(1 + η)︸ ︷︷ ︸

=1

M(t0)

= W̄ (t + 1 : t0)M(t0) + M(t0) ≤ (1 + η)M(t0).

That’s it. Since (xt)t≤t0 is clearly bounded the upper bound for t ≥ t0 from (4.6) shows that x
is bounded.
For the next step fix some ε > 0 such that β(1+2ε) < 1 and define recursively Dk+1 = β(1+2ε)Dk

so that limk→∞ Dk = 0.

There is a (random) sequence tk →∞ such that supt≥tk
|x(t)| ≤ Dk almost surely.

Note that limk→∞ Dk = 0, hence, the proof of the theorem is complete once the claim is proved.
The proof of this claim is carried out by induction.
Induction start: Set t0 = 0, then the claim holds as D0 is the global upper bound of x.
Induction step: Suppose tk is given. We now use the auxiliary processes from the lemmas above,
but started at different times than time 0. The lemmas did not use anything but measurability
and equally apply to changed starting times. They also apply to random starting times using

7da passt ein t0 noch nicht
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the same error functions in the recursions. Let W (· : s) the process from Lemma 4.3.5 started at
time s in 0 and

τ := min
{

s ≥ tk : W (t : s) < βεDk ∀t ≥ s
}

.

Note that τ < ∞ as limt→∞ W (t : s) = 0 almost surely. Furthermore, denote by Y (· : τ) the
process from Lemma 4.3.6 with A = βDk but started at time τ at Dk. The crucial inequality of
the proof is the following:

|x(t)−W (t : τ)| ≤ Y (t : τ), ∀t ≥ τ, (4.7)

where Y (· : τ) runs for t ≥ τ and is started in Y (τ : τ) = Dk. This again is proved by induction
over t ≥ τ . The induction start t = τ holds by definition of τ because W (τ, τ) = 0, Y (τ : τ) = Dk,
and |x(t)| ≤ Dk for all t ≥ tk. Next, suppose the estimate holds for some t ≥ τ . We use the
defining recursions and the contraction property of F to prove the estimate for t + 1:

x(t + 1) = (1− α(t))x(t) + α(t)F (x(t)) + α(t)ε(t)
Ind., contraction

≤ (1− α(t))(Y (t : τ) + W (t : τ)) + α(t)β|x(t)|+ α(t)ε(t)
t≥tk

≤ (1− α(t))(Y (t : τ) + W (t : τ)) + α(t)βDk + α(t)ε(t)
rearranging= (1− α(t))Y (t : τ) + α(t)βDk + (1− α(t))W (t : τ) + α(t)ε(t)

= Y (t + 1 : τ) + W (t + 1 : τ)

In the same way we can show −Y (t + 1 : τ) + W (t + 1 : τ) ≤ x(t + 1). This proves (4.7).
The reverse triangle inequality (|a| − |b| ≤ |a− b|) applied to (4.7) yields

|x(t)| ≤ Y (t : τ) + |W (t : τ)|, ∀t ≥ τ.

Since W (t : τ) ≤ βεDk for all t ≥ τ and Y (· : τ) converges to βDk there is some index
tk+1 > τ ≥ tk for which |x(t)| < βεDk + (1 + ε)βDk = Dk+1 for all t ≥ tk+1. This proves the
claim and the proof is complete.

We continue with a proof of the main result of interest, the asynchroneous stochastic approximation
theorem from which convergences of temporal difference schemes follows readily. The wording
asynchroneous comes from the fact that the step-sizes αi do not need to be the same, the coupling
between the equations only comes through F .

Theorem 4.3.9. (Asynchroneous stochastic fixed point iteration for
|| · ||∞-contractions on Rd)
Suppose (Ω,A,P, (Fn)) is a filtered probability space on which all appearing random
variables are defined. Suppose that

• F : Rd → Rd is a contraction with respect to || · ||∞, i.e.

||F (x)− F (y)||∞ ≤ β||x− y||∞, ∀x, y ∈ Rd,

for some β ∈ (0, 1),

• εi(t) are Ft+1-measurable with E[εi(t) | Ft] = 0 and there is some C > 0 with
supi,t E[ε2

i (t) | Ft] < C,

• the step-sizes αi(t) are adapted with
∞∑

t=1
αi(t) =∞ and

∞∑
t=1

α2
i (t) <∞.
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Then for any F0-measurable initial condition x(0) the (asynchroneous) stochastic
approximation scheme

xi(t + 1) = xi(t) + αi(t)
(
Fi(x(t))− xi(t) + εi(t)

)
, t ∈ N,

converges almost surely to the unique fixed point x∗ ∈ Rd of F .

Proof. The main point is to realise that the proof of the real-valued case can be extended
analogously to the multi-dimensional situation. One only needs to be careful where the fixed
point property of F (the coordinates are not necessarily contractions) is used and where the
coupling of the equations through F appears. The first is surprisingly simple, the fixed point
property was hardly used in the previous proof. It is only used to shift x∗ to 0 and to ensure F
growth at most linearly, thus, the recursion is bounded.

Without loss of generality we can assume that F (x∗) = x∗ = 0.

The argument is exactly the same as in the previsou proof.

supt≥0 |x(t)| is finite almost surely.

The argument is exactly the same using the same η, β, and M . Then one defines the modified
errors ε̄i = εi

M and from this the recursions Wi. The contraction with respect to the supremum
norm is used to estimate

|Fi(x(t))| = |Fi(x(t))− Fi(x∗)| ≤ β||x(t)− x∗||∞ = β||x(t)||∞ ≤ βMt,

allowing us to estimate in the same way

xi(t + 1) ≤Wi(t + 1 : t0)M(t0) + M(t0) ≤ (1 + η)M(t0).

Hence, every coordinate process xi is bounded, thus, also x is bounded.
Comparing with the rest of the previous proof F can be removed in the same way, only the linear
growth is used to reduce to coordinate wise auxiliary processes Wi and Yi and the argument
works equally.

Go through the one-dimensional proof to check that there is a sequence tk → ∞
such that supt≥tk

|x(t)| ≤ Dk almost surely and limk→∞ Dk = 0.

Again, the argument is line by line the same for each coordinate xi. Only τ needs to be defined
as

τ := min
{

s : Wi(t : s) < βεDk ∀i = 1, ..., d, t ≥ s
}

to allow the same estimate for each xi.

The theorem is called asynchroneous because the step-sizes αi(t) can be different for different
coordinates in contrast to the synchroneous case where they are equal. Most importantly, if only
one coordinate of α(t) is non-zero than only that coordinate is updated in step t. Such extreme
case will be called totally asynchroneous and we have already crossed such an update scheme
in Algorithm 9 in which coordinates were updated by passing through one coordinate after the
other.

We have only proved convergence of stochastic fixed point iterations. The proofs do
not contain any hint on the quality of convergence. Indeed, stochastic approximation
schemes converge terribly slow which is not surprising given the law of large number
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is a special case (Example (4.3.3)). We only keep in mind that errors with small
variance will typically lead to faster (but still slow) convergence.

For reinforcement learning the setting of Example 4.3.2 will become relevant because Bellman
operators can be written as

Fi(x) = Ei[f(x, Z)] (4.8)

so that approximations of the expectations using samples Z̃i yield model-free learning (approxi-
mation) algorithms of the form

xi(t + 1) = xi(t) + αi(t)
(
f(x(t), Z̃i)− xi(t)

)
(4.9)

that converge almost surely because they can be rewritten as

xi(t + 1) = xi(t) + αi(t)
(
Fi(x(t))− xi(t) + εi(t)

)
with the unbiased error terms εi(t) := f(x(t), Z̃i)− Fi(x(t)). The algorithms will be asynchro-
neous through the choice of α that determines what coordinate to update and how strong the
update effect should be. Using different fixed point equations (for V π, Qπ, V ∗, Q∗) and different
representations of F as expectation yields different algorithms with different advantages/disad-
vantages.

Many reinforcement learning algorithms are random versions of Banach’s fixed
point iteration to solve Bellman equations. The algorithms are asynchroneous in
the sense that the update of coordinates is not synchroneous (i.e. all step-sizes αi

are equal). Typically one is interested in the situation in which the vector αt is
non-zero for exactly one entry. In this situation the vector x(t + 1) gets an update
in one coordinate only. We refer to this situation as totally asynchroneous and
every asynchroneous algorithm needs to clarify where to update and what step-sizes
to chose. The asynchroneous choice of α allows to balance the exploration of new
states or state-action pairs. The second Robbins-Monro condition implies that such
a totally asynchroneous algorithm can only work if every state is visited infinitely
often.

4.4 One-step approximate dynamic programming TD(0)
The first class of algorithms is extracted readily from writing Bellman operators as one-step
expectation:

T πV (s) =
∑
a∈A

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V (s′)
)

= Eπ
s [R(s, A0) + γV (S1)]

T πQ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π(a′ ; s)Q(s′, a′) = Eπa

s [R(s, a) + γQ(S1, A1)]

T ∗Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

Q(s′, a′) = Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q(S1, a′)
]
.

These expressions are exactly of the form (4.8), thus, approximate fixed point iterations that
only use one-step MDP samples can be used that converge to the unique fixed points. In the
following we present following variants:

• SARS policy estimation of V π,

• SARSA policy estimation of Qπ based on,
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• Q-learning and modificuations such as SARSA and double-Q-learning.

Convergence proofs are similar, they follow immediately from Theorem 4.3.9 applied to the Bell-
man operators. More interesting is the practical implementation, i.e. the choice of asynchroneous
updates through α. Finally, we prove convergence of the generalised policy iteration scheme
resulting from SARSA updates of Qπ combined with policy improvement using policies that
sufficiently explore but become greedy in the limit.

Compared to the direct Monte Carlo methods the methods presented below are
much simpler to use. While Monte Carlo required an entire roll-out, here every
update step only requires one step forwards of the MDP. This is very much like
dynamic programming but in a random fashion since not every state (or state-action
pair) is used for the update. Such methods are called temporal difference methods,
but this will become clearer in the sections below where we discuss algorithms that
use several steps.

4.4.1 One-step policy evaluation (approximate policy evaluation)
We start with two simple model-free algorithms for evaluation of V π and Qπ. In order to
understand the tremendous freedom that stochastic approximation allows let us first formulate a
general theorem and then transform them into useful algorithms.

Theorem 4.4.1. (Convergence of one-step policy evaluation for V π)
Suppose π ∈ ΠS and V0 ∈ R|S| is arbitrary and the asynchroneous update rule is

Vn+1(s) = Vn(s) + αn(s)((R(s, a) + γVn(s′(s)))− Vn(s)), s ∈ S,

with a ∼ π(· ; s), s′(s) ∼ p(· ; s, a) and step-sizes αn that only depend on the past
steps and satisfy the Robbins-Monro conditions

∞∑
n=1

αn(s) =∞ a.s. and
∞∑

n=1
α2

n(s) <∞ a.s.

for every s ∈ S. Then limn→∞ Vn(s) = V π(s) almost surely, for every state s ∈ S.

It is important to note that the stochastic approximation algorithm does not impose any
independence assumptions, αn only needs to be adapted to the algorithm and satisfy the decay
properties. All possibilities from synchroneous to totally asynchroneous are perfectly fine as long
as the Robbins-Monro condition are satisfied.

Proof of Theorem 4.4.1. The convergence follows immediately from Theorem 4.3.9 once the
algorithm is rewritten in the right way:

Vn+1(s) = Vn(s) + αn(s)
(
F (Vn)(s)− Vn(s) + εs(n)

)
with

F (V )(s) := Eπ
s [R(s, A0) + γV (S1)]

and

εs(n) := (R(s, a) + γVn(s′(s)))− Eπ
s [R(s, A0) + γVn(S1)].

We need to be a bit careful with the filtration. The σ-algebras Fn is generated by all random
variables used to determine s, a, R(s, a) that appear in the definition of V (0), ..., V (n).
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• In the proof of Theorem 3.1.28 it was shown that the Bellman expectation operator F = T π

is a || · ||∞-contraction (the proof was for the expectation operator for Q but exactly the
same proof works for V ).

• The errors εs(n) are Fn+1-measurable (they involve the next state-action pair (s, a)) with
E[εs(n) | Fn] = 0 by definition. The assumed boundedness of the rewards also implies
supn,s E[ε2

s(n) | Fn] ≤ C.

• The step-sizes are adapted and satisfy
∑∞

n=1 αs(n) =∞ a.s. and
∑∞

n=1 α2
s(n) <∞ a.s. by

assumption.

Hence, Theorem 4.3.9 can be applied and we get almost sure convergence to the unique fixpoint
of F which is V π.

Let us turn the special situation of totally asynchroneous updates into a concrete policy evaluation
algorithm. There is a lot of freedom how to chose the step-size (it may for instance depend on the
number of past updates of the coordinate as in the UCB bandit algorithm) and the coordinates.
But the principle coordinate update rule must be

Vnew(St) = Vold(St) + α
(
(R(St, At) + γVold(St+1))− Vold(St)

)
for a and s′ chosen by the algorithm. Here is the simplest version of one-step value estimation in
which we decide to chose a and s′ from the value update as next coordinate to be updated. So,

Algorithm 18: SARS policy evaluation
Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize V ≡ 0 and s arbitrary (for instance uniformly).
while not converged do

a ∼ π(· ; s)
Sample reward R(s, a).
Sample next state s′ ∼ p(· ; s, a).
Determine stepsize α = α(s).
Update V (s) = V (s) + α

(
R(s, a) + γV (s′))− V (s)

)
Set s = s′.

end

if we start in an initial state s, we sample a ∼ π(· ; s) and s′ ∼ p(· ; s, a). Then, we update the
value as given above. Then, to move on and to find a new suitable initial state, we take s′ as
new initial state and repeat the same update scheme. Since the scheme uses S-A-R-S′ to update
the value of s we call the algorithm SARS policy evaluation.
There is a situation in which the above algorithm seems unsuitable. If the MDP terminates
in finite times then states are not visited infinitely often so that the second Robbins-Monro
condition is violated. Since the order of chosing states is completely irrelevant (this is governed
by α that only needs to be measurable) for convergence of stochastic approximation we can just
repeatedly take roll-out of finite length. As usually, a similar estimation procedure works for
Q. The disadvantage is that the algorithm requires a larger table to store all the values, the
advantage is to get hold of Q-values that can be used for policy improvement. The analogous
TD(0)-algorithm is based on

T πQ(s, a) = Eπa

s [R(s, a) + γQ(S1, A1)]

It is not hard to guess that updates of the form

Qnew(St, At) = Qold(St, At) + α
(
(R(St, At) + γQold(St+1, At+1))−Qold(St, At)

)
,

where now every updated state-action pair requires a sample of the next state-action pair.
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Algorithm 19: SARS policy evaluation with termination
Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize V ≡ 0
while not converged do

Initialise s arbitrarily (for instance uniformly).
while s not terminal do

a ∼ π(· ; s)
Sample reward R(s, a).
Sample next state s′ ∼ p(· ; s, a).
Determine stepsize α = α(s).
Update V (s) = V (s) + α

(
(R(s, a) + γV (s′))− V (s)

)
.

Set s = s′.
end

end

Theorem 4.4.2. (Convergence of one-step policy evaluation for Qπ)
Suppose Q0 ∈ R|S|×|A| is arbitrary and, for n ∈ N, the asynchroneous update rule
is

Qn+1(s, a) = Qn(s, a) + αn(s, a)((R(s, a) + γQn(s′, a′))−Qn(s′)).

We assume for every n that s′(s, a) ∼ p(· ; s, a) and a′(s, a) ∼ π(· ; s′(s, a)), as well
as αn depend only on the past steps and satisfy the Robbins-Monro conditions

∞∑
n=1

αn(s, a) =∞ a.s. and
∞∑

n=1
α2

n(s, a) <∞ a.s.

for every (s, a) ∈ S × A. Then limn→∞ Qn(s) = Qπ(s) almost surely, for every
state-action pair (s, a).

Again, note that there are no assumption whatsover on the dependencies of αn, they only need
to depend on the past only (be adapted). If the matrix αn only has one non-zero entry then the
procedure is again called totally asynchroneous.

Proof. Let us denote by (S̃0, Ã0, ...) the state-action pairs defined by the algorithm. Furthermore,
rewrite the updates as

Qn+1(s, a) = Qn(s, a) + αn(s, a)
(
F (Qn)(s, a)−Qn(s, a) + ε(s, a)

)
, s ∈ S, a ∈ As,

with

F (Q)(s, a) := Eπa

s [R(s, a) + γQ(S1, A1)]

and

εn(S̃n, Ãn) := (R(S̃n, Ãn) + γQn(S̃n+1, Ãn+1))− EπÃn

S̃n
[R(S̃n, Ãn) + γQn(S1, A1)].

and εn(s, a) = 0 for (s, a) ̸= (S̃n, Ãn).

• In the proof of Theorem 3.1.28 it was shown that the Bellman expectation operator F = T π

is a || · ||∞-contraction.

• The errors εn(s) are Fn+1-measurable with E[εn(s) | Fn] = 0 by definition. The assumed
boundedness of the rewards also implies supn,s E[ε2

n(s) | Fn] ≤ C.
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• The step-sizes are adapted and satisfy
∑∞

n=1 αn(s) =∞ a.s. and
∑∞

n=1 α2
n(s) <∞ a.s. by

assumption.

Hence, Theorem 4.3.9 can be applied and we get almost sure convergence to the unique fixpoint
of F which is Qπ.

Similarly to the state value function a totally asynchroneous algorithm is derived from the
theorem. Now, we have to initialize a state-action pair, sample the reward and next state s′.
The following action is then chosen according to the given policy and inserted into the estimate
of the state-value function at the matrix position (s′, a′). The state-action pair (s′, a′) is used
for the next update except s′ is a terminal state. Since the update uses S-A-R-S′-A′ the policy
algorithm is called SARSA. Here we only give the version with termination. In all algorithms

Algorithm 20: SARSA policy evaluation for Qπ

Data: Policy π ∈ ΠS

Result: Approximation Q ≈ Qπ

Initialize Q(s, a) = 0 for all s ∈ S a ∈ A
while not converged do

Initialise s.
Sample a ∼ π(· ; s).
while s not terminal do

Sample reward R(s, a).
Sample next state s′ ∼ p(· ; s, a).
Sample next action a′ ∼ π(· ; s′).
Determine step-size α.
Update Q(s, a) = Q(s, a) + α

(
(R(s, a) + γQ(s′, a′))−Q(s, a)

)
Set s = s′, a = a′.

end
end

above (and below) that depend on stochastic fixed point iterations the step-size α needs to be
set. For totally asynchroneous learning there are two things that need to be specified for the
algorithms:

• Which coordinates should be updated, i.e. which state or state-action pair is the only
coordinate for which α(n) is non-zero.

• How strongly should the coordinate be updated, i.e. what is the value αi(n) for the non-zero
coordinate?

The coordinate to be updated was already specified in the algorithms by s′ for SARS (resp.
(s′, a′) for SARSA). Due to the Robbins-Monro condition every state (resp. state-action pair)
must be visitied infinitely often to ensure the values of αi(n) migth sum-up to +∞. But what is
good choice for the non-zero value of α(n)?

Even though invalid for the theory a popular choice for the step-size is a constant
value α. The most obvious choice to guarantee convergence of the algorithms is, for
some 1

2 < p ≤ 1,

αs(n) = 1
(Ts(n) + 1)p

resp. α(s,a)(n) = 1
(T(s,a)(n) + 1)p

if Ts(n) denotes the number of times the state s was updated during the first
n updates (resp. T(s,a)(n) the number of times the state-action pair (s, a) was
updated during the first n updates). The choice is reasonable because if states (or
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state-action pairs) are visited infinitely often, then
∞∑

n=1
αs(n) =

∞∑
n=1

1
np

=∞ and
∞∑

n=1
α2

s(n) =
∞∑

n=1

1
n2p

<∞.

4.4.2 Q-learning and SARSA (approximate value iteration)
We continue with the most famous tabular control algorithms. Approximate value iteration to
solve T ∗Q = Q by iterating in an approximate way Bellman’s state-action optimality operator
T ∗. Such algorithms directly learn the optimal state-action function Q∗ without repeated policy
improvement steps, they are an approximate form of value iteration for Q. The main advantage
(but also disadvantage) of the Q-learning algorithm (and its modifications) is the flexibility, there
are plenty of choices that can be made to explore the state-action space.

Definition 4.4.3. A learning algorithm is called off-policy if the choice of actions
is not governed by the currently estimated policy but the exploration of actions
can be driven by outside (random) sources. In contrast, an algorithm is called
on-policy if the exploration only uses the currently estimated policy to explore
actions. In many off-policy examples the actions are explored using a fixed policy
that is typically called a behavior policy.

The term off-policy is not always used in the same way, also our definition is relatively vague. The
most extreme scenary is that of a behavior policy that does not take into account the algoritmic
learning at all. To have a clear idea in mind consider the following example. There are two ways
of learning chess. Either observing repeated matches of other players or by repeatedly playing
by oneself. The first is a typical off-policy situation, learning is accomplished by looking over
someone’s shoulders. Same with learning how to use a tool. Either looking over someones shoulds
or trying the tool oneself. This illustration already shows the advantages and disadvantages. A
disadvantage of off-policy learning is that it might be hard to learn from a bad player and more
efficient to learn from a player that plays good and bad moves. In contrast, on-policy learning
might lead to little exploration of actions and the algorithm focuses too much on what the
algorithm believes to be good, similarly to the exploration-exploitation trade-off for stochastic
bandits.

From the mathematics of convergence proofs the situation is relatively simple. In
totally asynchroneous approximate fixed point iterations for Q the vector α governs
the choice of state-action pairs. Since the sequence (αn) only needs to be adapted
to the algorithm (its filtration) there is a lot of freedom on how to explore the
actions. Essentially, we can explore in all ways that do not use future knowledge of
the algorithm (how should we?) and explores all state-action pairs infinitely often.

No doubt, the remark only concerns convergence in the limit but not the speed of convergence.
The mathematical theory of approximate learning of state-action value functions is not particularly
well developed. In practise, algorithms work differently well on different examples. We start
with the most direct algorithm, the approximate fixed point iteration with samples of Bellman’s
state-action optimality operator: Q-learning - Algorithm 22. There is a lot that can be changed
about Q-learning. To understand why let us check a convergence proof:

Theorem 4.4.4. (Convergence of Q-learning)
Suppose that a behavior policy π is such that all state-action pairs are visited
infinitely often and the step-sizes are adapted and satisfy the Robbins-Monro
conditions. Then limt→∞ Qt(s, a) = Q∗(s, a) holds almost surely for all state-action
pairs (s, a).
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Algorithm 21: Q-learning (with behavior policy)
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize Q (e.g. Q ≡ 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Update Q(s, a) = Q(s, a) + α

(
(R(s, a) + γ maxa′∈As′ Q(s′, a′))−Q(s, a)

)
.

Set s = s′.
end

end

Proof. The proof is exactly the same that we have seen above, now using the optimal Bellman
operator

T ∗Q(s, a) = Eπa

s

[
R(s, a) + γ max

a′∈AS1

Q(S1, a′)
]

on R|S|·|A|. Please finish the proof yourself as an excercise:

Rewrite the Q-learning algorithm as approximate fixed point iteration and check
the conditions of Theorem 4.3.9 to prove the almost sure convergence.

Before discussing versions of Q-learning let us think for a moment what Q-learning really does.
Q-learning challenges current estimates Q(s, a) of Q∗(s, a) by comparing them with new one-step
estimates. If the Q-values are stored in a table, then the algorithm successifely explores table
entries and updates their values. In every step one entry of the table is updated as follows. The
current estimate Q(s, a) is compared to a new estimate Q(s, a), namely, by resampling only the
first step (this is R(s, a)) and then assuming the estimated future discounted reward from the
new state s′ is perfect (this is maxa′ Q(s′, a′)). The table entry Qnew(s, a) is increased/decreased
according to the new estimate R(s, a) + maxa′ Q(s′, a′) for Q∗(s, a) being larger/smaller than
the old entry. Unfortunately, there is a huge drawback of Q-learning: Q-learning converges in
the limit but can overestimate the Q-values by a lot. Here is an example that shows what can go
wrong.

Stochastic approximation algorithms are not unbiased, i.e. the estimates xn of x∗

typically satisfy E[xn] ̸= x∗. Here is a one-dimensinoal illustration that roughly
captures the overestimation effect of Q-learning. Take F (x) = γ max{0, x} for some
γ < 1, this is a contraction.

An overestimating approximate fixedpoint iteration
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Without error the algorithm quickly converges from the left to x∗ = 0 (even in one
step if α = 1) because the steps are αn(F (xn)−xn) = −αnxn while the convergence
from the right takes some time as αn(F (xn)− xn) ≈ 0. With errors the situation
becomes worse even with x0 = x∗. A positive error sends xn to the positives from
where the algorithm slowly comes back to 0 while after sending xn to the negatives
with a negative error the algorithm comes back to 0 much faster. The same effect
happens for Q-learning. Estimated Q-values are typically too large. Variants of
Q-learning that deal with the overestimation effect are discussed in the next section.

For convergence, the way the state-action pairs are chosen can be even more arbitrary as long
as all state-action pairs are visited infinitely often and the step-sizes decrease according to the
Robbins-Monro conditions. For instance, state-action pairs could also be chosen randomly with
equal step-size 1

n . We know from stochastic bandits that ignoring all learned information is not
going to be beneficial. If we are interested in the performance of the algorithm during training,
e.g. the total rewards during training (like the regret for bandit algorithms), we want to choose π
such that good actions are taken more often but still enough exploration of new state-action pairs
takes place. Thus, the exploration of table entries is often organised by ε-greedy or Boltzman
exploration.
A variant of Q-learning is SARSA which has the following update rule:

Qnew(St, At) = Qold(St, At) + α
(
(R(St, At) + γQold(St+1, At+1))−Qold(St, At)

)
,

where the choice of the next action must be on-policy (determined by Q, such as ε-greedy). The
algorithm is not always going to converge, the right trade-off between exploration and exploitation
of the best known estimate of Q∗ (the current Q) is needed. For ε too large the algorithm will
play unfavorable state-action pairs too often, for ε too small the algorithm might miss to learn
good actions. Since the updates use S-A-R-S′-A′ this on-policy version of Q-learning is called
SARSA control.

Algorithm 22: SARSA
Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize Q, e.g. Q ≡ 0.
while not converged do

Initialise s, a, e.g. uniform.
while s not terminal do

Sample reward R(s, a).
Chose new policy π from Q (e.g. ε-greedy).
Sample next state s′ ∼ p(· ; s, a).
Sample next action a′ ∼ π(· ; s′).
Determine stepsize α.
Update Q(s, a) = Q(s, a) + α

(
(R(s, a) + γQ(s′, a′))−Q(s, a)

)
.

Set s = s′, a = a′.
end

end

SARSA simplifies if the policy update is greedy with respect to Q. In that case
a′ = arg maxa Q(s′, a) so that the Q-updates are exactly the updates of Q-learning.

In contrast to Q-learning SARSA cannot be performed off policy.

Suppose for instance the actions a′ are chosen uniformly then SARSA would not
converge to Q∗. Think about it and try it in simulations!
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Unlike Q-learning it is less obvious that SARSA converges to Q∗, in contrast to Q-learning
the iteration is not an approximate version of the fixed point iteration for T ∗! The following
proof is important as it is used in other settings as well, in the literature one can occasionally
see reference to the SARSA convergence proof for modifications of Q-learning (for instance for
double-Q and clipping). The idea is to compare to the Q-learning iteration and then show the
appearing error vanishes. Unfortunately, our version of approximative fixedpoint iteration only
allows unbiased errors while the proof needs unbiased errors E[εn | Fn] ̸= 0. For that sake a
generalisation of Theorem 4.3.9 is needed.

Show that the statement of Theorem 4.3.9 also holds with E[εi(n) | Fn] ̸= 0 if
∞∑

n=1
αi(n)

∣∣E[εi(n) | Fn]
∣∣ <∞ (4.10)

holds almost surely. Going through the proof it will become clear that only Lemma
4.3.5 needs to be improved to this situation. Luckily the proof is short enough to
see quickly (estimating W ≤ 1 + W 2) that (4.10) is enough to reduce the lemma to
the Robbins-Siegmund theorem.

In fact, there are even more general versions that allow to suppress the summation condition of
the next theorem. Since the most influentual paper 8 seems to have an error (there is a circular
argument in the last paragraph of the paper) we only use what has been developed in these
lecture notes for the next convergence proof.

Theorem 4.4.5. (Convergence of SARSA control for terminating MDPs)
Suppose the step-sizes satisfy the Robbins-Monro conditions and the probabilies
pn(s, a) that the policy πn+1 is greedy satisfies are such that

∞∑
n=1

αn(s, a)pn <∞ a.s

for all (a, s). Then the SARSA algorithm converges to Q∗ almost surely.

The most important policy to which the theorem applies is αn-greedy because
∑

α2
n(s, a) <∞

holds by assumption. Chosing αn(s, a) = 1
Ts,a(n)+1 the exploration rate in a state-action pair

(s, a) decreases with the number of updates of Q(a, s).

Proof. The proof is different from the ones before. The reason is that the updates are not directly
estimates of a contraction operator. Nonetheless, a similar argument works. Adding a zero
the algorithm can be reformulated in an approximate fixed point iteration with an error-term
that is biased but with a bias decreasing to zero. We will use a variant of Theorem 4.3.9. The
convergence also holds if

∞∑
n=1

αn(s, a)
∣∣E[εn(s, a) | Fn]

∣∣ <∞ a.s. (4.11)

for all state-action pairs. Hence, we check the condition (4.11) instead of E[εn(s, a) | Fn] = 0
with an appropriately chosen error-term. Let us denote by S̃0, Ã0, ... the sequence of state-action
pairs obtained from the algorithm. First, writing

Qn+1(s, a) = Qn(s, a) + αn(s, a)
(
T ∗Qn(s, a)−Qn(s, a) + εn(s, a)

)
, s ∈ S, a ∈ As,

8S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, "Convergence results for single-step on-policy
reinforcement-learning algorithms", Machine Learning, 38(3):287–308, 2000
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with

εn(S̃n, Ãn) = (R(S̃n, Ãn) + γQn(S̃n+1, Ãn+1))− EπÃn

S̃n

[
R(S̃n, Ãn) + γ max

a′
Qn(S1, a′)

]
and ε(s, a) = 0 for (s, a) ̸= (S̃n, Ãn). The errors εn(s, a) are Fn+1-measurable. Furthermore,
E[ε(s, a) | Fn] = 0 for (s, a) ̸= (S̃n, Ãn) and

E[εn(S̃n, Ãn) | Fn]

= E
[
1{πn+1(· ; S̃n+1) is greedy}(γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
+ E

[
1{πn+1(· ; S̃n+1) non-greedy}(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) greedy} | Fn]E

[
γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)

] ∣∣Fn

]
︸ ︷︷ ︸

=0

+ E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E
[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E

[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
.

Finally, recall that we assume throughout these lecture notes that rewards are bounded. Thus,
the assumed boundedness of Q0 and the iteration scheme combined with

∑∞
k=0 γk <∞ implies

that |Qn(s, a)| < C for some C and all n ∈ N. Thus,∣∣E[εn(S̃n, Ãn) | Fn]
∣∣ ≤ CP(πn+1(· ; s′) non greedy | Fn) = Cpn(s, a).

By assumption, the summation condition 4.11 is satisfied. By the boundedness of rewards, also
E[ε2

n(s, a) | Fn] ≤ C <∞. As T ∗ is a contraction and the Robbins-Monro conditions are satisfied,
the iteration converges to Q∗ almost surely.

To get a feeling of the SARSA algorithm think about stochastic bandits seen as one-step MDPs.

To get a feeling for Q-learning and SARSA try to relate the algorithms with
αn(s, a) = 1

Ts,a(n)+1 to the ε-greedy algorithm for stochastic bandits introduced in
Chapter 1.

4.4.3 Double Q-learning
The aim of this section is to introduce double variants of Q-learning that deal with overestimation
of Q-learning. For a rough understanding of what goes wrong in Q-learning recall that the
Qn(s, a) are (random) estimates of the expectations Q∗(s, a). In the updates of Q-learning we
use the estimates maxa′∈As

Qn(s, a) of maxa′∈As
Q∗(s, a) but those overestimate.

Suppose µ̂1, ..., µ̂K are estimates for expectations µ1, ..., µK . Then the pointwise
maximum maxi=1,...,K µ̂i overestimates µ̂ = maxi=1,...,K µi because E[max µ̂i] ≥
E[µi] for all i so that E[max µ̂i] ≥ maxE[µi]. As a simple example suppose
M1, ..., MK are Ber(p)-distributed. They are all unbiased estimators of the mean
but

E[max Mi] = P({M1 = 0, ..., MK = 0}) · 0 + P({M1 = 0, ..., MK = 0}c) · 1
= 1− (1− p)K > p.

Van Hasselt9 suggested to use two-copies of Q-learning and intertwine them such that one
estimates the optimal action, the other the optimal value. This leads to the idea of double
Q-learning and modifications.

9H. van Hasselt, "Double Q-learning", NIPS 2010
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Algorithm 23: Double Q-learning (with behavior policy)
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Randomly choose update = A or update = B
if update = A then

a∗ = arg maxa′∈As′ QA(s′, a′)
Update QA(s, a) = QA(s, a) + α

(
R(s, a) + γQB(s′, a∗)−QA(s, a)

)
end
else

b∗ = arg maxa′∈As′ QB(s′, a′)
Update QB(s, a) = QB(s, a) + α

(
R(s, a) + γQA(s′, b∗)−QB(s, a)

)
end
Set s = s′.

end
end

Similarly to SARSA (see the proof of Theorem 4.4.7) double Q-learning can be interpreted as
classical Q-learning with an additional negatively biased term ϵ̂. We will not prove convergence
of double Q-learning. The proof requires a stronger unbiased version of approximate dynamic
programming. Instead we will introduce a truncation which allows us to follow the proof of
convergence for SARSA. Interestingly, our new version of double Q-learning performs better
than Q-learning and double Q-learning on some of the standard examples. Before stating the
truncated double Q-learning algorithm let us check an example:

Example 4.4.6. The example MDP consists of two interesting states S1, S2 and two terminal
states T1, T2. The transition probabilities are indicated in the graphical representation. If action
left/right is chosen in S1 then the MDP certainly moves to the left/right with zero reward. In
state S2 there are several possible actions that all lead to T2 and yield a Gaussian reward with
mean µ and variance σ2 (typically equal to 1). Started in S1 an optimal policy clearly choses to
terminate in T1 as the expected total reward is 0, a policy that also allows to go to S2 yields a
negative expected total reward.

red states are terminating

In the classical example Q is initialised as 0 and µ is set to −0.1. The behavior policy always
choses S1 as a starting state. Now suppose the Q-learning algorithm terminates in the first
iteration in T2 and the final reward is positive, say 1. This leads to a Q-value Q(S2, a) = α.
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During the next iteration in which the Q-learning algorithm uses S2 to update Q(S1, left) the
update-rule will overestimate Q(S1, left) to some positive value. It will then take some time
the discounting factor decreases Q(S1, left) back to 0. The plots (running 300 epsidodes and
averaging over 10.000 runs) show a few different situation of the simple MAP example with
different µ and different initialisation for Q.

A few examples, truncation constants C− = 105, C+ = 105

In the upper plots a completely random behavior policy was used to select the actions during
learning, while in the lower two plots an ϵ-greedy policy with ϵ = 0.1 was used. The plots show
depending on the setup/initialisation either positve or negative bias can be benefitial.

Let us now proceed with what we call the truncated double Q-learning Algorithm that contains
other important double algorithms as special cases.
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Algorithm 24: Truncated Double Q-learning
Data: Behavior policy π ∈ ΠS , positive truncation C+ > −, negative truncation C− > 0
Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Randomly choose update = A or update = B
if update = A then

a∗ = arg maxa′∈As′ QA(s′, a′)
ϵ = γ max

(
− C−α, min

(
QB(s′, a∗)−QA(s′, a∗), C+α

) )
Update QA(s, a) = QA(s, a) + α

(
R(s, a) + γQA(s′, a∗)−QA(s, a) + ϵ

)
Set s = s′.

end
else

b∗ = arg maxa′∈As′ QB(s′, a′)
ϵ = γ max

(
− C−α, min

(
QA(s′, b∗)−QB(s′, b∗), C+α

) )
Update QB(s, a) = QB(s, a) + α

(
R(s, a) + γQB(s′, b∗)−QB(s, a) + ϵ

)
Set s = s′.

end
end

end

To understand double Q-learning and truncated double Q-learning let us proceed similarly to
SARSA and rewrite the update as a Q-learning update with additional error:

QA
n+1(s, a) = QA

n (s, a) + α
(
R(s, a) + γQB

n (s′, a∗)−QA
n (s′, a)

)
= QA

n (s, a) + α
(
R(s, a) + γQA

n (s′, a∗)−QA
n (s, a) + γ

(
QB

n (s′, a∗)−QA
n (s′, a∗)

))
which can be written as

QA
n+1(s, a) = QA

n (s, a) + α
(
T ∗(QA

n )(s, a) + ϵn(s, a)−Qn(s, a)
)

.

with errors

εn(s, a) :=
[
R(s, a) + γQA

n (s′, a∗)− T ∗QA(s, a)
]

︸ ︷︷ ︸
=:ϵQ

n (s,a)

+ γ
(
QB

n (s′, a∗)−QA
n (s′, a∗)

)︸ ︷︷ ︸
=:ϵ̂n(s,a)

.

Thus, from the point of view of approximate dynamic programming, double Q-learning is nothing
but Q-learning with an additional error. Since the two equations are symmetric the error is
negatively biased (the Q-function for some action should be smaller than the Q-function for the
best action).

Make this intuition rigorous, show that E[ε̂n | Fn] < 0 almost surely.

Furthermore, looking carefully at the algorithm, truncated double Q-learning equals double
Q-learning if C+ = C− = +∞ (or, in practice, just very large) as in that case

max
(
− C−α, min

(
QB

n (s′, a∗)−QA
n (s′, a∗), C+α

) )
= QB

n (s′, a∗)−QA
n (s′, a∗).
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Theorem 4.4.7. Consider the updating procedure of truncated double Q-learning
in algorithm for QA and QB. Suppose that a behavior policy π is such that all
state-action pairs are visited infitely often and the step sizes are adapted and satisfy
the Robbins-Monro conditions. Then

lim
t→∞

QA(s, a) = lim
t→∞

QB(s, a) = Q∗(s, a)

holds almost surely for all state-action pairs (s, a).

Please note that truncated Q-learning was only introduced for these lectures notes as it allows
us to prove convergence using Theorem 4.3.9. Interestingly, the algorithm performs pretty well
on examples and it might be worth improving the algorithm by adaptive (depending on the past
data) choice of C+ and C− to learn the need of over- or understimation.

Proof. Because of the symmetry of the update procedure it is sufficient to prove the convergence
of QA. As for SARSA the point is to use the reformulation as Q-learning with additional error
and show that errors are sufficiently little biased. This is why we introduced the additional
truncation in order to be able to check

∞∑
n=0

αn(s, a)|E[ϵn(s, a)|Fn]| <∞. (4.12)

In the following we will write a∗ = arg maxa∈As′ QA(s′, a) and b∗ = arg maxa∈As′ QB(s′, a) for
given s′ and write

QA
n+1(s, a) = QA

n (s, a) + αn(s, a)
(
T ∗(QA

n )(s, a) + ϵn(s, a)−QA
n (s, a)

)
.

with error

ϵt(s, a) :=
[
R(s, a) + γQA

n (s′, a∗)− T ∗QnA(s, a)
]

+ γ max
(
− C−αn(s, a), min(QB

n (s′, a∗)−QA
n (s′, a∗), C+αn(s, a))

)
=: ϵQ

n + ϵ̂n(s, a).

All that remains to show is that the error term has bounded conditional second moments and the
bias satisfies (4.12). Finite second moments follow as we assume in these lectures (for simplicity)
that the rewards are bounded so that

∑∞
k=0 γk = γ

1−γ implies boundedness. The Q-learning
error is unbiased (sample minus expectation of the sample). The truncated double Q-learning
error is also bounded:

∞∑
n=0

αn(s, a)
∣∣E[ϵ̂n(s, a)|Fn]

∣∣ ≤ max{C+, C−}
∞∑

n=0
α2

n(s, a) <∞. (4.13)

Since T ∗ is a contraction and the learning rates satisfy the Robbins-Monro condititions the
convergence follows from Theorem 4.3.9 with the modification.

The interesting feature of truncated double Q-learning is the interpolation effect
between Q-learning and double Q-learning. Large C makes the algorithm closer
to double Q-learning, small C to Q-learning. It would be interesting to see if an
adaptive choice of C (depending on the algorithm) could be used to combine the
overestimation of Q-learning and the understimation of double Q-learning.

We finish this section with another variant of double Q-learning, so-called clipping10:
10Fujimoto, van Hoof, Meger: "Addressing Function Approximation Error in Actor-Critic Methods", ICML 2018
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Algorithm 25: Clipped double Q-learning (with behavior policy)
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
a∗ = arg maxa′∈As′ QA(s′, a′)
QA(s, a) = QA(s, a) + α

(
R(s, a) + γ min{QA(s′, a∗), QB(s′, a∗)} −QA(s, a)

)
.

b∗ = arg maxa′∈As′ QB(s′, a′)
QB(s, a) = QA(s, a) + α

(
R(s, a) + γ min{QA(s′, b∗), QB(s′, b∗)} −QB(s, a)

)
.

Set s = s′.
end

end

The convergence proof of clipped double Q-learning again follows the SARSA approach.

Rewrite QA to see that QA is nothing but Q-learning with additional error term

εc(s, a) =
{

0 : QA(s′, a∗) ≤ QB(s′, a∗)
QB(s′, a∗)−QA(s′, a∗) : QA(s′, a∗) > QB(s′, a∗)

.

Clipped Q-learning is thus nothing but double Q-learning with clipping (truncation)
of positive bias terms QB(s′, a∗)−QA(s′, a∗).

Setting C+ = 0 clipping is nothing but truncated Q-learning with very large C−.

In the exercises we will compare the performance of the different algorithms. Un-
fortunately, none of them outperforms in all settings. Adding error terms that are
negatively biased helps to reduce overestimation of Q-learning but clearly has other
drawbacks. To our knowledge there is no deeper theoretical understanding of how
to deal optimally with overestimation.

4.5 Multi-step approximate dynamic programming

The one-step approximate dynamic programming algorithms were derived rather directly from
Theorem 4.3.9. We next turn towards finitely many steps forwards which is inbetween the
one-step and infinitely many steps (aka Monte Carlo) approaches.

4.5.1 n-step TD for policy evaluation and control

The idea of approximate is to solve fixed point equation in the case in which operators that are
given by expectations can only be approximated by sampling. We now ignore this point of view
and recall what really happens in the updates. For SARSA policy evaluation those were

Vnew(St)︸ ︷︷ ︸
new estimate

= Vold(St) + α
(

R(St, At) + γVold(St+1)︸ ︷︷ ︸
reestimate of V (St)

− Vold(St)︸ ︷︷ ︸
old estimate

)
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and for evaluation of Qπ

Qnew(St, At)︸ ︷︷ ︸
new estimate

= Qold(St, At) + α
(

R(St, At) + γQold(St+1, At+1)︸ ︷︷ ︸
reestimate of Q(St,At)

−Qold(St, At)︸ ︷︷ ︸
old estimate

)
.

In every step the algorithms reestimate the state(-action) value function by resampling the
first step and then continuing according to dynamic programming with the current estimate.
The difference between new estimate and old estimate is called temporal-difference (TD) error.
Weighting old and new estimates then leads to an increase for positive TD error (resp. a
decrease for negative TD error). A natural generalisation for this reestimation procedure uses
longer temporal differences, i.e. resample the next n steps and then continue according to the
old estimate, i.e. reestimating with

∑n−1
i=1 γiR(St+i, At+i) + γnV π(St+n). The corresponding

algorithms are called n-step TD algorithms. We are not going to spell-out the details, the only
difference is the update which is given below and that (compared to one-step) updates are
stopped n steps before the termination as n steps in the future are used for the update.

Use the update rule

Vnew(St)︸ ︷︷ ︸
new estimate

= Vold(St) + α
( n−1∑

i=0
R(St+i, At+i) + γVold(St+n)︸ ︷︷ ︸

reestimate of V (St)

− Vold(St)︸ ︷︷ ︸
old estimate

)

to write down pseudocode for n-step TD algorithms for evaluation of V π and Qπ

and prove the convergence by checking the n-step Bellman expectation equations a

T πV (s) = Eπ
s

[
R(s, A0) +

n−1∑
t=1

γtR(St, At) + γnV (Sn)
]

(4.14)

and

T πQ(s, a) = Eπa

s

[
R(s, a) +

n−1∑
t=1

γtR(St, At) + γnQ(Sn, An)
]

and the conditions of Theorem 4.3.9 on the error term.
awrite down?

Analogously, a new n-step SARSA-type control algorithm can be written down, we will compare
the performance to 1-step SARSA in the implementation exercises.

Write pseudocode for an n-step SARSA control algorithm in the non-terminating
case. Try to prove convergence in the same way we did for 1-step SARSA in
Theorem 4.4.5.

To understand multistep methods better let us compare the Monte Carlo estimator of V π from
Section 4.2.1 with the one-step approximate dynamic programming estimator of V π from Section
4.4.1. Looking closely at the n-step estimator a crucial observation can be made. For large n the
TD update is essentially the Monte Carlo update. For a particular problem one can thus chose
n such that the algorithm is closer to Monte Carlo (no reuse of samples) or closer to one-step
approximate dynamic programming.

• The Monte Carlo estimator averages independent samples V̂ π
k =

∑
γtR(st, at) of the

discounted total reward to get

V̂ π(s) = 1
N

N∑
k=1

V̂ π
k (s).
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The Monte Carlo estimator uses every sample R(s, a) once, whereas the dynamic pro-
gramming estimator reuses samples (this is called bootstrapping) because the iteration
scheme

Vnew(s) = Vold(s) + α
(
R(s, a) + γVold(s′)− Vold(s)

)
reuses all samples R(s, a) that were used to estimate Vold(s′). From the practical point of
view the bootstrapping is desirable if the sampling is expansive. Additionally, the reuse
of estimates reduces the variance of the SARS estimator compared to the Monte Carlo
estimator.

• Being unbiased Monte Carlo has a clear advantage to the unbiased algorithms obtained
from stochastic approximation schemes for which we know nothing about the bias.

Let’s turn these thoughts into a formal error decomposition. Suppose an estimate V of V π is
given, this is typically VN . How close (in L2) is the new n-step estimate from the true vector
V π?

Proposition 4.5.1. (TD bias-variance decomposition)
Suppose V is an old estimate of V π, then there is a constant C (depening on the
assumed bound for R) such that

Eπ
s

[( new estimation error︷ ︸︸ ︷
n−1∑
t=0

γtR(St, At) + γnV (Sn)− V π(S0)
)2]

≤ γ2nEπ
s [(V π(Sn)− V (Sn))]2︸ ︷︷ ︸
old estimation bias

+Vπ
s

[ n−1∑
t=0

γtR(St, At)
]

+ γ2nCVπ
s

[
V (Sn)

]
︸ ︷︷ ︸

n-step + future prediction variance

.

Before going through the proof let us discuss what can be learnt from the proposition. Recall
that γ is fixed, V given by prior iterations of the algorithm, and n could be chosen.

• The first summand involves γ2n which decreases in n and the squared error of the current
estimate at time n.

• The second summand does not depend on the current estimate V , but is the variance of
the n-step rewards under the target policy. This is the Monte Carlo variance for n steps.

• The last summand again involves γ2n which decreases in n and the variance of the current
n-step prediction.

The proof uses the classical bias-variance decomposition from statistics combined with the fact
that T πV π = V π and (4.14).

Proof.

Eπ
s

[( n−1∑
t=0

γtR(St, At) + γnV (Sn)− V π(S0)
)2]

= Eπ
s

[ n−1∑
t=0

γtR(St, At) + γnV (Sn)− V π(S0)
]2

+ Eπ
s

[( n−1∑
t=0

γtR(St, At) + γnV (Sn)− V π(S0)− Eπ
s

[ n−1∑
t=0

γtR(St, At) + γnV (Sn)− V π(S0)
])2]

(4.14)=
(
− γnEπ

s [V π(Sn)] + γnEπ
s [V (Sn)]

)2
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+ Eπ
s

[( n−1∑
t=0

γtR(St, At)− Eπ
s

[ n−1∑
t=0

γtR(St, At)
]

+ γn
(
V (Sn)− Eπ

s [V (Sn)]
)
− (V π(S0)− Eπ

s [V π(S0)])︸ ︷︷ ︸
=0

)2]

= γ2n
(
Eπ

s [V π(Sn)− V (Sn)]
)2

+ Eπ
s

[( n−1∑
t=0

γt(R(St, At)− Eπ
s

[ n−1∑
t=0

γt(R(St, At)
]
)
)2]

+ 2Eπ
s

[( n−1∑
t=0

γt(R(St, At)− Eπ
s

[ n−1∑
t=0

γt(R(St, At)
])

γn
(
V (Sn)− Eπ

s [V (Sn)]
)]

+ Eπ
s

[(
γn(V (Sn)− Eπ

s [V (Sn)])
)2]

.

If we can estimate the third summand we are done. The following estimate is pretty rough and
uses the boundedness of R:

Eπ
s

[( n−1∑
t=0

γt(R(St, At)− Eπ
s

[ n−1∑
t=0

γt(R(St, At)
])

γn
(
V (Sn)− Eπ

s [V (Sn)]
)]

≤ Eπ
s

[∣∣∣( n−1∑
t=0

γt(R(St, At)− Eπ
s

[ n−1∑
t=0

γt(R(St, At)
])

γn
(
V (Sn)− Eπ

s [V (Sn)]
)∣∣∣]

≤ 2CRγn

1− γ
Eπ

s

[
(V (Sn)− Eπ

s [V (Sn)])2]
= 2CRγn

1− γ
Vπ

s [V (Sn)].

Now suppose a policy evaluation algorithm is run with adaptive choice of n, i.e. in every update
n is adapted to the situation. Then, in theory, n would be chosen large if the current estimate has
large variance or large error, otherwise small. Thus, it seems plausible that a policy evaluation
algorithm based on n-step TD updates might decrease n over time.

4.5.2 TD(λ) algorithms
11 There is a nice-trick in temporal different learning (learning by resampling segments). Instead
of using n steps for a fixed number n one mixes different n or, alternatively, choses n random.
Since the Markov property is compatible with memoryless random variables only, it might
not be surprising that geometric distributions (the only memoryless distributions) play a role.
Recall that an integer valued random variables is called geometric with parameter λ ∈ (0, 1) if
P(X = k) = (1− λ) 1

λk for k ∈ N0. One interpretation is to decide successively with probability
λ to first stop at 0, 1, 2, and so on. The striking fact of TD(λ) schemes is that they interpolate
between the simple one-step updates (justifying the name TD(0) for one-step approximate
dynamic programming) and Monte Carlo for λ = 1. In practice there will be some λ ∈ (0, 1) for
which the bias-variance advantages/disadvantages of TD(λ) and Monte Carlo turns out to be
most effective.
In the following we present several ways of thinking that are more or less practical. The so-called
forwards approach extends n-step temporal difference updates (which use paths forwards in time)
to mixtures of infinitely many updates. Little surprisingly, the forwards approach is not very
practical and mainly used for theoretical considerations. Interestingly, for instance used in a
first visit setup the approach can be rewritten equivalently in an update scheme that can be
implemented in a backwards manner (using the past values for updates). Both update schemes
are different but such that the updates over an entire roll-out are equal.

Forwards TD(λ) for policy evaluation

Let’s start a bit with the idea to mix temporal differences of different lengths into one update.
Interestingly, there are different methods than can be worked out from the mixed temporal

11mache notation Geo(λ) or Geo(1-λ) kompatibel mit Stochastik 1 Skript
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difference update

∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(St+k, At+k) + γnVold(St+n)− Vold(St)

))
.

Here is a first simple algorithm that can be seen as a rigorous version (instead of stopping at
some large time) of first visit Monte Carlo estimation of V π for MDPs with infinite horizon:

Algorithm 26: First visit Monte Carlo for non-terminating MDPs
Data: Policy π ∈ ΠS , initial condition µ, λ ∈ (0, 1)
Result: Approximation V ≈ V π

Initialize V0 (e.g. V0 ≡ 0).
n = 0
while not converged do

Sample T ∼ Geo(λ).
Determine stepsizes αn+1(s) for every s ∈ S.
Generate trajectory (s0, a0, s1, ...) until T using policy π.
for t = 0, 1, 2, ..., T do

if st /∈ {s0, s1, ...st−1} then
Vn+1(st) = Vn(st) + αn+1(st)

( ∑T −1
i=0 γiR(st+i, at+i) + γT Vn(sT )− Vn(st)

)
end

end
n = n + 1

end
Return Vn.

Theorem 4.5.2. Suppose π ∈ ΠS , λ ∈ (0, 1), and α satisfies the Robbins-Monro
conditions. Then Vn(s)→ V π(s) almost surely for all s ∈ S.

Proof. As always the convergence follows from Theorem 4.3.9 once the algorithm is reformulated
with a suitable contraction and (here: unbiased) error. Let us first introduce the contraction
that we will interprete in two ways:

F (V )(s) := Eπ
s

[ ∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(St, At) + γnV (Sn)

)]
It is easy to see that F : R|S| → R|S| is a contraction:

||F (V )− F (W )||∞ = max
s∈S

∣∣∣Eπ
s

[ ∞∑
n=1

(1− λ)λn−1(γnV (Sn)− γnW (Sn))
]∣∣∣

≤
∞∑

n=1
(1− λ)λn−1 max

s∈S
γn|Eπ

s [(V (sn)−W (sn))]|

≤
∞∑

n=1
(1− λ)λn−1 max

s∈S
γn|V (s)−W (s)|

=
∞∑

n=1
(1− λ)λn−1γn||V −W ||∞

= E[γX ] ||V −W ||∞
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for X ∼ Geo(λ). Furthermore, the unique fixed point is V π:

F (V π)(s) =
∞∑

n=1
(1− λ)λn−1Eπ

s

[ n−1∑
t=0

γtR(St, At) + γnV π(Sn)
]

(4.14)= (1− λ)
∞∑

n=1
λn−1V π(s)

= V π(s)

To prove convergence of the two algorithms we give two interpretations on how to sample from
the expectation defining F (V ). The two ways of sampling from the expectation gives the two
first-visit algorithms. By Fubini’s theorem F (V )(s) is the expectation of a two-stage stochastic
experiment: first sample T ∼ Geo(λ) and then

∑T −1
t=0

(
γtR(St, At) + γT V (ST ) for a sample

of the MDP started in s independently of T . This is exactly what the algorithm does so the
convergence is exactly the one from one-step (or n-step) stochastic approximation writing

Vn+1(s0) = Vn(s0) + αn+1(s0)
(
F (Vn)(s0) + εn(s0)− Vn(s0)

)
with errors εn(s0) = (

∑T −1
t=1 γtR(st, at) − γT Vn(sT )) − F (Vn)(s). We only need to be careful

with the filtration and define Fn as the σ-algebra generated by all random variables of the first
n roll-outs. Since we assumed the step-sizes are fixed for each roll-out they are Fn-measurable.
Furthermore, εn is Fn+1-measurable (only random variables from roll-out n + 1 are used) and
E[εn | Fn] = 0 because the errors take the form sample minus expectation of the sample. As
always the errors are bouned as we assume R to be bounded in these lecture notes.

Next, we come to the λ-return algorithm. The algorithm is the direct adaption of n-step
updates to the infinite mixture of n-steps. For every roll-out there is only one update, no further
bootstrapping occurs. Once a state is hit the entire future trajectory is used to update Vn.
Algorithms of this kind are typically called offline because no updates are obtained during a
roll-out (in contrast for instance to the one-step algorithms). 12 The algorithm We are not going

Algorithm 27: First visit λ-return algorithm
Data: Policy π ∈ ΠS , λ ∈ [0, 1)
Result: Approximation V ≈ V π

Initialize V0 (e.g. V0 ≡ 0).
Set n = 0.
while not converged do

Determine stepsizes αn+1(s) for every s ∈ S.
Generate trajectory (s0, a0, s1, ...) using policy π.
for t = 0, 1, 2, ... do

if st /∈ {s0, s1, ...st−1} then
Vn+1(st) = Vn(st) + αn+1(st)(

∑∞
n=t(1− λ)λn−1(

∑n−1
k=0 γiR(st+k, at+k) +

γnVold(st+n)− Vold(st))))
end

end
n = n + 1

end
Return Vn.

to prove the convergence. Instead, we prove the convergence for an equivalent algorithm, the
so-called first visit TD(λ) backwards algorithm.

12schreiben mit termination, oder diskutieren, dass nach termination alles 0 ist
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There is no way of turning a forwards algorithm into an online algorithm, an
algorithm where the current trajectory gradually updates the values of V because
all future values are in use.

The suprising fact is that the first visit λ-return algorithm can actually transformed into an
equivalent forwards algorithm. This is the main beautiful idea of TD(λ).

TD(λ) backwards algorithms

To turn the λ-return algorithm into a backwards algorithm (e.g. only states from the past are
used for every future update) a little neet lemma is needed.

Lemma 4.5.3. Suppose s0, a0, s1, a1, ... is a state-action sequence, λ ∈ (0, 1), and
V : S → R, then

∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(st+k, at+k) + γnV (st+n)− V (st)

))
=

∞∑
t=0

(γλ)t
(
R(st, at) + γV (st+1)− V (st)

)
.

There are two interesting point of this representation of the TD(λ) update. First, the formula is
more pleasant as one infinite sum dissapeared. Secondly, the new formula also works for λ = 0
and λ = 1. Plugging-in yields exactly the formulas for one-step (use 00 = 1) and Monte Carlo
value (use a telescopic sum argument) updates.

Proof. For the proof we use that
∑∞

n=t λn = λt
∑∞

n=0 λn = λt

1−λ so that

(1− λ)
( ∞∑

n=1
λn−1

( n−1∑
t=0

γtR(st, at) + γnV (sn)− V (s0)
))

= (1− λ)
∞∑

t=0
γtR(st, at)

∞∑
n=t+1

λn−1
)

+ (1− λ)
∞∑

n=1
λn−1γnV (sn)− V (s0)

=
∞∑

t=0

(
γλ)t(R(st, at) + (1− λ)γV (st+1)

)
− V (s0)

=
∞∑

t=0
(γλ)t

(
R(st, at) + γV (st+1)− V (st)

)
The last equation can be checked by using a telescoping sum (write out the sums):

∞∑
t=0

(γλ)tγ(1− λ)V (st+1)− Vold(s0) =
∞∑

t=1
(γλ)t−1γV (st)−

∞∑
t=1

(γλ)tV (st)− Vold(s0)

=
∞∑

t=0
(γλ)t(γV (st+1)− V (st))

What do we learn from the lemma? Instead of updating once the λ-return we can equally update
sequentially because a sum

∑∞
t=0 at can be computed sequentially by bt+1 = bt + at. Turning this

into an algorithm is simple. Wait for the first visit of a state s0 and then add in every subsequent
round the corresponding summand, this gives, with some inconvenient notation, Algorithm 28.
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Algorithm 28: Offline TD(λ) policy evaluation with first-visit updates
Data: Policy π ∈ ΠS , λ ≥ 0
Result: Approximation V ≈ V π

Initialize V0 (e.g V0 ≡ 0)
while not converged do

Initialize s, n = 1, N ≡ 0, k ≡ 0, t = 0.
Determine step-sizes α(s), s ∈ S, for next roll-out.
while s not terminal do

Sample a ∼ π(· ; s)
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
N(s) = N(s) + 1
if N(s) = 1 then

k(s) = t
end
for s̃ ∈ S do

if N(s̃) ≥ 1 then
Vn+1(s̃) = Vn(s̃) + α(s̃)(γλ)t−k(s̃)(R(s, a) + γVn(s′)− Vn(s)

)
end

end
s = s′, t = t + 1

end
n = n + 1

end
Return Vn.

Theorem 4.5.4. Suppose π ∈ ΠS , λ ∈ (0, 1), and α satisfies the Robbins-Monro
conditions. Then Vn(s)→ V π(s) almost surely for all s ∈ S in Algorithms 27 and
28.

Proof. By Lemma 4.5.3 the updates of Vn per roll-out are equal for both algorithms, thus, the
convergence only needs to be proved for one of them. We prove convergence for the forwards
algorithm. We use the same F from the proof of Theorem 4.5.2. F is a contraction with unique
fixed point V π. As always the algorithm is rewriten into a asynchronous stochastic approximation
update. Without loss of generality, we assume k(s) = 0 if state s has been visited. Else, we can
shift the sum again. From Proposition 4.5.3 we get

Vn+1(s0) = Vn(s0) + αn+1(s0)
∞∑

t=0
(γλ)t

(
R(st, at) + γVn(st+1)− Vn(st)

)
= Vn(s0) + αn(s0)

∞∑
i=1

(1− λ)λi−1
i−1∑
t=0

(
γtR(st, at) + γiVn(si))− Vn(st)

)
= Vn(s0) + αn(s0)

(
F (Vn)(s0)− Vn(s0) + εn(st)

)
,

with F (V ) from above and error-term

εn(s0) :=
∞∑

i=1
(1− λ)λi−1

i−1∑
t=0

(γtR(st, at) + γiVn(si))− F (Vn)(s0)

for every s ∈ S. Moreover, the error-term εn(s) fulfills

Eπ
s [εn(s) | Fn] = (F (Vn))(s)− (F (Vn))(s) = 0.
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Again, the errors are bouned as we assume R to be bounded. Hence, we got all assumptions for
Theorem 4.3.9 and convergence towards the fixpoint V π. 13

We can now derive another algorithm that is much more common in practice. Essentially, we use
the same algorithm as before but instead use every-visit updates instead of first visit updates.
Another nice simplfication turns this into the famous TD(λ) algorithm with elicability traces.

Lemma 4.5.5. Suppose s0, a0, s1, a1, ... is a state-action sequence, λ ∈ (0, 1), and
V : S → R, then

∞∑
t=0

1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
=

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) k∑
t=0

(γλ)k−t1St=s︸ ︷︷ ︸
=:ek(S0)

.

Proof. The proof follows from a Fubini flip using the indicator 1k≥t = 1t≤k:

∞∑
t=0

1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
=

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) ∞∑
t=0

1st=s0(γλ)k−t.

Let us go back to the first visit algorithm (28) that implements first visit updates. Replacing
first vistig updates

Vn+1(s0) = Vn(s0) + 1{first visit of s0 at t}αn+1(s0)
∞∑

k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
by the every visit update yields

Vn+1(s0) = Vn(s0) + αn+1(s0)
∞∑

t=0
1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
Lemma 4.5.5= Vn(s0) + αn+1(s0)

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) k∑
t=0

(γλ)k−t1St=s0︸ ︷︷ ︸
=:ek(s0)

.

Implemented as an Algorithm the update immediately yields Algorithm 29, backwards TD(λ)
with eligibility traces.
Before proving convergence of offline TD(λ) with eligibility traces let us quickly discuss what
the algorithm does. In fact, the simple mechanism is certainly a main reason for its success.
The term ek(s) is called the eligibility trace at time k in state s. It determines the effect of the
previous visits in state s on the current value. If s was visited at times t1, t2, ..., the reward after
the current visit in state sk needs to be considered in the value function in state s. The first
visit in s still has an effect on the current visit in sk of (γλ)k−t1 , the second visit has a larger
effect of (γλ)k−t2 and so on. The first effects will vanish in the limit k →∞. In this algorithm it

13both proofs are incomplete. since a state might not be visited in a roll-out it might not be sampled in a run,
thus, ϵn is not unbiased. Solution: Restart in unvisited states as long as all states have been visited. Maths ok,
run-time nightmare.
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Algorithm 29: Offline TD(λ) with eligibility traces
Data: Policy π ∈ ΠS , λ ∈ [0, 1)
Result: Approximation V ≈ V π

Initialize Vn (e.g. Vn ≡ 0) for all n ∈ N.
N = 0
while not converged do

Initialize e(s) = 0 for all s ∈ S
Initialize s.
Determine step-sizes α(s), s ∈ S, for next roll-out.
while s not terminal do

a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Set ∆ = R(s, a) + γVN (s′)− VN (s).
Set e(s) = e(s) + 1.
for s̃ ∈ S do

Update VN+1(s̃) = VN (s̃) + α(s̃)∆e(s̃).
Set e(s̃) = γλe(s̃).

end
s = s′

end
N = N + 1

end

is important to note that we still use VN until we are in a terminal state for the update with ∆.
Thus, the algorithm also does not bootstrap information of the beginning of a trajectory to later
times.

There is an online version, see Algorithm 30, of TD(λ) with eligibility traces in
which V is updated during the roll-out (online) via

V (s̃) = V (s̃) + α(s̃)∆e(s̃)

For λ = 0 this is nothing but TD(0) whereas for λ = 1 and suitable choice of α
(which?) this is the every visit Monte Carlo estimator.

This is because we can see in equation ?? that the value function is updated only when the
trajectory ends and not in between. Note that for a functioning algorithm terminating MDPs are
required then. For a similar convergence proof as ??, we necessarily require terminating MDPs.
We need finite expected visits in each non-terminating state such that the update in ?? stays finite:

For every s ∈ S, let 0 < m(s) := Eπ
s

[ ∑∞
t=0 1St=s

]
<∞ and α̃n(s) := αn(s)m(s). Then we can

rewrite the every visit update scheme in the mathematical form

VN+1(s)

= VN (s) + α̃n(s)
[ 1

m(s)

∞∑
t=0

1st=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))− VN (s))
]
.

In this way backwards TD(λ) can be interpreted as stochastic approximation algorithm with
step-sizes α̃n(s) that satisfy the Robbins-Monro condition if and only if αn(s) do.

Theorem 4.5.6. (Convergence of TD(λ) with every-visit updates)
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Let for all s ∈ S with the first visit in k(s) the update of V be

VN+1(s) = VN (s) + αN (s)
∞∑

t=0
1st=s

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γVN (sk+1)− VN (sk)

)
.

with λ < 1 and the trajectory (s0, a0, s1, ...) sampled according to the policy π and
m(s) <∞ for every s ∈ S.

Suppose that all states are visited infinitely often in the algorithm such that the
step-sizes are adapted and satisfy the Robbins-Monro conditions are satisfied:

∞∑
n=1

αn(s) =∞ a.s. and
∞∑

n=1
α2

n(s) <∞ a.s.

for every s ∈ S. Moreover, let the rewards be bounded and 0 < γ < 1. Then
limn→∞ VN (s) = V π(s) almost surely, for every state s ∈ S.

Proof. The filtration FN is defined to be generated by all random variables needed to for the Nst
roll-out. As always we rewrite the update scheme into an asynchronous stochastic approximation
scheme:

VN+1(s0)

= VN (s0) + α̃n(s0)
( 1

m(s0)

∞∑
t=0

1st=s0(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))− VN (s0))
)

= VN (s0) + α̃n(s0)
(
F (VN )(s0)− VN (s0) + εN (s0)

)
with

F (V )(s) := 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(Sk, Ak) + γnVN (St+n))
]

and

εN (s0) := 1
m(s0)

∞∑
t=0

1st=s0(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))

− F (VN )(s0) + VN (s0)− 1
m(s0)

∞∑
t=0

1st=s0VN (s0)

Similarly to the previous proof, V π is a fixed point of F because

F (V π)(s) = 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(
γk−tR(Sk, Ak) + γnV π(St+n)

)]
= 1

m(s)E
π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1Eπ

s

[ t+n−1∑
k=t

(
γk−tR(Sk, Ak) + γnV π(St+n)

) ∣∣∣ (St, At)
]]

= 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1V π(St)

]
= 1

m(s)E
π
s

[ ∞∑
t=0

1St=s

]
(1− λ)

∞∑
n=1

λn−1V π(s)

= m(s)
m(s)V π(s) = V π(s)
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for every s ∈ S. Similarly to the previous proof we also obtain that F is a contraction:

||F (V )− F (W )||∞ = max
s∈S

∣∣∣ 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1(γnV (St+n)− γnW (St+n))

]∣∣∣
≤ max

s∈S

1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1γn||V −W ||∞

]
≤ max

s∈S

1
m(s)E

[
γX

]
Eπ

s

[ ∞∑
t=0

1St=s

]
||V −W ||∞ = E

[
γX

]
||V −W ||∞

for X ∼ Geo(λ). The error term εN (s) fulfills

Eπ
s [εN (s) | FN ] = (F (VN ))(s)− (F (VN ))(s)− 1

m(s)m(s)VN (s) + VN (s) = 0.

As the rewards are bounded, we also get

Eπ
s [ε2

N (s) | FN ] ≤ C ∀N ∈ N, s ∈ S.

So, we got all assumptions for Theorem 4.3.9 and convergence towards the fixpoint V π.

The algorithm can also be modified by not waiting until termination before updating. Then,
VN is directly updated after each step.This is called online updating: We do not wait until the
trajectory is terminated, but use a new version of V every time it has been updated. Using this
update scheme, we can not use the forward and the backward view equivalently anymore: Instead
to wait for the future rewards and update afterwards (forward view), we update the effect of
previous states directly with a new version of the value function. The algorithm according to
this scheme is now given by:

Algorithm 30: Online backwards TD(λ) with eligibility traces
Data: Policy π ∈ ΠS , λ ≥ 0
Result: Approximation V ≈ V π

Initialize V (e.g. V ≡ 0.
while not converged do

Initialize e(s) = 0 for all s ∈ S
Initialize s.
Determine step-sizes α(s), s ∈ S, for next roll-out.
while s not terminal do

a ∼ π(· ; s)
Sample a ∼ π(· ; s).
Sample R(s, a).
Sample s′ ∼ p(· ; s, a).
Set ∆ = R(s, a) + γV (s′)− V (s).
Set e(s) = e(s) + 1.
for s̃ ∈ S do

Update V (s̃) = V (s̃) + α(s̃)∆e(s̃).
Update e(s̃) = γλe(s̃).

end
Set s = s′.

end
end

The convergence of the both versions of TD(λ) can be proven by proving the offline version
first and then showing that the online version and the offline version will converge to the same
function.
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To summarise the discussion of temporal difference with eligibility traces the story
of the chapter kind of reversed. Earlier we suggested different contractions F with
fixed point V π (or Qπ or Q∗) and immediately got an algorithm as approximate
fixed point interation. Here the approach got reversed. A very simple algorithm is
written down and then proved to converge by rewriting into a very tricky contraction
operator.

TD(λ) for Control

To be written... We will only adapt the ideas of the last section to control algorithms now. No
proofs - just algorithms!

SARSA(λ)

Q(λ)

Q-learning can be played offline. Therefore, we can not estimate returns along the sampled
trajectory if the selection policy is not the greedy policy. But we noticed that it might be a
good idea to choose actions which are close to the greedy policy, e.g. ε-greedy. So, if we play the
greedy action in many cases, we can derive Q(λ) as well.



Part III

Non-Tabular Reinforcement
Learning
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Chapter 5

Policy Gradient methods

The third part of these lecture notes takes a very different view on optimal control problems.
While in the previous parts we developed a complete theory of exact and approximate control
in the tabular setting the third part of these lecture notes will be less complete. The theory is
more complex and much less understood. In the case of state-action spaces that are too large
to deal with all Q-values Q(s, a) different further approximations will be discussed. We start
with powerful policy gradient method, where the optimal control problem will be attacked with
numerical maximisation of the value function. While (approximate) dynamical programming
are methods to find policies that are optimal for all states s (by definition of an optimal policy)
we now fix a state s and try to numerically optimise V (s) only. Without much thought an
immediate idea is the following:

Fix a subclass ΠΘ ⊆ ΠS of parametrised stationary policies πθ that hopefully
contains the optimal policy. Maximising the mapping

θ 7→ Jµ(θ) = V πθ

(µ) =
∑
s∈S

µ(s)V πθ

(s)

using a numerical method based on gradient ascent is called a policy gradient
method to optimise the value function started in µ. The best policy is denoted
by πθ∗ and we hope that πθ∗ ≈ π∗. Since ∇Jµ =

∑
s∈S µ(s)∇Js we will state all

formulas only for the case J(θ) = V πθ (s).

There are many questions to be considerd. (1) How to set up an algorithm, how to compute
the gradients? This is answered with the policy gradient theorems that suprisingly show that
gradient estimates can be obtained even in a model free way. (2) How to chose ΠΘ such that
π∗ ∈ ΠΘ? This is a delicate problem, as it results in a trade-off of chosing large and small families
of policies. Not much is known in practical applications, typically neural networks are involved
and one hopes to get close to π∗. (3) How good is the policy obtained for different starting
conditions? A priori the policy gradient approach does not give any information. Typically one
will uses neural networks and try to optimise them for different states s. In order to use gradient
methods it is not surprising that differentiability assumptions are needed.

Definition 5.0.1. Let Θ ⊂ Rd, then a set {πθ : θ ∈ Θ} of stationary policies
such that θ 7→ πθ(a, ; s) is differentiable in θ for every s ∈ S and a ∈ A is called
differentiable parameterised family of stationary policies.

We will later discuss policies parametrised by neural networks which must be large enough
to include enough (hopefully the optimal) policies but at the same time small enough to be
numerically tractable.
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If Θ = Rd then to reduce the dimension of the (very!) large state-action spaces it is
strongly desirable to have d < |A| |S|.

There is a simple example to keep in mind but massively violates the goal to reduce the dimension
of the problem. The stationary softmax policies that were already discussed for bandits in Section
1.3.4 readily extend to general Markov decision problems:

Example 5.0.2. Suppose d = |S||A| so that every state-action pair has an own parameter.
Denote by θ = (θs,a)s∈S,a∈A the parameters for the parametrised family and define the softmax
policy

πθ(a ; s) = eθs,a∑
a′∈A eθs,a′

.

Instead of the (full) tabular parameterisation one can also chose any differentiable function
θ 7→ hθ(s, a) and define the generalised softmax policy

πθ(a ; s) = ehθ(s,a)∑
a′∈A ehθ(s,a′) .

For instance, if hθ(s, a) = θT Φ(s, a) then the parametrisation is called linear softmax with
features Φ(s, a) and needs as many dimensions as features are fixed. If there are as many features
as state-action pairs and every state-action pair only has its own feature, i.e. the vector Φ(s, a)
is a unit vector with 1 at the position corresponding to (s, a), then the linear softmax equals the
tabular softmax. The feature vector is supposed to reduce complexity, state-action pairs with
same feature vector are treated equally. Hence, in practice the number of features should be large
enough to separate state-action pairs sufficiently well but small enough to be computationally
tractable.

The rest of this chapter will consist of making (practical) sense of gradient ascent algorithms to
find optimal policies. Assuming perfect information, i.e. J(θ) = V πθ (s) is known explicitely, then
Algorithm 31 is the kind of algorithm we aim for. Unfortunately, there are plenty of problems.

Algorithm 31: Simple policy gradient algorithm
Data: Initial parameter θ0
Result: Approximate policy πθ ≈ πθ∗

Set n = 1.
while not converged do

Choose step-size α.
Calculate K = ∇J(θ)|θ=θn−1 .
Update θn = θn−1 − αK.
Set n = n + 1.

end

Most importantly the following:

• There is no reason θ 7→ J(θ) satisfies typical concavity conditions (it doesn’t!) to apply
gradient ascent methods, why should gradient ascent not get stuck in some stationary
point, i.e ∇J(θ) = 0?

• The gradient ∇J(θ) is typically not known. But how can gradient ascent be implemented
without access to the gradient?

• The first two issues can (partially) be resolved. Still, the simple policy gradient algorithm
converges extremely slow. How can the algorithm be speed up?
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In the next sections we will shed some light on what is going on. First, classical results for
gradient descent/ascent are recalled. Here we focus on what turns out to be the right set-up for
gradient ascent in the policy gradient setup. The PL inequality and L-smoothness. To get a
certain feeling on how to replace ∇J(θ) by estimates we quickly recall some results and arguments
from stochastic gradient descent. Next, we will discuss the policy gradient theorems and how
to combine them with neural network parametrisations. Finally, a couple of modifications are
discussed that are used in practice.

5.1 A quick dive into gradient descent methods
We will focus during this section1 on gradient descent methods for functions f : Rd → R, i.e. we
aim to find (local) minima of f . Note that all results hold similar for gradient ascent methods by
considering −f instead of f , then all maxima are minima.
Before we get started recall from basic analysis that the negative gradient is the direction of the
steepest descent, i.e.

min
||d||=1

f ′(x)d︸ ︷︷ ︸
slope in direction d

= ∇f(x).

This motivates the minimisation scheme that goes step-by-step in the direction of the gradient
multiplied with the length of each step determined by a step-size:

xn+1 = xn − α∇f(xn), x0 ∈ Rd.

Since only derivatives of first order are involved such a numerical scheme is called a first order
scheme. How to chose the step-size (length of step into gradient direction) is non-trivial. Going
too far might also lead to an increase of the function, not going far enough might lead to very slow
convergence. To get a first feeling have a look at the illustration of two extreme scenarios. For a
quadratic function f(x) = ||x||2 gradient descent can converge in one step, for functions with
narrow valleys the convergence is very slow. The problem in the second example the mixture of
flat direction (in the valley) and steep direction (down the ridge) that is reflected in a large ratio
of largest and smallest Eigenvalue of the Hessian ∇2f(x). Thus, it is not surprising that good
convergence properties hold for functions not too big Eigenvalues (so-called L-smooth functions)
and not too small Eigenvalues (so-called strongly convex). We will not talk about Eigenvalues
but uses equivalent definitions that are more straightforward to be used in the proofs.

To get a first impression in what follows we will go through the most basic theory, for L-smooth
(not too step) and strongly convex (not too flat) functions. What is more relavant for policy
gradient in reinforcement learning is the continuation for functions that satisfy the so-called PL
inequality (gradient dominates the function differences).9
Let us start with L-smoothness.

1For much more please check the lecture notes https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/
doering/OptiML/Sheets/lecture_notes_01.pdf of Simon Weißmann and, of course, the standard text book
"Nonlinear programming" of Dimitri P. Bertsekas from which most proofs are taken.

https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/lecture_notes_01.pdf
https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/doering/OptiML/Sheets/lecture_notes_01.pdf
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Definition 5.1.1. We call a function f : Rd → R L-smooth if f is differentiable
and the gradient ∇f is L-Lipschitz continuous, i.e.

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd. (5.1)

L-smoothness is a property in which gradient descent algorithms have a good chance to converge
and, luckily, gradients of value functions of MDPs are L-smooth for some choices of policies. To
get an idea of what L-smoothness means note that for twice-differentiable f the L-smoothness is
equivalent to all eigenvalues of the Hessian ∇2f(x) to be in [−L, L]. Thus, L-smooth function
do not have very strong curvature.

5.1.1 Gradient descent for L-smooth functions
In this first section we consider gradient descent with the only assumption of f being L-smooth.
In that case gradient descent does not necessarily converge to a (local) minimum but we can
show it converges (if it converges) to a stationary point, i.e. a point with vanishing gradient.
Stationary points are not necessarily (local) extreme points, saddle points are also stationary.

Lemma 5.1.2. Let f : Rd → R be L-smooth for some L > 0. Then it holds that

f(x + y) ≤ f(x) + yT∇f(x) + L

2 ∥y∥
2︸ ︷︷ ︸

tangent at x plus quadratic

(5.2)

for all x, z ∈ Rd.

Note that small L makes the deviation of ∇f smaller, thus, the function smoother. It will later
turn out that convergence of gradient descent is faster for smoother functions.

Proof. We define ϕ(t) = f(x + ty) and apply the chain rule in order to derive

ϕ′(x) = yT∇f(x + ty), t ∈ [0, 1].

By the fundamental theorem of calculus it follows

f(x + y)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t)dt

=
∫ 1

0
yT∇f(x + ty)dt

=
∫ 1

0
yT∇f(x)dt +

∫ 1

0
yT (∇f(x + ty)−∇f(x))dt

≤ yT∇f(x) +
∫ 1

0
∥y∥ ∥∇f(x + ty)−∇f(x)∥dt

≤ yT∇f(x) + ||y||
∫ 1

0
Lt · ∥y∥dt

≤ yT∇f(x) + L

2 ∥y∥
2,

where we have applied Cauchy-Schwarz followed by L-smoothness.

The aim is to show that the gradient descent algorithm converges to a (local) minimum. This is
not always the case, the algorithm can for instance also converge to saddle points. What is true
without any assumptions, except the minimal differentiability, is the convergence to a stationary
point, i.e. a point with vanishing gradient.
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Theorem 5.1.3. Let f : Rd → R be L-smooth and (xk)k∈N be defined as

xk+1 = xk − α∇f(xk), x0 ∈ Rd,

with non-negative step-size α ∈ [ε, 2−ε
L ] for some ε < 2

L+1 . Then every accumulation
point x̄ of (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.

Proof. Sara irgendwann, war nicht in der Vorlesung.

The theorem also holds for diminuishing step-sizes αk. Only if those decay too strongly (being
summable) the algorithm might produce a sequence that stops moving away from a stationary
point.

Proposition 5.1.4. Let f : Rd → R be L-smooth and (xk)k∈N be defined as

xk+1 = xk − αk∇f(xk), x0 ∈ Rd,

with non-negative step-size sequence (αk)k∈N that fulfills

lim
k→∞

αk = 0 and
∞∑

k=0
αk =∞.

Then for the sequence (f(xk))k∈N it holds true that either

lim
k→∞

f(xk) = −∞ or lim
k→∞

∇f(xk) = 0.

Moreover, every accumulation point x̄ of (xk)k∈N is a stationary point of f , i.e.
∇f(x̄) = 0.

Note that the step-sizes can also be constant but the convergence also holds for decreasing
step-sizes that do not decrease too fast.

Proof. First we apply the descent lemma to derive

f(xk+1) = f(xk − αk∇f(xk))

≤ f(xk)− αk∇f(xk)T∇f(xk) + L

2 ∥αk∇f(xk)∥2

= f(xk)− αk

(
1− Lαk

2

)
∥∇f(xk)∥2.

Since we have assumed that limk→∞ αk = 0, there exists a k0 ∈ N such that

f(xk+1) ≤ f(xk)− αk

2 ∥∇f(xk)∥2

for all k ≥ k0. Hence, the sequence (f(xk))k≥k0 is decreasing and it either holds that
limk→∞ f(xk) = −∞ or limk→∞ f(xk) = M for some M < ∞. Suppose that we are in
the case where limk→∞ f(xk) = M . It follows

K∑
k=k0

αk

2 ∥∇f(xk)∥2 ≤
K∑

k=k0

[
f(xk)− f(xk+1)

]
= f(xk0)− f(xK)

for ever K > k0, using that
∑K

k=k0
[f(xk)− f(xk+1)] is a telescoping sum. For K →∞ we even

imply
∞∑

k=k0

αk

2 ∥∇f(xk)∥2 ≤ f(xk0)−M <∞. (5.3)
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Since
∑∞

k=0 αk =∞, there can not exist any ϵ > 0 such that ∥∇f(xk)∥2 > ϵ for all k ≥ k̂ ≥ 0.
However, this only means that

lim inf
k→∞

∥∇f(xk)∥ = 0.

In order to prove limk→∞∥∇f(xk)∥ = 0 we will use (5.3) to prove that lim supk→∞∥∇f(xk)∥ = 0.
Suppose that lim supk→∞∥∇f(xk)∥ > ϵ for some ϵ > 0 and consider two sequences (mj)k∈N,
(nj)j∈N with mj < nj < mj+1 such that

ϵ

3 < ∥∇f(xk)∥, for mj ≤ k < nj

and

∥∇f(xk)∥ ≤ ϵ

3 , for nj ≤ k < mj+1.

Moreover let j̄ ∈ N be sufficently large such that
∞∑

k=mj

αk∥∇f(xk)∥2 ≤ 2 ϵ2

9L
.

Using L-smoothness for j ≥ j̄ and mj ≤ m ≤ nj − 1 it holds that

∥∇f(xnj )−∇f(xm)∥ ≤
nj−1∑
k=m

∥∇f(xk+1)−∇f(xk)∥

≤ L

nj−1∑
k=m

∥xk+1 − xk∥

= 3ϵ

3ϵ
L

nj−1∑
k=m

αk∥∇f(xk)∥

≤ 3L

ϵ

nj−1∑
k=m

αk∥∇f(xk)∥2

≤ 6
ϵ

ϵ2

9L
= 2ϵ

3 ,

where we have used that ϵ
3 < ∥∇f(xk)∥ for mj ≤ k ≤ nj − 1. This implies that

∥∇f(xm)∥ ≤ ∥∇f(xnj )∥+ ∥∇f(xnj )−∇f(xm)∥ ≤ ∥∇f(xnj )∥+ ϵ

3 ≤ ϵ

for all m ≥ mj̄ . This is in contradiction to lim supk→∞∥∇f(xk)∥ ≥ ϵ and we have proved that

lim sup
k→∞

∥∇f(xk)∥ = lim inf
k→∞

∥∇f(xk)∥ = lim
k→∞

∥∇f(xk)∥ = 0.

Finally, let x̄ ∈ Rd be an accumulation point of (xk)k∈N. Since (f(xk))k≥k0 is decreasing, it
follows by continuity that

lim
k→∞

f(xk) = f(x̄) <∞

then also

∇f(x̄) = lim
k→∞

∇f(xk) = 0.
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5.1.2 Gradient descent for L-smooth, convex functions

We will now study the convergence of gradient descent under the additional assumption of
convexity. For convex and L-smooth f convergence of the gradient descent recursion to a global
minimum can be proved. Since for general convex functions there is no guarantee for the existence
of a unique global minimum, we do only expect convergence to some global minimum x∗ ∈ Rd.
In order to talk about convergence rates one typically considers an error function e : Rd → R with
the property e(x) ≥ 0 for all x ∈ Rd and e(x∗) = 0 for some x∗ ∈ Rd, e.g. x∗ ∈ arg minx∈Rdf(x)
assuming it exists. Given an error function we define the follwing convergence rate

Definition 5.1.5. We say that the sequence of errors (e(xk))k∈N converges linearly,
if there exists c ∈ (0, 1) such that

e(xk+1) ≤ ce(xk)

for all k ∈ N.

As gradient descent is a first order method, we cannot expect faster convergence that linear.
Convergence rates which are slower than linear convergence are called sublinear. For convex and
smooth function we can prove the following sublinear convergence rate.

Theorem 5.1.6. Let f : Rd → R be convex and L-smooth, and let (xk)k∈N be
generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ ≤ 1
L . Moreover, we assume that the set of all global minimums of f is

non-empty. Then the sequence (xk)k∈N converges in the sense that

e(xk) := f(xk)− f∗ ≤
c

k + 1 , k ∈ N

for some constant c > 0 and f∗ = minx∈Rd f(x).

Note again that since there are no unique mimima we do not aim to prove convergence of xn to
x∗ but instead convergence of f(xn) to f(x∗).

Proof. We again apply the descent lemma 5.1.2 to the recursive scheme (y = xk+1 − xk, x = xk)
to obtain

f(xk+1) ≤ f(xk)− ᾱ∥∇f(xk)∥2 + Lᾱ2

2 ∥∇f(xk)∥2

= f(xk) + ᾱ
(Lᾱ

2 − 1
)
∥∇f(xk)∥2.

Since ᾱ ≤ 1
L , we have ( Lᾱ

2 − 1) < 0 and therefore, the sequence (f(xk))k∈N is decreasing. Now,
let x∗ ∈ Rd be a global minimum of f such that due to convexity it holds true that

f(xk) + (x∗ − xk)T∇f(xk)︸ ︷︷ ︸
tangent at x∗

≤ f(x∗).

In the one-dimensional case this is nothing but saying that the tangents at the minimum lie
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above the graph. We plug this into the above inequality to imply

f(xk+1) ≤ f(xk) + ᾱ
(Lᾱ

2 − 1
)
∥∇f(xk)∥2

≤ f(x∗)− ᾱ

ᾱ
(x∗ − xk)T∇f(xk) + ᾱ

(Lᾱ

2 − 1
)
∥∇f(xk)∥2

= f(x∗) + 1
ᾱ

[1
2∥x∗ − xk∥2 + ᾱ2

2 ∥∇f(xk)∥2 − 1
2∥(x∗ − xk) + ᾱ∇f(xk)∥2

]
+ ᾱ

(Lᾱ

2 − 1
)
∥∇f(xk)∥2,

where we have used −aT b = 1
2∥a∥

2 + 1
2∥b∥

2 − 1
2∥a + b∥2 for a, b ∈ Rd. Rearanging the righthand

side yields

f(xk+1) ≤ f(x∗) + 1
2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2)

+ ᾱ
(Lᾱ

2 −
1
2

)
∥∇f(xk)∥2

≤ f(x∗) + 1
2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2)

,

where we have used again that ᾱ ≤ 1
L . Taking the sum over all iterations gives

N∑
k=0

(
f(xk+1)− f(x∗)

)
≤ 1

2ᾱ

N∑
k=0

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2)

≤ 1
2ᾱ

(
∥x∗ − x0∥2 − ∥x∗ − xN+1∥2)

≤ 1
2ᾱ
∥x∗ − x0∥2,

where we have applied a telescoping sum. With the decrease of (f(xk))k∈N it holds true that

N∑
k=0

f(xk+1) ≥ (N + 1)f(xN+1),

and therefore, the assertion follows with

f(xN+1)− f(x∗) ≤ 1
N + 1

N∑
k=0

(
f(xk+1)− f(x∗)

)
≤ 1

N + 1
1

2ᾱ
∥x∗ − x0∥2 =: c

N + 1 .

Definition 5.1.7. Let C ⊂ Rd be a convex set. A function f : C → R is called
µ-strongly convex over C, if

f(y) ≥ f(x) + (y − x)T∇f(x) + µ

2 ∥y − x∥2︸ ︷︷ ︸
tangent at x plus quadratic

for all x, y ∈ C.

If we tighten the assumption on convexity and assume µ-strong convexity instead, we can improve
the convergence rate from sublinear to linear convergence as follows.

Theorem 5.1.8. Let f : Rd → R be µ-strongly convex for some µ > 0 and



5.1. A QUICK DIVE INTO GRADIENT DESCENT METHODS 129

L-smooth, as let (xk)k∈N be generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ < 1
L . the the sequence (xk)k∈N converges linearly in the sense that there

exists c ∈ (0, 1) such that

e(xk) := ∥xk − x∗∥ ≤ ck∥x0 − x∗∥, k ∈ N

where x∗ ∈ Rd is the unique global minimum of fawith f(x∗) = minx∈Rd f(x). The
constant can be chosen as c = (1 + µ

L )−1/2.
ain contrast to convex functions strongly convex functions have a unique minimum

An example for such a function is f(x) = x2 − cos(x). Note that for strongly convex L-smooth
functions the convergence also implies linear convergence of f(xn) to f(x∗) because (Nesterov,
page 64)

f(xn)− f(x∗) ≤ 1
2µ
||∇f(xn)−∇f(x∗)||2 ≤ L

2µ
||xn − x∗||2 ≤ (c2)n L

2µ
||x0 − x∗||.

so that the theorem significantly strengthends the previous theorem on only convex functions.2

Proof. Let x∗ ∈ Rd be the unique global minimum of f with ∇f(x∗) = 0. Since f is assumed to
be µ-strongly convex, by Definition 5.1.7 it holds true that

µ

2 ∥xk+1 − x∗∥2 = ∇f(x∗)T (xk+1 − x∗) + µ

2 ∥xk+1 − x∗∥2 ≤ f(xk+1)− f(x∗).

Because µ-stronly convex implies convexity (exercise) we can use the calculations from the
previous proof of Theorem 5.1.6, where we have derived that

f(xk+1)− f(x∗) ≤ 1
2ᾱ

(
||xk − x∗||2 − ||xk+1 − x∗||2

)
and together we obtain (µ

2 + 1
2ᾱ

)
∥xk+1 − x∗∥2 ≤ 1

2ᾱ
∥xk − x∗∥2.

The assertion follows via induction using the inequality with c =
√

1
1+ µ

ᾱ
∈ (0, 1).

For the choice ᾱ = 1
L we see from the proof that the upperbound of gradient descent is given by

∥xk − x∗∥ ≤
(√

1
1 + µ

L

)k

∥x0 − x∗∥.

This means that the speed of convergence (small c is better) is determined by the ratio of
smoothness L and strong converxity µ:

c =
√

1
1 + µ

L

Thus, small L (very smooth function) and large µ (very convex function) yield fast convergence.
2aufschreiben
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5.1.3 Gradient descent for L-smooth functions with PL inequality
In the applications for policy gradient methods the assumption of convexity (actually concavitiy
as functions are maximised) is not fulfilled already for simple examples. There is one way to
relax this assumption to so called Polyak-Łojasiewicz (PL) conditions and this, in fact, holds for
certain situations in reinforcement learning3.

Theorem 5.1.9. Let f : Rd → R be L-smooth and satisfied the PL condition
holds for some r ∈ (0, L)

∥∇f(x)∥2 ≥ 2r(f(x)− f∗), x ∈ Rd, (5.4)

with f∗ = minx∈Rd f(x) > −∞. Then the sequence (xk)k∈N generated by

xk+1 = xk + ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ = 1
L converges linearly in the sense that there exists c = 1− r

L ∈ (0, 1) such
that

e(xk) := f(xk)− f∗ ≤ ck(f(x0)− f∗).

Note again that since there are no unique mimima we do not aim to prove convergence of xn to
x∗ but instead convergence of f(xn) to f(x∗).

Proof. As usually we first apply the descent Lemma 5.1.2 to get

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + L

2 ∥xk+1 − xk∥2.

With xk+1 = xk − ᾱ∇f(xk) we obtain

f(xk+1) ≤ f(xk)− ᾱ∥∇f(xk)∥2 + Lᾱ2

2 ∥∇f(xk)∥2

= f(xk)− ᾱ(1− Lᾱ

2 )∥∇f(xk)∥2

= f(xk)− 1
2L
∥∇f(xk)∥2.

Using the PL-inequality yields

f(xk+1)
(5.4)
≤ f(xk)− r

L (f(xk)− f∗).

Subtracting f∗ from both sides, we get

f(xk+1)− f∗ ≤ (1− r
L )(f(xk)− f∗)

and the claim follows by induction.

The idea behind Inequality (5.4), also known as PL or Polyak-Lojasiewicz inequality, is very
simple. The inequality ensures that the gradient does not vanish as long as the gradient descent
algorithm has not reached x∗. Since the algorithm is based on the gradient the algorithm does
not stop moving as long f(xk) has not reached f∗. Here is another view. For every x ∈ Rd the
PL inequality lower bounds the norm of the gradient by the difference of f(x) to some global
minimum of f . This implies, that a small gradient at x implies a small difference between the
function value f(x) and the global optimum. Given that gradient descent for L-smooth functions
implies convergence to a stationary point by Theorem 5.1.4 it is not surprising that the PL
condition is exactly what is needed for convergence. Estimates of the PL type are called gradient
domination inequalities.

3Mei, Xiao, Szepesvaári, Schuurmans: "On the Global Convergence Rates of Softmax Policy Gradient Methods",
ICML 2020



5.1. A QUICK DIVE INTO GRADIENT DESCENT METHODS 131

Prove that µ-strong convexity and L-smoothness imply the PL condition (5.4).

Condition (5.4) can be relaxed a little bit to remain convergence of gradient descent but just
with a sublinear convergence rate.

Theorem 5.1.10. Let f : Rd → R be L-smooth and satisfied the ’weak’ PL
condition

∥∇f(x)∥ ≥ 2r(f(x)− f∗) (5.5)

for some r ∈ (0, L) and all x ∈ Rd with f∗ = minx∈Rd f(x) > −∞. Then the
sequence (xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ = 1
L converges linearly in the sense that there exists c = 1− r

L ∈ (0, 1) such
that

e(xk) := f(xk)− f∗ ≤
L

2r2(k + 1) .

Proof. As in the previous proof we first start with the estimate

f(xk+1) ≤ f(xk)− 1
2L
∥∇f(xk)∥2.

that uses the L-smoothness. Applying the weak PL-inequality gives

f(xk+1) ≤ f(xk)− 1
2L

4r2(f(xk)− f∗)2.

Substracting f∗ on both sides of the inequality yields the recursion

e(xk+1) ≤ e(xk)− 2r2

L
e(xk)2. (5.6)

We will show, that for any positive sequence (an)n∈N with an ∈ [0, 1
q ] for some q > 0, which

satisfies the diminishing contraction

0 ≤ an+1 ≤ (1− qan)an ∀n ≥ 0,

converges to zero with convergence rate

an ≤
1

nq + 1
a0

≤ 1
(n + 1)q .

To see this, we divide the reordered contraction

an ≥ an+1 + qa2
n

by anan+1 to obtain
1

an+1
≥ 1

an
+ q

an

an+1︸ ︷︷ ︸
≥1

≥ 1
an

+ q

which leads to
1

an
− 1

a0
=

n−1∑
k=0

( 1
ak+1

− 1
ak

)
≥ nq.
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Reordering we get our claim

an ≤
1

nq + 1
a0

a0≤ 1
q

≤ 1
(n + 1)q .

If we can show that e(xk) ≤ L
2r2 for all k, then the claim follows by applying this to (5.6). By

L-smoothness we obtain from the descent lemma and the recursion with ᾱ = 1
L

f∗ ≤ f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) + L

2 ∥xk+1 − xk∥2

= f(xk)− 1
L
∥∇f(xk)∥2 + 1

2L
∥∇f(xk)∥2

= f(xk)− 1
2L
∥∇f(xk)∥2,

which implies

f∗ − f(xk) ≤ − 1
2L
∥∇f(xk)∥2.

Therefore by the weak PL-condition

e(xk) ≥ 1
2L
∥∇f(xk)∥2 ≥ 2r2

L
e(xk)2.

Dividing both sides by e(x) and rearranging the terms results in e(xk) ≤ L
2r2 .

One can ask the justified question whether there exists functions which are L-smooth and not
convex but satisfy the PL condition. Indeed there are some:

Show that f(x) = x2 + 3 sin2(x) satisfies the PL condition (5.4) and prove that f is
not convex. Plot the function to see why gradient descent converges. Hint: The
plot can also help to find the parameter r of the PL condition.

5.1.4 Stochastic gradient descent methods
Aus Simons Skript, nur das erste Theorem ueber Konvergenz zum stationaeren Punkt.

5.1.5 Regularisation
dieses Jahr noch nicht. 4

5.2 Policy gradient theorems
As the name policy gradient suggests, the optimisation method we want to use is gradient ascent
in order to find a maximum of the objective function J . This requires that Js is differentiable in
θ and a practical formula for the gradient to apply Algorithm 31. To start the discussion we
first prove formulas for ∇J(θ) that go back to Sutton, McAlister, Singh, and Mansour5. Their
observation was that the gradient ∇J(θ) can be expressed rather nicely and, most importantly,
can be approximated in a model-free way as the appearing expectations do not involve the
transition probabilities and can be approximated by sampling only.
For didactic reasons we first deal with finite-time MDPs with undiscounted rewards and ad-
ditionally consider stationary policies only. The situation is not extremely realistic as most
finite-time MDPs do not have optimal strategies that are stationary (think of the ice-vendor

4discuss regularisation in non-linear optimisation! take previous example as an example
5Sutton, McAlister, Singh, Mansour: "Policy Gradient Methods for Reinforcement Learning with Function

Approximation", NIPS, 1999
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where closer towards the final selling day the ice-vendor will store less ice-cream). Nonetheless,
there are examples with optimal stationary policies (think of Tic-Tac-Toe) and the computations
are simpler to understand the policy gradient theorems. Once the structure of the gradients is
understood we proceeed with the discounted infinite-time case.

5.2.1 Finite-time undiscounted MDPs

In this didactic section we wil derive three different expressions of the gradient. The first theorem
will show that differentiability of θ 7→ J(θ) follows from the differentiability of the parameterised
policy and gives a first formula for the gradient as an expectation. In everything that follows let
us write

RT
t =

T −1∑
k=t

Rk+1.

for the rewards after time t (this is also called a reward to go) and RT
0 for the total (non-discounted)

reward.

Theorem 5.2.1. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function with respect to θ exists and
is given by

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
RT

0

]
.

The statement involves the expectation of a vector which is always defined to be the vector of
expectations of all coordinates of the random vector involved. Please check carefully how this
appears in the proof!

Proof. Consider a trajectory τ = (s0, a0, r0, . . . , sT −1, aT −1, rT −1, sT , rT ) of the T -step MDP
and recall the MDP path probability

Pπθ

s

(
(S, A, R) = τ

)
= δs(s0)δ0(r0)

T −1∏
t=0

πθ(at ; st)p({st+1, rt+1} ; st, at)

from (3.3). Define

T =
{

τ = (r0, s0, a0, r1, . . . , sT −1, aT −1, rT , sT ) : rt ∈ R, st ∈ S,∀t ≤ T, at ∈ A,∀t < T
}

as the set of all trajectories. From the definition of the value function for a T -step MDP we
deduce that

Js(θ) = V πθ

(s) = Eπθ

s

[ T −1∑
t=0

Rt+1

]
=

∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

) T −1∑
t=0

rt+1.

The probabilities are clearly differentiable, thus, for finite state-action states J(θ) is a finite sum
of differentiable functions. This proves the differntiability. Next we use the log-trick we have
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already seen for policy gradient in bandits. We have

∇θPπθ

s

(
(S, A, R) = τ

)
= ∇θ(Pπθ

s

(
(S, A, R) = τ

)
)
Pπθ

s

(
(S, A, R) = τ

)
Pπθ

s

(
(S, A, R) = τ

)
= ∇θ

(
log(Pπθ

s

(
(S, A, R) = τ

)
)
)
Pπθ

s

(
(S, A, R) = τ

)
= ∇θ

(
log(δs(s0)) + log(δ0(r0)) +

T −1∑
t=0

(
log(πθ(at; st)) + log(p({st+1, rt+1}; st, at))

))
× Pπθ

s

(
(S, A, R) = τ

)
=

T −1∑
t=0
∇θ

(
log(πθ(at; st))

)
Pπθ

s

(
(S, A, R) = τ

)
.

Due to the log-trick the product of probabilities factors into a sum, where just the summands πθ

depend on θ and so all other summands have derivative 0. Finally we can use the finiteness of
the state, action and reward space to see that we can interchange the derivative and the sum,
and it follows that V πθ is differentiable. We conclude with

∇θJs(θ) = ∇θV πθ

(s)

=
∑
τ∈T
∇θPπθ

s

(
(S, A, R) = τ

) T −1∑
t=0

rt+1

=
∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

) T −1∑
t=0
∇θ

(
log(πθ(at; st))

) T −1∑
t=0

rt+1

= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

) T −1∑
t=0

Rt+1

]
= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
RT

0

]
.

The formula for ∇Js(θ) crucially involves ∇(log(πθ(a ; s))) that in Section 1.3.4 was already
called the score-function of the policy.

Definition 5.2.2. If π is a policy, then the vector ∇θ(log(πθ(a ; s))) is called the
score-function of π.

We have already computed the score-function of the (one-state) softmax policy for stochastic
bandits. To get a feeling please redo the computation:

Show for the tabular softmax parametrisation from Example 5.0.2 that

∂ log(πθ(a ; s))
∂θs′,a′

= 1{s=s′}(1{a=a′} − πθ(a′ ; s′))

and for the linear softmax with features Φ(s, a)

∇ log(πθ(a ; s)) = Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

Given the previous theorem, we weight the gradient of the log-probability of the choosen action
with the reward of the whole trajectory RT

0 . So the gradient with respect to the t-th summand
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(and thus the t-th action) is weighted with RT
0 , but due to the Markov property the action in

time t is completely independent from the past time points 0, . . . , t − 1. In the next theorem
we will see that we can indeed replace RT

0 by the rewards of the future time points t′ ≥ t. We
replace the reward of the whole trajectory by the reward to go RT

t .

Theorem 5.2.3. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function can also be written as

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
RT

t

]
.

Proof. From Theorem 5.2.1 we have

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

) T −1∑
t=0

Rt+1

]
=

T −1∑
t′=0

T −1∑
t∗=0

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
.

For every t∗ < t′ we see

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
=

∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

)
∇θ

(
log(πθ(at′ ; st′))

)
rt∗+1

=
∑
a0

∑
s1

∑
r1

· · ·
∑

aT −1

∑
sT

∑
rT

T −1∏
t=0

πθ(at; st)p({st+1, rt+1}; st, at)
(
∇θ

(
log(πθ(at′ ; st′))

)
rt∗+1

)
=

∑
a0

∑
s1

∑
r1

· · ·
∑
st∗

∑
rt∗

t∗∏
t=0

πθ(at; st)p({st+1, rt+1}; st, at)
∑
at∗

πθ(at∗ ; st∗)

×
∑

st∗+1

∑
rt∗+1

p({st∗+1, rt∗+1}; st∗ , at∗)rt∗+1
∑

at∗+1

πθ(at∗+1; st∗+1)× . . .

×
∑
st′

∑
rt′

p({st′ , rt′}; st′ , at′)
∑
at′

πθ(at′ ; st′)∇θ

(
log(πθ(at′ ; st′))

)
︸ ︷︷ ︸

=
∑

a
t′

∇θπθ(at′ ;st′ )=∇θ

∑
a

t′
πθ(at′ ;st′ )=∇θ1=0

×
sum of probabilities︷︸︸︷

1

= 0.

It follows directly that

∇θJs(θ) =
T −1∑
t′=0

T −1∑
t∗=0

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
=

T −1∑
t′=0

T −1∑
t∗=t′

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
= Eπθ

s

[ T −1∑
t′=0
∇θ

(
log(πθ(At′ ; St′))

) T −1∑
t∗=t′

Rt∗+1

]
= Eπθ

s

[ T −1∑
t′=0
∇θ

(
log(πθ(At′ ; St′))

)
RT

t′

]
.
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In the last step we will replace the reward-to-go with the Q-function.

Theorem 5.2.4. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function can also be written as

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]
.

Proof. For the proof we use the property of a Markov reward process to get 6

Qπθ

t (St, At) = Eπθ

s

[
RT

t | (St, At)
]
.

Then the claim follows from Theorem 5.2.3:

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
RT

t

]
= Eπθ

s

[
Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
RT

t

∣∣∣(St, At)
]]

= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
Eπθ

s

[
RT

t

∣∣(St, At)
]]

= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
Qπθ

t (St, At)
]

For intuition the Q-function indicates the expected reward-to-go and not the reward-to-go for a
specific trajectory. More precisely, we have to distinguish between the outer expectation and the
expectation in the definition of the Q-function. While the reward-to-go depends on the trajectory
of the outer expectation, the Q-function calculates its own expectation. For the moment one
might wonder whether there is any use in this representation, Qπθ is not known. The miracle
why this can be useful will be solved later when we discuss actor-critic methods for which a
second parametrisation is used for Q.

Definition 5.2.5. In general optimization methods that aim to maximise f and
the gradient of f takes the form of an expectation that can be sampled are typically
called stochastic gradient methods. The usual form of the gradients is

∇f(θ) = E[g(X, θ)],
for policy gradient the form is more delicate

∇f(θ) = Eθ[g(X, θ)].

If (unbiased) samples ∇̃f(θ) for the gradients are available (samples of the expecta-
tion), the update scheme

θ ← θ − α∇̃f(θ)
is called stochastic gradient algorithm. If more than one sample is used to estimate
the gradient as a Monte Carlo average the algorithm is called a batch stochastic
gradient ascent algorithm. The number of samples avaraged is called the batch size.

6irgendwann in super saubere theorie quetschen
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Let us come back to the goal of performing a gradient ascent algorithm to maximise V πθ with
initial distribution µ. Using the policy gradient representations the gradient ascent update can
be written as

θt+1 = θt − αEπθ

µ

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

or

θt+1 = θt − αEπθ

µ

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

) T −1∑
t′=t

Rt+1

]
.

Unfortunately, the exact expectations are typically unknown and must be estimated. Similar
to the approximate dynamic programming chapter we rewrote the gradient as an expectation
and thus can estimate the expectation with samples As earlier the first obvious idea to estimate
the gradients is the model-free Monte Carlo method. As the Q-function appearing inside the
expectation is an unknown value (and an expectation itself) it is most common in applications to
use the second policy gradient theorem instead of the third. This can be interpreted as estimating
the Q-function by the unbiased estimator RT

t , the reward-to-go. An estimator for the gradient is
then given by

∇̃Jµ(θ) = 1
K

K∑
i=1

[ T −1∑
t=0
∇θ

(
log πθ(ai

t ; si
t)

) T −1∑
t′=t

rt′+1

]
, (5.7)

with K trajectories (si
0, ai

0, si
1, ri

1, . . . , ai
T −1, si

T , ri
T ) sampled according to the current policy πθ

with initial distribution µ.

Algorithm 32: REINFORCE: (Batch-)Stochastic policy gradient algorithm
Data: Initial parameter θ0, K ≥ 1, initial distribution µ
Result: Approximate policy πθL ≈ πθ∗

l = 1.
while not converged do

for i = 1, . . . , K do
Sample initial condition si

0 from µ.
Sample trajectory

(
si

0, ai
0, si

1, ri
1, . . . , ai

T −1, si
T , ri

T

)
using policy πθl−1 .

end
Determine step-size α.

∇̃J(θl−1) = 1
K

∑K
i=1

[ T −1∑
t=0
∇θ

(
log πθl−1(ai

t ; si
t)

) T −1∑
t′=t

ri
t′+1

]
θl = θl−1 − α∇̃J(θl−1)

end
Set l = l + 1.

This famous algorithm, even not in exactly that form, is due to Ronald Williams7. To use the
algorithm in practice a stopping condition needs to be fixed. Typically, either the number of
iterations is fixed or the algorithm is terminated when the norm of the gradient reaches a small
threshold.

Sampling a trajectory sounds harmless for a Mathematician. But it is not at all!
Imagine we learn how to steer a car or a certain robotic task and πθ is a policy. Then
sampling means running the car (or the robot) K times with the current (possibly

7Williams: "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning",
Machine Learning, 8, 229-256, 1992
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very bad) policy while evaluating the rewards! It is thus easy to imagine pitfalls
for practical applications. Sample efficiency (using as little samples as possible)
in learning is essential and also sampling from very bad policies might be a costly
endeavour.

5.2.2 Infinite-time MDPs with discounted rewards
In this section we will consider MDPs with infinite time horizon and discounted rewards. Recall
that in this setting the use of stationary policies is justified. As before we aim to rewrite the
gradient of the value function as an expectation, but now the infinite time horizion makes it
much more complex to calculate the gradient of the value function. The objective function using
a parameterised policy πθ is given by

Js(θ) = V πθ

(s) = Eπθ

s

[ ∞∑
t=0

γtRt+1

]
=

∑
a∈As

πθ(a; s)Qπθ

(s, a). (5.8)

The infinite sum makes the computation of the gradient more challenging. The trick we will use,
is to derive the rhs of (5.8) with the chain rule to get a fixed point equation of ∇J(θ). Using
this we will be able to obtain a closed form of the gradient.

Theorem 5.2.6. Under the assumption that Js is differentiable for ever start
state s ∈ S we have a closed form of the gradient

∇Js(θ) =
∑
s′∈S

∑
a∈As′

ρπθ

(s′)∇πθ(a; s′)Qπθ

(s′, a),

where ρπ(s′) =
∑∞

t=0 γtPπ
s (St = s′) = Eπ

s [
∑∞

t=0 γt1St=s′ ].

Proof. The proof uses an ugly induction. With the notation p(s → s′; n, π) = Pπ
s (Sn = s′) we

first show the following identity by induction:

For all n ∈ N it holds that

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)∇Js′(θ).

By the chain rule we have that

∇Js(θ) =
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)∇Qπθ

(s, a)
)

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)∇
(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)V πθ

(s′)
))

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)γ
∑
s′∈S

p(s′; s, a)∇Js′(θ)
)

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)γ
∑
s′∈S

p(s′; s, a)
( ∑

a′∈As′(
∇πθ(a′; s′)Qπθ

(s′, a′) + πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

)))
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=
1∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑

s′′∈S
γ2p(s→ s′′; 2, πθ)∇Js′′(θ).

This is the induction for n = 1. For the inductive step suppose the statement holds for some
n ∈ N. The same computation, plugging-in the gradient, yields

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)∇Js′(θ)

=
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)

×
( ∑

a′∈As′

(
∇πθ(a′; s′)Qπθ

(s′, a′) + πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

))

=
n+1∑
t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ) ·
( ∑

a′∈As′

πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

)

=
n+1∑
t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑

s′′∈S
γn+2p(s→ s′′; n + 2, πθ)∇Js′′(θ).

The remainder term vanishes in the limit:∣∣∣ ∑
s′′∈S

γn+2p(s→ s′′; n + 2, πθ)∇Js′′(θ)
∣∣∣ ≤ γn+2|S|max

s∈S
|∇Js(θ)| → 0, n→∞.

Hence, we proved that

∇Js(θ) =
∞∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

=
∑
s′∈S

ρπθ

(s′)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a).

The exchange of limits and sums is justified as we assume S to be finite.

For episodic MDPs (the MDP terminates almost surely under all policies πθ), we
can get rid of the assumption of the existence of ∇Js(θ). Go through the proof of
Theorem 5.2.6 and argue why it is enough to assume the existence of ∇πθ(· ; s) for
all s ∈ S.

Taking a closer look at the expression from the gradient, it is obvious that the infinite sum
ρπ(s′) = Eπ

s [
∑∞

t=0 γt1St=s′ ] is unpleasant for implementations. There is an alternative way to
rewrite the policy gradient theorem using the discounted state visitation measure:
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Definition 5.2.7. The discounted state-visitation measure under policy π for
starting state s ∈ S is given by

dπ
s (s) := ρπ(s)∑

s′ ρπ(s′) .

First note that, using Fubini’s theorem,

∑
s′∈S

ρπθ

(s′) =
∑
s′∈S

Eπ
s

[ ∞∑
t=0

γt1St=s′

]
= 1

1− γ
.

Hence, the normalised state-visitation measure is actually much simpler: dπ(s) = (1− γ)ρπ(s).
With this definition the gradient can also be written as follows:

Theorem 5.2.8. Under the assumption that Js(θ) is differentiable for ever start
state s ∈ S the gradient can be expressed as

∇Js(θ) = 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∇ log(πθ(A ; S))Qπθ

(S, A)
]

= 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

s (s′)πθ(a; s′)∇ log(πθ(a; s′))Qπθ

(s′, a).

In essense the theorem says the following. Draw a state-action pair (s, a) according to their
relevance measured in terms of expected discounted frequency, compute the direction using the
score function, and follow that direction according to the expected reward.

Proof. By Theorem 5.2.6 we have

∇Js(θ) =
∑
s′∈S

ρπθ

(s′)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

=
∑
ŝ∈S

ρπθ

(ŝ)
∑
s′∈S

dπθ

s (s′)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

= 1
1− γ

∑
s′∈S

dπθ

s (s′)
∑

a∈As′

πθ(a; s′)∇ log(πθ(a; s′))Qπθ

(s′, a)

= 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∇ log(πθ(A ; S))Qπθ

(S, A)
]
,

where we added a 1 and used the lock-trick. The second equality gives the first claim, the final
equality the second claim.

For practical use it will be important to estimate the gradient (an expectation) using Monte
Carlo. Thus, it will be necessary to sample from the discounted occupation measures and then
compute score-function and Q-value. On first sight sampling from the dπ looks infeasible as
an infinite sum is involved. In fact, a sample can be obtained by following a rollout up to an
independent geometric random variable, counting the number of visitations and then drawing
from this empirical distribution. This is justified by a quick computation:

If T ∼ Geo(1 − γ) is independent from the MDP, then dπ(s) = Eπ
s

[ ∑T
t=0 1St=s

]
.

This is easily seen as

Eπ
s

[ T∑
t=0

1St=s

]
= Eπ

s

[ ∞∑
t=0

1t≤T 1St=s

]



5.2. POLICY GRADIENT THEOREMS 141

Fubini=
∞∑

t=0
Eπ

s

[
1t≤T 1St=s

]
ind.=

∞∑
t=0

P(t ≤ T )Eπ
s

[
1St=s

]
=

∞∑
t=0

γtEπ
s

[
1St=s

]
= Eπ

s

[ ∞∑
t=0

γt1St=s

]

Here is another representation in the spirit of the finite-time policy gradient theorem. The
representation avoids the sampling from the discounted occupation measure but instead uses
trajectories.

Theorem 5.2.9. Suppose that (s, a) 7→ ∇θ

(
log πθ(a ; s)

)
Qπθ (s, a) is bounded.

Then

∇θJs(θ) = Eπθ

s

[ ∞∑
t=0

γt∇θ

(
log πθ(At ; St)

)
Qπθ

(St, At)
]
.

The assumption does not hold for arbitrary parametrisation and might also be hard to check.
For softmax policies the score-function can be computed and is bounded for instance for bounded
feature vector. If the rewards are additionally bounded (which imples the Q-function is bounded)
the assumption of the theorem holds.

Proof.

∇θJs(θ) =
∞∑

t=0
γt

∑
s′∈S

Pπθ

s (St = s′)
∑
a∈A
∇πθ(a ; s′)Qπθ

(s′, a)

=
∞∑

t=0
γtEπθ

s

[ ∑
a∈A
∇πθ(a ; St)Qπθ

(St, a)
]

=
∞∑

t=0
γtEπθ

s

[ ∑
a∈A

πθ(a ; St)∇ log πθ(a ; St)Qπθ

(St, a)
]

=
∞∑

t=0
γtEπθ

s

[
∇ log πθ(At ; St)Qπθ

(St, At)
]

= Eπθ

s

[ ∞∑
t=0

γt∇ log πθ(At ; St)Qπθ

(St, At)
]

The final eschenge of sum and expectation is justified by dominated convergence and the
assumption of the theorem.

A dirty version of the REINFORCE algorithm is then obtained by running trajectories up to
some large T and to use the truncated series as an estimator for the gradient. Since the truncated
estimator is not unbiased smarter approaches have been proposed. As for the discounted
occupation measure one might ask if geometric times can be used to truncate the infinite
time-horizon. Almost the same computation gives the following theorem8.

8Zhang, Koppel, Zhu, Basar: "Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal
Policies", SIAM Journal on Control and Optimization, 2020
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Proposition 5.2.10. Suppose that (s, a) 7→ ∇θ

(
log πθ(a ; s)

)
Qπθ (s, a) is bounded

and T, T ′ ∼ Geo(1− γ1/2) are independent of each other and the MDP, then

∇J(θ) = 1
1− γ

Eπθ

s

[
∇ log(πθ(ST ; AT ))

T +T ′∑
t=T

γ(t−T )/2R(St, At)
]
.

The advantage of this policy gradient theorem is clear, unbiased estimates can be obtained by
running the MDP for a finite (random) number of steps.

Proof. spaeter ausfuehren, war nicht in vorlesung 9

The representation is not only useful from a practical point of view. The random variables can
be shown to have bounded variance, an ingredient that was crucial for the proof of convergence
to a stationary point for stochastic gradient schemes. Exactly the same proof can be used to
proof convergence of REINFORCE to a stationary point of J . Combined with an additional PI
inequality (only known for tabular softmax parametrisation) then also yields convergence to an
optimal policy.

5.2.3 Convergence of REINFORCE
......

5.2.4 Variance reduction tricks
Traditionally it is beliefed that reducing the variance in estimating the gradient ∇J(θ) is crucial.
Recalling the discussion from Section 1.3.4 there are also other effects when using the variance
reduction by baselines for the softmax policy gradient approach to stochastic bandits. Nonetheless,
reducing variances is certainly a good idea.

Baseline

Let us generalise the baseline idea from stochastic bandits to general MDP policy gradient,
formulated in the finite MDP setting.

Theorem 5.2.11. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. For any b ∈ R the gradient of J(θ) can also be written as

∇θJ(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

) (
Qπθ

t (St, At)− b
)︸ ︷︷ ︸

or (RT
t −b) or (RT

0 −b)

]
.

Proof. The computation is very similar to the bandit case, we redo the log-trick and see that for
every t ≤ T − 1

Eπθ

s

[
∇θ

(
log πθ(At ; St)

)
b
]

= b
∑
st∈S

∑
at∈As

Pπθ

s (St = st)πθ(at ; st)∇θ

(
log πθ(at ; st)

)
= b

∑
st∈S

Pπθ

s (St = st)
∑

at∈As

∇θπθ(at ; st)

= b
∑
st∈S

Pπθ

s (St = st)∇θ

∑
at∈A

πθ(at ; st)︸ ︷︷ ︸
=1

= 0.

9ausfuehren
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Thus, the additional term vanishes in all three representations of the gradient so that −b can be
added.

Show that the constant baseline b can be replaced by any deterministic state-
dependent baseline b : S → R, i.e.

∇θJ(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)(
Qπθ

t (St, At)− b(St)
)]

.

We will come back to the most important state-dependent baseline b(s) = V πθ (s) when we
discuss actor-critic methods.

Write down and proof the baseline gradient representation for infinite discounted
MDPs.

In the bandit case we have already seen that the baseline trick is a variance reduction trick. The
same is true in the MDP setting.

Importance sampling trick/likelihood ratio method

There is a nice trick from stochastic numerics that is useful in many situations for reinforcement
learning, the so-called importance sampling trick (or likelihood ratio method). Suppose m =
E[g(X)] is to be approximated using a Monte Carlo method. The likelihood ratio trick is used in
two situations:

• If it is hard to sample X but easy to simulate a random variable Y with similar density.

• The variance g(X) should be reduced.
The first advantage of the method is what is closer to the interest of reinforcement learning.
Before showing why let us recall the trick. Suppose X has density fX and Y is another random
variable with (positive) density fY . Then

E[g(X)] =
∫

g(x)fX(x) dx =
∫

g(y)fX(y)
fY (y) fY (y) dy = E[g̃(Y )]

with g̃(y) = g(y) fX (y)
fY (y) . Suppose that fX is close to a know density fY but somehow wiggles

around. It might then be much easier to simulate Y instead and correct the Monte Carlo
estimator with the likelihood ratios. Alternatively, if g̃(Y ) has smaller variance than g(X), then
the Monte Carlo convergence using Y would converge faster. This is typically the case if Y has
more mass on the important values (justifying the name importance sampling) giving the most
contribution to the expectation.
We now turn towards reinforcement learning and, quite surprisingly, find the trick useful to
construct off-policy estimators for the policy gradients! These are estimators that do not uses
samples produced from πθ). Here is the main trick:

Suppose τ = (s0, a0, . . . , sT −1, aT −1, sT ) is a policy and π, πb are two policies. Using
the path probabilities gives

Pπ
µ(τ)

Pπb

µ (τ)
= µ(s0)δ0(r0)

∏T −1
i=0 π(ai ; si)p(si+1 ; si, ai)

µ(s0)δ0(r0)
∏T −1

i=0 πb(ai ; si)p(si+1 ; si, ai)
=

T −1∏
i=0

π(ai ; si)
πb(ai ; si)

.

What is crucial here is the cancellation of the transition p, the change from π to πb

is model-free!

The likelihood ratio trick now does the following. Write down the policy gradient estimator,
replace πθ by some behaviro policy πb and compensate by inserting the likelihood ratio. Here is
the version of the finite-time non-discounted case:
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Proposition 5.2.12. (Likelihood ratio trick for policy gradients)
Suppose πb is a behavior policy (with strictly positive weights), then

∇θJµ(θ) = Eπb

µ

[ T −1∏
i=0

πθ(Ai ; Si)
πb(Ai ; Si)

T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

Proof. All we need to do is to use the definition of (discrete) expectations and then apply the
likelihood trick:

Eπb

µ

[ T −1∑
t=0

T −1∏
i=0

πθ(Ai ; Si)
πb(Ai ; Si)

∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

=
∑

τ : trajectory
Pπb

µ (τ)
T −1∏
i=0

πθ(ai ; si)
πb(ai ; si)

T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)

=
∑

τ : trajectory
Pπb

µ (τ)
Pπθ

µ (τ)
Pπb

µ (τ)

T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)

=
∑

τ : trajectory
Pπθ

µ (τ)
T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)

= Eπθ

µ

[ T −1∏
i=0

T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

= ∇J(θ).

There are several reasons why the trick can be useful. It can be used to reduce the variance of
policy gradients (the original idea of the trick). Somehow this seems not to be very succesful.
Alternatively, the trick can be used to simulate from only one policy to approximate all policy
gradients ∇θJµ(θ), i.e. run an off-policy policy gradient ascent, see for instance10. This approach
turns out to be delicate as small values of πb can strongly increase the variance. From the
theoretical point of view the likelihood trick is very useful as the REINFORCE algorithm turns
into a true stochastic gradient descent algorithm of a function f(θ) = E[h(X, θ)], the dependence
of θ is removed from the sampled law.

5.2.5 Natural policy gradient

5.3 A quick dive into neural networks

5.3.1 What are neural network functions?
To get the discussion started let us look at the simplest example, that of a single neuron. A neuron
in our brain is an electrically excitable cell that fires electric signals called action potentials.
In mathematical term, a neuron is a function that takes a vector (incoming information) and
returns a number (signal, e.g. 0 or 1). A network of billions of communicating neurons passes
incoming signals to outcoming action signals. Inspired from neuroscience a century of research
in computer science has led to incredible results in artificial intelligence. Let us first describe

10Metelli, Papini, Faccio, Restelli: "Policy Optimization via Importance Sampling", NIPS 2018
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the simplest model of a neuron, and then continue with artificial networks of neurons (so-called
neural networks or perceptrons). The simplest model11 is

f(x) = 1[0,∞)

( d∑
i=1

wixi + b
)

.

If the combined strength of the signals (weighted according to neurons judgement of importance
for the signals) exceeds a certain level the neural fires, otherwise not. More generally, for the
definition of an artificial neuron the indicator is typically replaced by a generic function σ, the
so-called activation function.

Definition 5.3.1. For σ : R → R, w ∈ Rd, and b ∈ R, the function f : Rd → R
defined by

f(x) = σ
( d∑

i=1
wixi + b

)
is called an artificial neuron with activation function σ, weights w1, ..., wd for the
signals x1, ..., xd and bias b.

The weights can be interpreted as importance of the signal for the neuron, the bias as susceptability
of the neuron.

Example 5.3.2. Here are some typcial activation functions:

• σ(s) = 1[0,∞)(s), the Heavyside function, yields a neuron that either fires or not,

• σ(s) = s yields a linear neuron which is not really used,

• σ(s) = max{0, s} is called rectified linear unit (ReLU), a very typical practical choice,

• σ(s) = 1
1+e−s = es

1+es is called logistic activation function. The logistic activation function
is nothing but the softmax probability for one of two possible actions.

Graphical representation of an artificial neuron

As mentioned the brain consists of billions of neurons that form a network in some very
complicated manner. We will do the same, transfer the outputs of neurons into new neurons.

11McCulloch, Pitts: "A logical calculus of ideas immanent in nervous activity", Bull. Math. Biophys., 5:115-133,
1943



5.3. A QUICK DIVE INTO NEURAL NETWORKS 146

Graphical representation of a neural network with 2 hidden layers, 3 input dimensions, 2 output
dimensions

Here is a mathematical formulisation of a simple network of neurons using the same activation
function, such networks of artificial neurons are also called multilayer perceptrons12:

Definition 5.3.3. (Feedforward neural networks)
Let d, L ∈ N, L ≥ 2, and σ : R → R. Then a multilayer perceptron (or fully
connected feedforward neural network) with d-dimensional input, L layers, and
activation function σ is a function F : Rd → Rk that can be written as

F (x) = TL(σ(TL−1(... σ(T1(x))))),

where L− 1 is the number of hidden layers with Nl units (number of neurons per
layer), N0 = d and NL = k, and Tl(x) = Wlx + bl are affine functions with

• weight matrices Wl ∈ RNl×Nl−1 ,

• biases bl ∈ RNl .

Note that the function σ is applied coordinate-wise to the vectors. A neural network
is called shallow if L = 1, i.e. there is only one hidden layer and deep if the number
of layers is large. Finally, if the output is supposed to be a probability vector one
typically applies a final normalisation with the softmax function Φ(y)i = eyi∑k

j=1
eyj

so the output reads as

F (x) = Φ(TL(σ(TL−1(... σ(T1(x)))))).

13 The multilayer perceptron is quite special in it’s structure. All neurons of a fixed layer receive
the same input vector (the outputs of the neurons before) which is then multiplied with the
weight-vector of the neuron, shifted, and plugged-into the activation function to yield the signal.
To visualise the mapping one can for instance write the real-valued weights on the arrow pointing
into a neuron. If a weight is forced to be zero the arrow is usually removed from the graphical
representation. This neural network was made up by thinking, not by brute-force training on
mass data. The network produces a vector of features of an image, such as "number of circles",
"number of edges", ...

Definition 5.3.4. The architecture of a feedforwards neural network is the chosen
number of layers, units, and fixed zero-weights.

The class of neural network functions has been investigated for decades. While the first approach
was to understand what particular architecture leads to desired behavior the modern approach is

12F. Rosenblatt: "The perceptron: a probabilistic model for information storage and organization in the brain"
Psychological review, 65(6):386, 1958

13include drawings
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to use mass data to learn the weights and biases by optimising a carefully chosen loss-function.
Keeping in mind that the graphical representation of the architecture is only a visualisation
of the weights it can be instructive to look at plots of very small-dimensional neural network
functions with ReLU activation function:

Three functions obtained from ReLU neural networks

To get an idea why neural networks with the simple ReLU activation and linear output function
can create such functions two observations are useful:

• One can construct addition, shifting, and linear transformations of functions obtained from
a neural network through a neural network with same activation function. To do so write
the neural networks on top of each other without connections (i.e. set the linking weights
to 0), and use the output weights to obtain the desired transformation.

• The sum ReLU(−1)− 2ReLU(0) + ReLU(1) gives a spike at 0, with ReLU(b) = max{0, b}.

There are other classes of artificial neural networks that are much more relavant in applications.
Neural networks that do not only pass signals forwards but also have arrows pointing to previously
used neurons are called recurrent neural networks. Those are particularly useful to model time-
dependent behavior. More recently, the so-called transformer network architecture has received
enormous attention and allowed massive progress in large language models. Since this is an
introductory course to reinforcement learning we will only discuss two important features of
neural networks, function approximation and differentiation by backwards propagation through
the network.

5.3.2 Approximation properties
We will show that already the simplest neural network functions are useful enough to approximate
important classes of functions, so-called Boolean functions and continuous functions. The proofs
are not complicated but only lead to rather uninteresting existence results14.

Theorem 5.3.5. (Approximation of Boolean functions)
Every Boolean function f : {0, 1}d → {0, 1} can be represented by a neural network
with activation function σ(x) = 1[0,∞).

Proof. First note that for all Boolean variables a, b ∈ {0, 1} it holds that 2ab− a− b ≤ 0 with
equality if and only if a = b (check the cases). Thus, for u ∈ {0, 1}d,

1x=u = 1[0,∞)

( d∑
i=1

(2xiui − xi − ui)
)

= σ
( d∑

i=1
(2xiui − xi − ui)

)
14Check for instance these lecture notes of Philipp Christian Petersen for more.
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Now denoting by A := {u ∈ Rd : f(u) = 1} it follows that

f(x) = σ
(
− 1 +

∑
u∈A

1x=u

)
= σ

(
− 1 +

∑
u∈A

σ
( d∑

i=1
(2xiui − xi − ui)

))
.

This, in fact, this is nothing but a neural network with two hidden layers. The first with |A|
units, the second with one unit.

Definition 5.3.6. A subset F of neural networks has the universal approximation
property if for any K ⊂ Rd, any ε > 0, and any continuous function g : K → R
there exists a neural network f ∈ F with ||f − g||∞ < ε.

In fact, for many activation functions the universal approximation property holds. An activation
function is called sigmoid (S-formed) if it is bounded with limits limx→+∞ σ(x) = 1 and
limx→−∞ f(x) = 0. The terminology comes from the logistic activation function that really looks
like an S. An important result on neural networks is that shallow (one hidden layer) feedforward
neural networks with sigmoid activation function have the universal approximation property.

Theorem 5.3.7. (Universal approximation theorem)
If the activation function σ is sigmoid then the set of all shallow feedforward neural
networks has the universal approximation property.

Proof. Let us denote by Fp the subset of shallow neural networks with p neurons. We first
consider d = 1 and show that Lipschitz functions on [0, 1] can be approximated. To do so
we first approximate h with piecewise constant functions and then approximate the piecewise
constant function with a shallow neural network function. For that sake let xi = i

p and set
hp(x) =

∑p
i=1 h(xi)1[xi−1,xi)(x).

There is f ∈ Fp with ||f − h||∞ ≤ C ω(h, 1/p) with C independent of h.

In the estimate the so-called modulus of continuity appears:

ω(h, δ) = sup
x,y∈R:|x−y|≤δ

|h(x)− h(y)|

For a function h : R → R the modulus of continuity is a very rough measure for the flatness
of h. The smaller ω the flatter the function. For Lipschitz continuous functions with Lipschitz
constant L it follows immediately that ω(h, δ) ≤ Lδ, the fluctuation of f over intervals of lengths
δ are at most δL. The estimate shows that Lipschitz functions with smaller constant L can
be well-approximated with 1/L many units, thus, rougher functions need more units to be
approximated. We will only use the statement for the exponential function which is clearly
Lipschitz continuous on compact sets (bounded derivative on compact sets). To prove the first
claim note that

sup
x∈[0,1]

|h(x)− hp(x)| = sup
x∈[0,1]

∣∣∣h(x)−
p∑

i=1
h(xi)1[xi−1,xi)(x)

∣∣∣ ≤ ω(h, 1/p)

by the definition of hp and ω. With a telescopic sum we rewrite

hp(x) = h(x1) +
⌊px⌋∑
i=1

(
h(xi+1)− h(xi)

)
.
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Next, we define a the shallow neural network function with p units as

fp(x) = h(x1)σ(α) +
p−1∑
i=1

(
h(xi+1)− h(xi)

)
σ

(
α(px− i)

)
∈ Fp

for some α ∈ R that is specified next. Fix ε > 0 and choose α large enough such that
|σ(z) − 1[0,∞)(z)| ≤ ε

p whenever |z| ≥ α. Since σ is a sigmoid function this is possible. The
choice of α shows that ∣∣σ(

α(px− i)
)
− 1i≤⌊px⌋

∣∣ ≤ ε

p

holds for all i /∈ {⌊px⌋, ⌊px⌋+ 1} because then |α(px− i)| > α. It then follows that∣∣fp(x)− hp(x)
∣∣

=
∣∣∣h(x1)(σ(α)− 1) +

p−1∑
i=1

(
h(xi+1)− h(xi)

)(
σ(α(px− i))− 1i≤⌊px⌋

)∣∣∣
≤ ε

p

(
|h(x1)|+ (p− 2)ω(h, 1/p)

)
+ |h(x⌊px⌋+1)− h(x⌊px⌋)||σ(α(px− ⌊px⌋))− 1|

+ |h(x⌊px⌋+2)− h(x⌊px⌋+1)||σ(α(px− ⌊px⌋ − 1))− 1|.

The first summand can be made arbitrarily small, the other two can both be estimated by
ω(h, 1/p)(1 + ||σ||∞). Combining the approximation of h by hp and the approximation of hp by
fp it follows that for all δ > 0 there is some p such that

sup
x∈[0,1]

|h(x)− fp(x)|
∆
≤ sup

x∈[0,1]
|h(x)− hp(x)|+ sup

x∈[0,1]
|hp(x)− fp(x)|

≤ ω(h, 1/p) + δ + 2(||σ||∞ + 1)ω(h, 1/p).

Now the claim follows. Covering a compact set K ⊆ R by finitely many intervals it then
follows that for all h : K → R and all ε > 0 there is a neural network function f such that
supx∈K |h(x)− f(x)| < ε.
It remains to extend the arguments to the d-dimensional case. To reduce to the one-dimensional
case a simple dense family is used:

The set

E :=
{

g : K → R
∣∣∣ g(x) =

N∑
i=1

sie
⟨vi,x⟩, x ∈ Rd, N ∈ N, vi ∈ Rd, si ∈ {−1, 1}

}
is dense in (C(K), || · ||∞).

Using Stone-Weierstrass from functional analysis one only needs to check that E is an algebra
that separates points. Easy.
Next, we approximate E by neural network functions with one hidden layer:

For every g(x) =
∑N

i=1 sie
⟨vi,x⟩ ∈ E and every ε > 0 there is a neural network

function f : Rd → R with one hidden layer such that supx∈K |g(x)− f(x)| < ε.

Define gvi(x) = e⟨vi,x⟩. The trick is simple. Let K̄i the linear transformation of Ki under
x 7→ ⟨vi, x⟩. Then K̄i ⊆ R is compact again. Next, apply the first step to chose from Fp an

fi(x) =
p∑

l=1
wlσ(x− b)
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with supx∈K̄i
|fi(x)− ex| < ε

N . Then define the neural network function f̄i : Rd → R as

f̄i(x) = sifi

( d∑
k=1

vi
kxk

)
so that

sup
x∈K

∣∣f̄i(x)− sie
⟨vi,x⟩∣∣ = sup

x∈K

∣∣sifi(⟨vi, x⟩)− sie
⟨vi,x⟩∣∣

= sup
x∈K̄i

|sifi(x)− sie
x| < ε

N
.

To see that f̄i is a neural network function with one hidden layer note that

f̄i(x) =
p∑

l=1
siwlσ

( d∑
k=1

vi
kxk − bl

)
.

Recalling that sums of neural network functions are neural network functions with the same
number of hidden layers (stacking neural networks without connections) a neural network
approximation of g is given by f =

∑N
i=1 f̄i:

sup
x∈K
|f(x)− g(x)| ≤

N∑
i=1

sup
x∈K

∣∣f̄i(x)− sie
⟨vi,x⟩∣∣ < ε.

The universal approximation property is satisfied for Fp.

Suppose h ∈ (C(K), || · ||∞) and ε > 0. Using the two steps before we can choose g ∈ E with
supx∈K |g(x)−h(x)| < ε

2 and a neural network function f : Rd → R with supx∈K |f(x)−h(x)| < ε
2 .

Then supx∈K |h(x)− f(x)| ≤ supx∈K |h(x)− g(x)|+ supx∈K |g(x)− f(x)| < ε. This proves the
theorem.

5.3.3 Differentiation properties
There are a couple of reasons why the use of deep neural networks is extremely successful
in reinforcement learning. We will highlight here a differentiation property that led to the
breakthroughs in image classification. Suppose a set of labeled images is given: {(xi, yi) : i ≤ N}.
We assume the images are already transformed into a pixel vector, say Rd, and they are labeled as
a k-dimensional feature vector. A feature vector is an abstraction of an image used to characterize
and numerically quantify the contents of an image. Simply put, a feature vector is a list of
numbers used to represent an image. The pixel vector itself is a possible feature vector that fully
describes an image but the aim is extract as little abstract information as possible that describes
a images as good as possible. This could be counting geometric forms or more specifically the
number of persons on the images.

A main goal of image analysis is to define feature vectors that encode the images
well and then find mappings that are simple to evaluate and map an image to its
featue vector.

The typical approach consists learning both tasks on a large training set {(xi, yi)} of images xi

for which the labels yi were coded manually by humans. There are plenty of such examples, for
instance imageNet15 with more than fourteen million labeled images. There are two amazing
features why neural networks are used to map images to feature vectors:

15imageNet website

https://www.image-net.org
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• Differentiation: neural network structures allow to differentiate well for the weights, thus,
allowing gradient descent methods to minimise the error between outputs of the neural
network and the labels. Since neural networks used have dozents of millions of parameters
this is crucial. Imagine for every gradient step to compute a gradient of fifty million partial
derivatives. This is only possible if many of the computations can be reused, a property
that holds for neural network functions due to the so-called back propagation algorithm.

• Generalisation: for some magic reasons that are not fully understood, yet, neural networks
generalise extremely well. This means that the mapping from image to labels obtained
by gradient descent on a finite labeled set generalises well to further images. Overfitting
is a smaller problem than one might imagine (at least there are efficient tricks such as
dropout) if for instance sixty million parameters are used to classify one million images.
For imageNet one typically uses a training set of 1.2 million images and then compares the
generalisation property for the other images.

Since this is not a course on deep learning we only discuss a very nice differentiation trick.
Algorithm 33 summarises the most famous one, the delta-method that can be used to train a
neural network on given input/output pairs or to just compute the gradient ∇wF (x).

Theorem 5.3.8. The δ-method from Algorithm 33 is nothing but stochastic
gradient descent for Fw :=

∑N
i=1

1
2 ||Fw(x)i − yi||2 with (xi, yi) chosen uniformly

from the training set.

In the algorithm and the proof we allowed a generic function Φ to normalise the outputs so the
chain of concatenations is

F (x) = TL(σ(TL−1(... σ(T1(x))))),

This is needed if the network should output a probability vector.

Proof. In what follows we use the definitions of h, V appearing in the algorith. Please check
Figure ??16 for a graphical representation to ease the understanding. 17 First of all note
that the optimisation is equivalent to optimising 1

N Fw, thus, Fw can be written as expectation
Fw = E[||Fw(x)− y||2], where the randomness comes by uniformly chosing the pair (x, y) from
the training set. Hence, a stochastic gradient algorithm first choses a pair (x, y) uniformly and
then computes the gradient ∇w||Fw(x)− y||2. In what follows we show all partial derivatives

∂
∂wl

i,j

of the gradient are indeed computed by the δ-rule.

Output layer: To compute the partial derivative with respect to the final weights wL
i,j we

proceed as follows. Writing the norm and the definition of the neural network yields

∂

∂wL
i,j

1
2 ||Fw(x)− y||2 = ∂

∂wL
i,j

NL∑
s=1

1
2

(
Φ

( NL−1∑
t=1

wL
t,sV L−1

t

)
− ys

)2

= ∂

∂wL
i,j

1
2

(
Φ

( NL−1∑
t=1

wL
t,jV l−1

t

)
− yj

)2

=
(

Φ
( Nl−1∑

t=1
wL

t,jV L−1
t

)
− yj

)
Φ′(hL

j ) ∂

∂wL
i,j

NL−1∑
t=1

wL
t,jV L−1

t

= (V L
j − yj)Φ′(hL

j )V L−1
i

=: δL
j V L−1

i .

There are two crucial points involved in the second and fourth equality. For the second equality
we use that only the jth summand depends on wL

i,j (compare the graphical representation of
16bildchen noch malen
17put drawing
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the network) so that all other derivatives equal zero. Similarly, for the fourth equality only the
summand t = i depends on wL

i,j so that all other derivatives vanish and the tth summand simply
has the derivative V L−1

i .

Last hidden layer: To compute the partial derivative with respect to the final weights wL−1
i,j

we proceed similarly. Writing the norm and the definition of the neural network yields

∂

∂wL−1
i,j

1
2 ||Fw(x)− y||2

= ∂

∂wL−1
i,j

NL∑
s=1

1
2

(
Φ

( NL−1∑
t=1

wL
t,sσ

( Nl−2∑
r=1

wL−1
r,t V L−2

r

))
− ys

)2

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s ) ∂

∂wL−1
i,j

NL−1∑
t=1

wL
t,sσ

( Nl−2∑
r=1

wL−1
r,t V L−2

r

)

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s )
NL−1∑
t=1

wL
t,sσ′

( Nl−2∑
r=1

wL−1
r,t V L−2

r

) ∂

∂wL−1
i,j

Nl−2∑
r=1

wL−1
r,t V L−2

r

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s )
NL−1∑
t=1

wL
t,sσ′(hL−2

j ) ∂

∂wL−1
i,j

Nl−2∑
r=1

wL−1
r,t V L−2

r .

All derivatives of the last summand disappear, except for r = i and t = j. The remaining
derivative equals 1, thus, the expression simplifies to

∂

∂wL−1
i,j

1
2 ||Fw(x)− y||2 = V L−2

i σ′(hL−2
j )

NL∑
s=1

(V L
s − ys)Φ′(hL

s )wL
j,s

= V L−2
i σ′(hL−2

j )
NL∑
s=1

δL
j wL

j,s

=: V L−2
i δL−1

j .

Well, anyone who likes playing with indices is warmly invited to turn this into a clean induction
:).18

Since the derivatives of σ repeatadly appear it is clearly desirable to chose activation functions
that are easy to differentiate. The logistic function σ(x) = 1

1+e−x is a typical example with a
reasonable derivative σ′(x) = ex

(1+ex)2 .

Go through the previous arguments to check that the gradient ∇wFw(x) is computed
analogously with δL

j = Φ′(hL
j ) and δl

i = σ′(hl−1
i )

∑Nl

j=1 wl
i,jδl

j .

5.3.4 Using neural networks to parametrise policies

The success of neural networks in supervised learning was not overseen in the reinforcement
learning community where neural networks are used in all branches with increasing success. We
give a very brief overview of the use of neural networks for policy gradient schemes but also
Q-learning. In later sections we will see how to combine both (actor-critic) and how to proceed
much further in deep Q-learning.

18write induction
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Algorithm 33: δ-method to train a neural network
Data: labeled training set (xi, yi)
Result: weights w to minimise training error

∑
i ||Fw(xi)− yi||2

Set n = 0.
Initialise all weights (for instance iid Gaussian).
while not converged do

Chose (x, y) uniformly from the labeled training set.
Forwards propagation: Starting from the input x compute forwards through the
network V 0

i := xi and

• hl
i :=

∑Nl−1
k=1 wl

k,lV
l−1

k , i = 1, ..., Nl,

• V l
i := σ(hl

i), i = 1, ..., Nl,

for l < L and

• hL
i :=

∑NL

k=1 wl
k,lV

l−1
k

• V L
i := Φ(hL

i )

Back propagation:

• compute δL
j = (V L

j − yj)Φ′(hL
j ).

• compute δl
i = σ′(hl−1

j )
∑Nl+1

j=1 wl+1
i,j δl+1

j

Chose a step-size α.
Update all weights as wl

i,j = wl
i,j + α δl

j V l
i .

end

Linear softmax with neural networks representations:

First recall the simplest parametrisation in the tabular setting. The tabular softmax policy was
defined as πθ(a ; s) = eθs,a∑

a′ e
θ

s,a′ with a single parameter θs,a tuning the probability of action a

in state s. Since this is only reasonable for small state-action spaces the policy has no practical
relevance. More relevant are linear softmax policies of the form

πθ(a ; s) = eθT ·Φ(s,a)∑
a′ eθT Φ(s,a′) , θ ∈ Rd,

or

πθ(a ; s) = eθT
a ·Φ(s)∑

a′ eθT
a′ Φ(s) , θ = (θa1 , ..., θak

) ∈ Rad,

where Φ is a representation (feature vector) of the state (resp. state-action pair). In order to
use such policies a reasonable representation Φ must be obtained. One way is to work with
representations Φ obtained in supervised learning. For a concrete example let us think of learning
to play Atari games. The state-space is large, it consists of all possible Atari frames of 210x160
pixel. Without any prior knowledge the state-space is 210 × 160 dimensional. Using neural
networks trained on large libraries of images (such as imageNet) there are large neural networks
that give a reasonably large representation of the states, say 1000-dimensional. The function Φ
takes an input Atari frame and returns the last hidden layer of the neural network. Essentially,
the precise structure of the state s is replaced by the essential information Φ(s). Using the linear
softmax policy we could now run a policy gradient algorithm with the linear softmax policies,
which is a 1000-dimensional stochastic gradient algorithm.
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Direct use of neural network

The linear softmax has the advantage to provide a the simple and explicit score function
Φ(s, a)−

∑
a′ πθ(a′ ; s)Φ(s, a′) which is useful to compute the policy gradient. A neural network

can also be used directly to write down a parametrised policy πθ(s, a), where θ is the vector of
all weights. There are two approaches with the same disadvantage: the parameter vector θ is the
entire weight vector of the neural network, which, for many applications, will be huge.
State as input, action probabilities as output: Thinking of Atari games (many states,
few actions) once more here is a visulisation of the idea. An image is fed into a neural network,
the output vector are the probabilities π(a1 ; s), ..., π(ak ; s). In that case a softmax function
transforms the final hidden layer into probabilities.
State-action as input, action probability as output: Alternatively, one might feed a
state-action pair into a neural network and obtain a one-dimensional output π(a ; s).

Combining neural networks

Suppose a state-representation function Φ is given (often by a neural network). Then concatenat-
ing Φ with an additional neural leads to a new directly parametrised policy π̄θ(a ; s) = πθ ◦Φ(s).
The advantage can be that the neural network to be optimised in the policy gradient has much
less parameters as the input dimension is only the dimension of the feature vector.

5.4 Reinforcement learning with (deep) function approxi-
mation

Rethinking the plain vanilla REINFORCE algorithm it comes as no surprise that more advanced
algorithms have been developed. REINFORCE is nothing but stochastic gradient descent with
non-iid data using the policy gradient theorem to evaluate the expectations. Since stochastic
gradient descent is known to be slow and for reinforcement learning we are interested in very
large problems there is generally not much hope that REINFORCE works in practice. Indeed, it
doesn’t but combinded with further idea it does. In this section we will discuss some of the most
important ideas for practical use of REINFORCE.

5.4.1 Simple actor-critic (AC) and advantage actor-critic (A2C)
So far we have discussed two classes of approaches to solve optimal control problems:

• Policy-based algorithms that learn the optimal policy using gradient descent. A possible
drawback of such methods is that the gradient estimators may have a large variance, no
bootstrapping of old values is used in the gradient updates.

• Valued-based algorithms that evaluate the value-function (or Q-function).Such methods
are indirect, they do not try to optimize directly over a set of policies.

Algorithms that directly deal with policies are called actor-only methods while algorithms that
improve by criticising the outcome (value-function) of a policy that someone else obtained
are called critic-only algorithms. Mixing both approaches is called actor-critic. The typical
approach is as follows. Using the policy gradient theorems to perform the REINFORCE algorithm
incorporates the Q-functions Qπθn or, since the Q-function is typically unknown, estimates of
the Q-functions (for instance rewards to go) that introduce variance the the gradient update.
An alternative approach is to fix a (simpler) parametrised family (Qπθn

w ) to approximate Qπθn .
Usually the critic’s family (Qπθn

w ) is parametrised by a neural network and w is the vector of
weights. Actor-critic than works by alternating actor and critic 19,20:

19R. Sutton, D. McAllester, S. Singh, Y. Mansour: "Policy Gradient Methods for Reinforcement Learning with
Function Approximation", NIPS 1999

20V. Konda, J. Tsitsiklis: "Actor-Critic Algorithms", NIPS 1999
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• critic step: approximate Qπθn by some Qπθn

w ,

• actor step: perform gradient update using the policy gradient theorem with Qπθn

w instead
of Qπθn .

Compared to the direct REINFORCE algorithm the actor-critic approach as advantages and
disadvantages. On the plus side actor-critic algorithms can reduce the variance of the policy
gradient by using the critic’s value function as a baseline. Less variance means less steps for
convergence. Next, actor-critic algorithms can incorporate ideas from temporal-difference learning
to force bootstrapping of samples.Actor-critic algorithms also have some disadvantages compared
to plain vanilla policy gradient algorithms. For instance, they introduce a trade-off between
bias and variance, as the approximation in the critic step introduces a bias. Additionally, the
approximation increases complexity and computational cost for the algorithm as they require the
actor steps and typically the training of a neural network for the parametrisation of the critic’s
value function. We will next show a result that shows that actor-critic with linear function
approximations theoretically converges but using non-linear function approximations (such as
neural network functions) there is no theoretical justification for convergence and in practice
it is a delicate matter to make such an algorithm converge. Let us start with the plain vanilla
actor-critic in a very theoretical setup of linear function approximation. 21

Proposition 5.4.1. If Qπθ

satisfies the compatibility with the policy (score
function)

∇wQπθ

w (s, a) = ∇θ log(πθ(s, a))

and the approximation property∑
s∈S

∑
a∈As

dπθ

(s)πθ(a ; s)
(
Qπθ

(s, a)−Qπθ

w (s, a)
)
∇wQπθ

w (s, a) = 0,

then

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Qπθ

w (s′, a).

22 The exact same formulas also hold with the other policy gradient representations from Section
5.2.2.

Proof. By the chain rule the first condition is equivalent to ∇wQπθ

w (s, a)πθ(s, a) = ∇θπθ(s, a).
Plugging-into the second yields∑

s′∈S
dπθ

(s′)
∑

a∈As′

∇θπθ(a ; s)
(
Qπθ

(s′, a)−Qπθ

w (s′, a)
)

= 0

Using the policy gradient theorem (version of Theorem 5.2.6) and the above yields the claim:

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Qπθ

(s′, a)

− 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇θ log(πθ(s, a))
(
Qπθ

(s′, a)−Qπθ

w (s′, a)
)

= 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s )∇ log(πθ(a; s′))Qπθ

w (s′, a)

21ueberall µ in gradient einarbeiten, auch fuer dπ

22Bedeutung beider Eigenschaften ausfuehren
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On first sight the theorem does not look useful at all as the conditions on Q are very special.
Here are two examples that show that the assumptions are not completely artificial. They are
satisfied for linear function approximations.

Example 5.4.2. Recall the linear softmax policy

πθ(a ; s) = eθT ·Φ(s,a)∑
a′∈A eθT ·Φ(s,a′)

with feature vectors Φ(s, a) for the state-action pairs. The linear softmax has score function

Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

thus, requiring linear function approximation

Qπθ

w (s, a) = wT ·
(

Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′)
)

.

What does it mean? Q must be a linear function with the same features as the policy, except
normalized to be mean zero for each state.

Example 5.4.3. A similar example can be obtained for a continuous action space. Suppose πθ

is a linear Gaussian policy, i.e.

πθ(a ; s) ∼ N
(
θT · Φ(s), σ2)

for feature vectors Φ(s) and a constant σ. For the compatibility we first need to compute the
score function:

∇ log πθ(s, a) = ∇θ
−(θT · Φ(s))2

2σ2 = θT · Φ(s)
σ2 Φ(s)

For f to satisfy the compatibility, as in the previous example Q must be linear:

Qπθ

w (s, a) = wT · θT · Φ(s)
σ2 Φ(s).

Taking account to the new representation of the policy gradient here is a first version of an
actor-critic algorithm with provable convergence. We call the algorithm theoretical actor critic

Algorithm 34: Theoretical simple actor-critic algorithm

Data: Initial parameter θ0 and approximation class Qπθ

w .
Result: Approximate policy πθ ≈ πθ∗

Set n = 0.
while not converged do

Policy evaluation of critic: find a critcial point w of the weighted approximation error,
i.e.

∇w

∑
s∈S

∑
a∈As

dπθn (s)πθn(a ; s)
(
Qπθn (s, a)−Qπθ

w

)2 = 0.

Policy improvement of actor: chose step-size α and set
θn+1 = θn + α 1

1−γ

∑
s∈S

∑
a∈As

dπθn (s)πθn∇ log(πθn(a; s′))Qπθ

w (s, a).
end

as the connection of critic computation and actor update is nothing else then a regular update
of the policy gradient algorithm (Proposition 5.4.1). Thus, whenever the exact gradient ascent
algorithm converges to a maximum (or a stationary point) the simple actor-critic will do the
same. If implemented there are a couple of approximations entering the scene:
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• functions Qw will be used that do not satisfy the needed conditions,

• the approximation of Qπθ will produce an approximation error in every round,

• the gradient will be approximated as in the REINFORCE algorithm replacing the Q-function
by the estimated Q-function Qπθ

w .
Each approximation will generate an error and a priori it seems difficult to make the algorithm
converge.
In our previous discussions of baselines for policy gradients a good guess for the baseline seemed
to be the value function as it reinforces actions that are better than the average and negatively
reinforces actions that are worse then the mean. So far we did not follow upon the idea as the
value function V π is unknown, so how could it serve as a baseline of an implementable algorithm?
Let’s ignore this fundamental issue for a moment.

Definition 5.4.4. The advantage function of a policy is defined as Aπ(s, a) =
Qπ(s, a)− V π(s).

The advantage function measures the advantage (or disadvantage) of first playing action a.
Recalling that baselines can be state-dependent the policy gradient can be written as

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))
(
Qπθ

(s′, a)− V πθ

(s′)
)

= 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Aπθ

(s′, a).

In what follows we will discuss what is known as A2C (advantage-actor-critic) algorithms in which
similarly to the approximation of Q by linear functions the advantage function is approximated.
All A2C algorithms consist of two alternating steps:

• Use the current policy πθ to produce samples from which an approximation Âπθ of the
unknown Aπθ is derived.

• Plug Âπθ into the policy gradient formula to obtain an estimate of the gradient which is
used to update θ.

There are plenty of approaches to turn this into an algorithm. All of them are use ideas from
temporal difference learning. The simplest approach is as follows. As for 1-step temporal
difference we write the advantage function as

Aπ(s, a) = Qπ(s, a)− V π(s) = r(s, a) + V π(s′)− V π(s), s′ ∼ p(· ; s, a).

This shows that only the value function needs to be estimated. Now suppose there is a parametric
family Vw : S → R that we intend to use to approximate all value functions V πθ . Typically, Vw

will be given by a neural network with weight vector w. So how do we fit Vw to V πθ for some
policy πθ? We approximate V πθ (s) using samples (Monte Carlo) and then minimise the error.
More precisely, suppose y1, ..., yn are the discounted rewards of n rollouts under policy πθ, then
we solve the regression problem

min
w

n∑
i=1
||Vw(si

0)− yi||2.

If Vw is given by neural networks the regression problem is solved (approximatively) by back
propagation. The solution Vw is then used to give an estimator Âπθ of Aπθ from the gradient
step is computed.
More advanced versions use n-step or TD(λ) approximations for V πθ to bootstrap samples. It is
far from obvious if any of these versions converges to an optimal policy. 23

23bespreche sampling aus dπ durch stoppen nach geometrischer zeit. und bedeutung von dππ
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Algorithm 35: A2C with Monte Carlo approximation
Data: Initial parameter θ and approximation functions Vw

Result: Approximate policy πθ ≈ πθ∗

while not converged do
Sample N starting points si

0 from dπθ and using policy πθ rollouts (si
0, ai

0, ...).
minimise

∑
i ||Vw(si

0)−
∑∞

t=0 γtR(si
t+1, ai

t+1)||2 over w.
set Â(si

0, ai
0) = R(si

0, si
0) + V̂ π

w (si
1)− V̂ θ

w(si
0).

set ∇̂θJ(θ) = 1
N

∑N
i=1

1
1−γ∇ log(πθ(ai

0 ; si
0))Â(si

0, ai
0).

update θ = θ + α∇πθ(a; s′).
end

5.4.2 Soft actor-critic (SAC)
5.4.3 Proximal policy optimisation (PPO)
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