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Chapter 1

Stochastic bandits

.Multiarmed bandits can be considered to be the simplest situation in which optimal decision
making can be learnt. Due to its simple structure many ideas get more visible that we will get
to know much later for the more general setup of Markov decision processes. In fact, a vast
literature of precise results exists for multiarmed bandits in contrast to many unproved methods
for the general Markov decision situation. What we will try to achieve in this first chapter is to
bridge the two worlds. We discuss ideas and methods that will be crucial for Markov decision
processes mostly in the precise language of multiarmed bandits. The aim is to find the right
compromise of the very imprecise Chapter 2 of Sutton and Barton and the very detailed book of
Lattimore and Szepesvári.

The chapter focuses on algorithmic ideas towards the trade-off between exploration
and exploitation in optimal decision making.

The language used in this chapter will thus be a combination of bandit and reinforcement learning
(RL) notation. The chapter can also be seen as a motivation for later chapters to see how little
we actually understand about general reinforcement learning compared to the well-understood
case of multiarmed bandits.

1.1 A quick dive into two-stage stochastic experiments

From a probabilistic point of view reinforcement learning will always be about stochastic two-
stage experiments. First choose an action (first experiment) and given that action observe a
reward (second experiment). It’s a bit of a mathematical overkill but let us quickly discuss the
basics from two-stage experiments. If all experiments involved are discrete (i.e. take finitely or
countably infinite values) then not much is needed and all computations work with the usual
conditional probabilities defined by P(X = x|Y = y) = P(X=x,Y =y)

P(Y =y) . The choice of actions
indeed is discrete in most applications, unfortunately, the rewards often are not. Going towards
non-discrete probability the concept of regular conditional expectation is needed. We are not
going into detail and only summarize the most important facts. First, suppose (X, Y ) is a pair of
discrete random variables (or random vectors) on some probability space (Ω,A,P), then rewriting
the definition of conditional probabilities gives

P(X = x, Y = y) = P(X = x|Y = y)︸ ︷︷ ︸
second step, given result of first step

·P(Y = y)︸ ︷︷ ︸
first step

1



1.2. INTRODUCTION TO STOCHASTIC BANDITS 2

so that all quantities jointly involving X and Y can be computed by knowning the first step and
the second step given the first step. For instance,

E[h(X, Y )] =
∑
x,y

h(x, y)P(X = x|Y = y)P(Y = y),

E[h(X, Y )|Y = y] =
∑

x

h(x, y)P(X = x|Y = y),

E[h(X, Y )|Y ] =
∑
x,y

h(x, y)P(X = x|Y = y)1Y =y,

P(X ∈ ·|Y ) =
∑

y

P(X ∈ ·|Y = y)1Y =y.

The situation is more delicate if Y is not discrete because P(X = x|Y = y) cannot be defined
directly as the definition of conditional probabilities would require devision by 0 if P(Y = y) = 0.
Nonetheless, there is a way to define a unique Markov kernel k(·, ·) - a Markov kernel is a measure
in the second coordinate and a measurable mapping in the first - such that the rules

E[h(X, Y )|Y = y] =
∫

h(x, y)k(y, dx) and E[h(X, Y )|Y ] =
∫

h(x, Y )k(Y, dx)

hold. The kernel κ is called a conditional regular expectation of X given Y . In the discrete
case it holds that k(y, A) = P(X ∈ A|Y = y) according to the usual definition. For absolutely
continuous pairs (X, Y ) the measure k(y, ·) has density k(y, x) = f(X,Y )(x, y)/fX(x)fY (y) but
in general k is abstract. Nonetheless, to keep the analogy to the discrete setting one typically
writes P(X ∈ A|Y = y) instead of k(y, A) even if the conditional probability cannot be definded
in the usual way. We also use the notation P(X ∈ A|Y ) = κ(Y, A) from which it follows
that E[h(X, Y )|Y ] =

∫
h(x, Y )P(X ∈ dx|Y ). For later purposes it is crucial to know that for

independent X and Y it holds that k(y, A) = P(X ∈ A) so that E[h(X, Y )|Y ] =
∫

h(x, Y )P(X ∈
dx).

1.2 Introduction to stochastic bandits
As there is no need to loose the reader in the mathematical formalisation of multiarmed bandits
we will first gently introduce the ideas. For a multiarmed bandit there is a number of possible
experiments among which a learner (in RL called agent) has the target to identify the best
arm by observing random samples of the experiments. The goal is to learn efficiently which
experiment yields the best outcome. There are different ways of defining what best means, in
bandit theory best typically means the highest expectation. The simplest example to keep in
mind is a daily visit to the university cantine. Let’s say the cantine offers four choices: vegan,
vegetarian, classic, oriental. These are the four possible experiments, the random outcomes are
the quality of the dish (measured in some way, such as on a 1-10 scale). There are plenty of
other situations that immediately come to mind such as

• medical treatment of patients with different doses, outcome measures the success, for
instance 1 for healed and 0 otherwise,

• placing different advertisements on websites, outcome measures the click rates.

The wording multiarmed bandit is rather historic and comes from gambling. A one-armed bandit
is a gambling machine in which every round of the game yields a random reward. Typically there
are several one-armed bandits next to each other and a player aims to play the most favorable
bandit. Since every round has a fixed cost, say one Euro, the player tries to figure out as quickly
as possible which machine works best for him/her. In these notes we will only discuss so-called
stochastic bandits. These are bandits where the random experiements are stationary, i.e. the
distribution of the experiments do not change over time. More general bandit situations are
adversarial bandits and contextual bandits which we will not touch in this section.
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The basic mathematical model behind a stochastic bandits is as follows. There
are distributions Pa1 , ..., PaK

(not necessarily discrete) from which an outcome is
sampled if an actor decides to play a so-called arm a. The outcome is called X. If
the choice of the actor is modeled using a random variable A taking values a1, ..., aK

then the two-stage experiment yields

P(X ∈ ·|A = a) = Pa(·) and P(X ∈ ·|A) =
∑
a∈A

Pa(·)1Y =a =: PA(·)

so that

P(X ∈ ·, A = a) = P(X ∈ ·|A = a)P(A = a) = Pa(·)P(A = a).

In fact, a bandit model will depend not only on one action but on reward/action
pairs of the past. This makes the mathematical framing a bit more tedious as
rewards must not be discrete.

Before we go into more details let us discuss the optimization goal. Suppose we have a finite
set A = {a1, ..., aK} of experiments (arms to play) and denote by Qa the expectation of the
random outcome whose distribution we denote by Pa. Of course there could be other goals than
finding the arm with the highest average outcome, but this is what we decide to optimize. Now
fix a time-horizon n (which could be infinite), the number of rounds we can use for learning. A
learning strategy is a sequence (πt)t=1,...,n of probability distributions on A that only depend
on what has been played prior to time t. Here πt({a}) is the probability that the player choses
action a at time t and then receives the random outcome of the corresponding experiment.

Throughout these lecture notes we will be sloppy about measures on the power-set
of discrete (finite or countably infinite) sets. Instead of writing p({a}) we typically
write p(a) for probabilities of singleton sets if there is no danger of confusion.

The aim is to find a learning strategy that maximises the outcome of this procedure. To have
an idea in mind think of the example of the university canteen. During your studies you might
have n = 500 choices in total. If you are not vegan or vegetarian you probably started without
preferences, i.e. πt(vegan) = · · · = πt(oriental) = 1

4 , and over time learnt from experience how to
change the following distributions πt in order to maximise the lunch experience.
Let’s turn these basic ideas into mathematics.

Definition 1.2.1. Suppose A is an index-set and ν = {Pa}a∈A is a family of
real-valued distributions with finite expectations, called the reward distributions.

• The set ν is called a stochastic bandit model. In these lectures we will always
assume A = {a1, ..., aK} is finite, K is the number of arms. Often it will be
useful to denote the arms by 1, ..., K to simplify formulas.

• The action value (or Q-value) of an arm is defined by the expectation Qa :=∫
R x dPa(x). A best arm, usually denoted by a∗, is an arm with highest

Q-value, i.e.
a∗ = argmaxa∈AQa.

Typically one abbreviates Q∗ for the largest action value Qa∗ and if there are
several optimal arms the argmax chooses any of them.

• A learning strategy for n rounds (n = +∞ is allowed) consists of

– an initial distribution π1 on A,
– a sequence (πt)t=2,...,n of kernels on Ωt−1 ×A,
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where Ωt denotes all trajectories (a1, x1, a2, x2, ..., at, xt) ∈ (A×R)t. We will
write the kernels in reverse ordering of the arguments

πt

(
· ; a1, x1, a2, x2, ..., at−1, xt−1

)
with the meaning that πt

(
a ; a1, x1, a2, x2, ..., at, xt

)
is the probability arm

a is chosen at time t if the past rounds resulted in actions/rewards
a1, x1, a2, x2, ..., at, xt.

Recall that a a probability distribution on a finite set is nothing but a probability vector (numbers
in [0, 1]) that sum up to 1. An important special case occurs if the vector consists of one 1 (and
0s otherwise), i.e. the measure is a Dirac measure.

We will always assume that the action values Qa are unknown but the bandit is
a generative model, i.e. the random variables can be sampled. Everything that
can be learnt about the model must be achieved by simulations (playing arms). In
principle the learning strategy should be written down, most of the time we will
construct the kernels πt round by round using algorithms.

We will later see that learning strategies typically depend on different ingredients such as the
maximal time-horizon if this is known in advance or certain quantities of the underlying bandit
model. Of course it is desirable to have as little dependences as possible, but often additional
information is very useful.

Definition 1.2.2. A learning strategy is called an index strategy if all appearing
measures are Dirac measures, i.e. in all situations only a single arm is played with
probability 1. The learning strategy is called soft if in all situations all arms have
strictly positive probabilities.

Of course index strategies are just a small subset of all strategies but most algorithms we study
are index strategies.
Next, we introduce stochastic bandit processes. This is a bit in analogy to Markov chains where
first one introduces transition matrices and then defines a Markov chain and proves the existence.
Or a random variable where first one defines the distribution function and then proves the
existence of a random variable.

Definition 1.2.3. Suppose ν is a stochastic bandit model and (πt)t=1,...,n a
learning strategy for n rounds. Then a stochastic process (Aπ

t , Xπ
t )t=1,...,n on

a probability space (Ω,F ,P) is called a stochastic bandit process with learning
strategy π if Aπ

1 ∼ π1 and

• P
(
Aπ

t = a|Aπ
1 , Xπ

1 , ..., Aπ
t−1, Xπ

t−1
)

= πt

(
a ; Aπ

1 , Xπ
1 , ..., Aπ

t−1, Xt−1
)
,

• P
(
Xπ

t ∈ B|Aπ
1 , Xπ

1 , ..., Aπ
t

)
= PAπ

t
(B) :=

∑
a∈A Pa(B)1Aπ

t =a

for all t = 1, ..., n. We will call Aπ
t the action (the chosen arm) at time t and Xπ

t the
outcome (or reward) when playing arm Aπ

t at time t. For notational convenience
the superscripts π will typically be dropped if the learning strategy is clear from
the context.

In words, a stochastic bandit process is a stochastic process that works in a two-step fashion.
Given a learning strategy π, in every round the strategy suggests probabilities for actions based
on the past behavior. The sampled action At is then used to play the corresponding arm and
observe the outcome. The process (At, Xt) thus describes the sequence of action/rewards over
time.



1.2. INTRODUCTION TO STOCHASTIC BANDITS 5

Just as for random variables or Markov chains it is not completely trivial that there is a probability
space and a stochastic process (At, Xt) that satisfies the defining properties of a stochastic bandit
process.

Theorem 1.2.4. For every stochastic bandit model and every learning strategy
(πt)t=1,...,n there is a corresponding stochastic bandit process (Aπ, Xπ).

Proof. We give a construction that is known under the name random table model as the bandit
process is constructed from a table of independent random variables.

Recall that sampling from a discrete distribution π on A can be performed using
U([0, 1)) random variables. Suppose π({ak}) = pk and [0, 1] is subdivided into
disjoint intervals Ik of lengths pk, then the discrete random variable defined by
Ū = ak if and only if U ∈ Ik is distributed according to π.

Now suppose (X(a)
t )a∈A,t∈N is a table of independent random variables such that X

(a)
t ∼ Pa for

all t and suppose (Ut)t∈N is a sequence of independent U([0, 1]). These random variables (all
defined on some joint probability space (Ω,F ,P) exist due to the Kolmogorov extension theorem.

A1 A2 A3 A4
↑ π1 ↑ π2 ↑ π3 ↑ π4
U1 U2 U3 U4 · · ·

X(a1)
1 X

(a1)
2 X

(a1)
3 X(a1)

4 · · ·
X

(a2)
1 X

(a2)
2 X(a2)

3 X
(a2)
4 · · ·

...
...

...
...

...
X

(aK )
1 X(aK)

2 X
(aK )
3 X

(aK)
4 · · ·

Construction of bandit processes: bold entries were selected as X1, X2, X3, X4, ...

If (πt)t∈N a learning strategy then the stochastic bandit process is constructed as follows:

• t = 1: Use U1 to sample from the discrete measure π1(·) an arm a, denote this arm by A1

and set X1 := X
(A1)
1 .

• t 7→ t + 1: Use Ut+1 to sample from the discrete measure π(· ; A1, X1, ..., At, Xt) (relying
only on the table to the left of column t + 1) an arm a, denote this arm by At and set
Xt+1 = X

(At+1)
t+1 .

To have a picture in mind think of a large table of random variables. Only using the variables
to the left of column t, the uniform variable Ut is used to produce the action At and the Xt

is produced by chosing the reward from row At. To see that this process (A, X) is indeed a
bandit process with learning strategy π we need to check the defining properties. Let us denote
by Ia

t (a1, ..., xt−1) a partition of [0, 1] into K disjoint intervals with lengths πt(a ; a1, ..., xt−1).
Then, using h(u, a1, ..., xt−1) := 1u∈Ia

t (a1,...,xt−1) and

κ(a1, ..., xt−1, ·) = P(Ut ∈ ·|A1 = a1, ..., Xt−1 = xt−1) ind.= P(Ut ∈ ·)
U([0,1])= λ(·)
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yields

P
(
At = a

∣∣A1, X1, ..., At−1, Xt−1
)

= P
(
Ut ∈ Ia

t (A1, ..., Xt−1)
∣∣A1, X1, ..., At−1, Xt−1

)
= E

[
h(Ut, A1, ..., Xt−1)

∣∣A1, X1, ..., At−1, Xt−1
]

=
∫

h(u, A1, ..., Xt−1)κ(A1, ..., Xt−1, du)

=
∫

1u∈Ia
t (A1,...,Xt−1) du

= πt(a ; A1, ..., Xt−1).

The second property is derived as follows:

P
(
Xt ∈ B|A1, X1, ..., At

)
=
∑
a∈A

P
(
Xt ∈ B, At = a|A1, X1, ..., At

)
=
∑
a∈A

P
(
X

(a)
t ∈ B, At = a|A1, X1, ..., At

)
=
∑
a∈A

E
[
1

X
(a)
t ∈B

1At=a|A1, X1, ..., At

]
meas.=

∑
a∈A

1At=aE
[
1

X
(a)
t ∈B

|A1, X1, ..., At

]
ind.=

∑
a∈A

1At=aE
[
1

X
(a)
t ∈B

]
=
∑
a∈A

P
(
X

(a)
t ∈ B

)
1At=a

Def.= PAt
(B).

There is an equivalent way of constructing the process that sometimes yields a more convenient
notation.

The random table model can be slightly modified to what is known as the stack
of rewards model. The only difference is that all random variables appearing in
the random table model are used. If the ath arm is played for the nth time then
the reward variable X

(a)
n is used instead of the reward variable corresponding to

the time at which the ath arm is played for the nth time. In formulas, one sets
Xt = X

(a)
Ta(t) instead of Xt = X

(a)
t , where Ta(t) =

∑
s≤t 1Xs=a is the number of

times the ath arm was played before time t.

In mathematics it is always good to have concrete examples in mind. Here are two examples to
keep in mind. These examples will always be used in the practical exercises.

Example 1.2.5. • Gaussian bandit: all arms are Gaussians N (µi, σ2
i ), for instance

(µ, σ) ∈
{

(0, 1), (1.1, 1), (0.9, 1), (2, 1), (−5, 1), (−3, 2)
}

.

• Bernoulli bandit: all arms take value 1 with probability pi and value 0 with probability
1− pi, for instance

p ∈ {0.9, 0.85, 0.8, 0.5, 0.1, 0.88, 0.7, 0.3, 0.88, 0.75}.

Now that bandit models are defined the next step is to discuss the questions of interest. In
fact, with the targets of this lecture course in mind this is not completely clear as the goals
of stochastic bandit theory and reinforcement learning are different. The reason is that the
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research communities of statistics and AI traditionally have different examples in mind. While
the stochastic bandit community originates from statistical question of optimal experimantal
design in medicin the AI community is more focused on artificial decision making (of computers).
While both aim at developping and analysing algorithms that find the optimal arm, the different
goals yield in different optimization goal. As an guiding example we go back to the two examples
of medical treatment and advertisement. While in medical treatment every single round of
learning refers to the medical treatment of an individual (which has the highest priority and the
number of rounds is clearly limited say by n = 200) in online advertisement it might be much
less problematic to play many rounds (say n = 100k) in the training procedure and to waste
possible income. Here are two typical goals that we will formalise in due course:

(A) For fixed n ∈ N find an algorithm that produces a learning strategy (πt)t=1,...,n such that
the expected reward E[

∑n
k=1 Xπ

k ] is maximised.

(B) For fixed n ∈ N find an algorithm that produces a learning strategy (πt)t=1,...,n such that
the probability of chosing wrong arms is minimized.

Checking papers and text books you will realise that the first goal is typical in the stochastic
bandit community (statistics), the second more typical in AI. The aim of these lecture notes is
to introduce reinforcement learning, so why bother with questions from stochatic bandit theory?
The reason is that a much better mathematical understanding is available from the stochastic
bandit community, optimal choices of parameters have been derived theoretically for many bandit
algorithms. In contrast, the AI community tends to deal with more realistic (more complicated)
models in which choices of parameters are found by comparing simulations. It is the goal of these
lecture to find the right compromise. To understand well enough the important mechanisms in
simple models to improve the educated guesses in realistic models that might be untractable for
a rigorous mathematical analysis.
Let us first discuss the classical stochastic bandit appraoch (A). We already defined an optimal
arm, an arm with maximal action value Qa. Of course there might be several best arms, then
a∗ is chosen as any of them. Since the index set is not ordered there is no preference in which
best arm to denote a∗. The goal is to maximise over all learning strategies the expectation
E[
∑n

t=1 Xt] =
∑n

t=1 E[Xt] for a fixed time-horizon n. There is a simple upper bound for the
reward until time n, which is Q∗. Hence, if all Qa would be known in advance then the stochastic
bandit optimization problem would be trivial, just choose the best arm a∗ in all rounds. Hence,
we always assume the expectations are unknown but the outcomes of the arms (random variables)
can be played (simulated). Since the expected rewards are upper bounded by nQ∗ it is common
practice not to maximise the expected reward but instead the difference to the best case as this
gives an objective criterion that does not depend on the bandit model itself.

Definition 1.2.6. Suppose ν is a bandit model and (πt)t=1,...,n a learning strategy.
Then the (cummulated) regret is defined by

Rn(π) := nQ∗ − E
[ n∑

t=1
Xπ

t

]
.

The stochastic bandit problem consists in finding learning strategies that minimise
the regret. Algorithms are only allowed to use samples of the reward distribution.
If π is clear from the context then we will shorten to Rn.

The regret is called regret because (in expectation) this is how much is lost by not playing the
best arm from the beginning. To get aquainted with the definition please check the following
facts:

• Suppose a two-armed bandit with Q1 = 1 and Q2 = −1 and a learning
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strategy π given by

πt =
{

δ1 : t even,

δ2 : t odd.

Calculate the regret Rn(π).

• Define a stochastic bandit and a learning strategy such that the regret is 5
for all n ≥ 5.

• Show for all learning strategies π that Rn(π) ≥ 0 and lim supn→∞
Rn(π)

n <∞.

• Let Rn(π) = 0. Prove that π only chooses best arms. If there is only one best
arm, then π is deterministic, i.e. Πt(a∗) = 1 for all t.

What is considered to be a good learning strategy? Linear regret (as a function in n) is always
possible by just uniformly choosing arms as this (stupid) learning strategy yields

Rn(π) = nQ∗ − nE[Xπ
1 ] = n

(
Q∗ −

K∑
k=1

1
K

Qa︸ ︷︷ ︸
≥0

)
.

Thus, a linearly incraesing regret can always be achieved when learning nothing. As a consequence
only learning strategies with sublinearly increasing regret are considered reasonable.

In stochastic bandit theory any algorithm that produces a learning strategies with
linearly growing regret is considered useless. The aim is to significantly improve on
linear regret.

There are different kind of bounds that one can aim for. First of all, one can aim for upper
bounds and lower bounds for regret. In these lectures notes we mainly focus on upper bounds.
Nonetheless, there are celebrated lower bounds due to Lai and Robbins that are not too hard to
prove, see Section 1.4. These theoretical lower bounds are important as they tell us if there is
any hope to search for better algorithms as the one we discuss (the actual answer is that one
cannot do much better than the UCB algorithm presented below). Furthermore, the kind of
estimates differ:

• bounds that depend on the bandit model ν are called model-based, such bounds typically
involve the differences between the action values Qa,

• bounds that only depend on n are called model independent, they are typically proved for
entire classes of bandit models for which certain moment conditions are assumed.

For the committ-then-explore and UCB algorithms below model-based upper bounds will be
derived from which also model independent upper bounds can be deduced. We will see that it is
not too hard to obtain algorithms that achieve model-based upper bounds that are logarithmic in
n regret bounds that also involve differences of action values Qa that can make the estimates as
terrible as possible by chosing models where the best and second best arms are hard to distinguish.
In fact, the model independent Lai-Robbins lower bounds shows that the best algorithm on all
subgaussian bandits can only have a regret as good as C

√
Kn for some constant C.

From the practical perspect one might wonder why to deal with regret upper bounds.
If the bounds are reasonably good, then they can be used in order to tune appearing
parameters to optimize the algorithms with guaranteed performance bounds. As an
example, we will use the bounds for the explore-then-commit algorithm to tune the
exploration lengths. Even though the resulting parameters might involve unrealistic
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quantities the understanding can still help us to understand how to work with the
algorithms.

In principle, algorithms could depend on a time-horizon n if n is specified in advance. In that
case asymptotic regret bounds are non-sense and we aim for finite n bounds only. Sometimes
algorithms also depend on the unknown expectations Qa through the so-called reward gaps.

Definition 1.2.7. The differences ∆a := Q∗ −Qa are called reward gaps.

Of course it is not desirable to have algorithms that depend on the reward gaps as a priori
knowledge of the expectations Qa would turn the stochastic bandit problem into a trivial one
(just chose the arm with the largest expectation). Nonetheless, the analysis of such algorithms
can be of theoretial interest to better understand the mechanism of learning strategies. Also we
will see some examples below, the explore-then-commit algorithm depends on the time-horizon
n, so does the simple UCB algorithm, wheras the εn-algorithm is independent of n but mildly
depends on the ∆a through a constant. Bounds on the regret typically depend on n and the
expecations µa often in the form ∆a := Q∗ −Qa.
In order to analyse the regret of a given algorithm in many instances (such as explore-then-commit
and UCB) one always uses the regret decomposition lemma:

Lemma 1.2.8. (Regret decomposition lemma)
Defining Ta(n) :=

∑n
t=1 1At=a the following decomposition holds:

Rn(π) =
∑
a∈A

∆aE[Ta(n)].

Proof. If you know a bit of probability theory it is clear what we do, we insert a clever 1 that
distinguishes the appearing events:

Rn(π) = nQ∗ − E
[∑

t≤n

Xt

]
=
∑
t≤n

E[Q∗ −Xt] =
∑
t≤n

∑
a∈A

E
[
(Q∗ −Xt)1At=a

]
.

To compute the right hand side note that

E
[
(Q∗ −Xt) 1At=a | A1, X1, ..., At

]
= 1At=aE[Q∗ −Xt | A1, X1, ..., At]
= 1At=a(Q∗ −QAt)
= 1At=a(Q∗ −Qa)
= 1At=a∆a.

Here we used the general fact E[X|Y ] =
∫

xP(X ∈ dx|Y ) and that P(Xt ∈ ·|A1, X1, ..., At) ∼
PAt =

∑
a Pa1At=a. Using the tower property a combination of both computations yields

Rn =
∑
t≤n

∑
a∈A

E
[
E[(Q∗ −Xt)1At=a|A1, X1, ..., At]

]
=
∑
a∈A

∆aE
[∑

t≤n

1At=a︸ ︷︷ ︸
Ta(n)

]
.

The statistical regret analysis for many bandit algorithm follows the same appraoch, using the
regret decomposition lemma to reduce regret estimates to so-called concentration inequalities.
Under suitable assumptions on the distributions of the arms one can plug-in different concentration
inequalities from probability theory to derive regret bounds.
We continue our discussion with the second perspective on how to analyse bandit algorithms.
Approach (C) is more refined than (A), as an analogie to function (C) is similar to studying the
asymptotic behavior of a function through that of its derivative. To get this idea clear let us
introduce a new notation:
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Definition 1.2.9. Suppose ν is a bandit model and π a learning strategy. Then
the probability the learner choses a suboptimal arm in round t, i.e.

τt(π) := P(QAt
̸= Q∗)

is called the failure probability in round t.

It is clearly desirable to have τt(π) decay to zero as fast as possible. Note that the failure proba-
bility is typically not the target for stochastic bandits but connects well to ideas in reinforcement
learning. Since E[Tn(a)] =

∑n
t=1 E[1At=a] =

∑n
t=1 P(At = a) the recret decomposition lemma

can be reformulated as follows:

Lemma 1.2.10.

Rn(π) =
n∑

t=1

∑
a∈A

∆aP(At = a),

and, in particular,

Rn(π) ≤ max
a∈A

∆a

n∑
t=1

τt(π) and Rn(π) ≥ min
a̸=a∗

∆a

n∑
t=1

τt(π).

As a consequence we see that the study of regret and failure probability is ultimately connected.
If we interprete the sum as an integral, then understanding the failure probability instead of the
regret is just as studying the asymptotics of a function by its derivate (which is typically harder).
Here are two observations that we will use later for the examples:

• If the failure probabilies do not decay to zero (no learning of the optimal arm),
then the regret grows linearly.

• If the failure probabilities behave (make this precise) like 1
n , then the regret

behaves like
∑

a∈A ∆a log(n) with constants that depend on the concrete
bandit model. Hint: Recall from basic analysis that

∫ t

1
1
x dx = log(t) and how

to relate sums and integrals for monotone integrands.

The abstract discussion will become more accessible when analysing in detail specific algorithms.
For explore-then-commit, using the regret-decomposition lemma, we will only estimate the regret
while for the εn-greedy algorithm we will chose appropriate exploration rates to even upper
bound the failure probabilities. The analysis is indeed crucial in order to improve the naive
ε-greedy algorithm. It seems like the approach (A) is more common in the statistical bandits
literature as there are not many examples for which the failure probabilities can be computed
whereas in the reinforcement learning literature the approach (C) is more popular as for the
most important example (ε-greedy) the failure rates are accessible.
For the reinforcement learning approach (B) there is actually not much (if at all) theory. We
will discuss below the example of softmax-exploration in which the optimal arm is learned using
gradient descent on a parametrised family of distributions on arms.

1.3 Algorithms: the exploration-exploitation trade-off
Lecture 2

We will now go into a few of the most popular algorithms. There is not much choice on how to
design an algorithm. Essentially, all that can be done is to learn about arms that one is not too
sure about (called exploration) and play arms that one expects to be good (called exloitation).
We will not only present algorithms but also discuss theoretical regret bounds. Even though
those won’t be directly useful for our later understanding of reinforcement learning there is one
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important learning: theoretical results allow to understand how to chose optimally the parameters
involved, in contrast to learn by experimenting which is always restricted to particular examples.
In spirit we follow the exposition of Chapter 2 in Sutton and Barto, but we try to mix in more
mathematics to push the understanding further than just simulations.

1.3.1 Basic committ-then-exploit algorithm

Without any prior understanding of stochastic bandits here is a simple algorithm that everyone
would come up with himself/herself. Recalling the law of large numbers 1

n

∑n
t=1 Yt → E[Y1]

we first produce estimates Q̂a for the expectations Qa and then play the arm with the largest
estimated expectation. How do we use the law of large numbers? By just playing every arm
m times and for the remaining n−mk rounds play the best estimated arm. That’s it, that is
the commit-then-exploit algorithm. Before turning the basic idea into an algorithm let us fix a
notation that will occur again and again.

Definition 1.3.1. If (At, Xt) is a stochastic bandit process for some learning
strategy π, then we define

Q̂a(t) := 1
Ta(t)

t∑
k=1

Xk1Ak=a, a ∈ A,

and call Q̂ an estimated action value. Q̂a(t) is the average return from playing arm
a up to time t.

Here is a technical note on why estimated action values converge to the true action values if the
number of rounds is infinite and arms are played infinitely often. Using the stack of rewards
construction shows that as long as all arms are played infinitely often the limit limt→∞ Q̂a(t) is
nothing but limt→∞

1
t

∑t
k=1 X

(a)
k , an average limit of an iid sequence which converges almost

surely by the law of large numbers. The algorithm can be written in different ways. Either to
try all arms m-times in a row or to alternate between the arms, for the pseudocode of Algorithm
1 we chose the latter. The learning strategy πt is clearly an index strategy and can be written as

πt(a; a1, x1, ..., xt) =


1 : a = at mod K+1 and t ≤ mK

1 : argmaxaQ̂a(mK) and t > mK

0 : otherwise

for arms denoted by 1, ..., K. As a first example on how to estimate the regret of bandit algorithms

Algorithm 1: Basic m-rounds explore-then-commit algorithm
Data: m, n, bandit model ν
Result: actions A1, ..., An and rewards X1, ..., Xn

set Q̂(0) ≡ 0;
while t ≤ n do

At :=
{

at mod K+1 : t ≤ mK

argmaxaQ̂a(mK) : t > mK
;

Obtain reward Xt by playing arm At;
end

we prove the following upper bound. The notion 1-subgaussian will be introduced in the course
of the proof, keep in mind Bernoulli bandits or Gaussian bandits with variance at most σ2.
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Theorem 1.3.2. (Regret bound for simple explore-then-commmit)
Suppose ν is a σ-subgaussian bandit model, i.e. all Pa are σ-subgaussian (see
below), with K arms and Km ≤ n for some n ∈ N, then

Rn(π) ≤ m
∑
a∈A

∆a︸ ︷︷ ︸
exploration

+ (n−mK)
∑
a∈A

∆a exp
(
− m∆2

a

4σ2

)
︸ ︷︷ ︸

exploitation

.

Since the regret bound looks a bit frightening on first view let us discuss the ingredients first.
What do we believe a bound should depend on? Certainly on the total number of rounds n, the
number of exploration rounds m, and the number of arms. Probably also on the distributions of
the arms. Why is this? If all arms have the same law, i.e. ∆a = 0 for all arms, then the regret
would be 0 as we always play an optimal arm. If the best arm is much better than other arms,
then the exploration phase forces a larger regret as we decided to also play the worst arm m
times. Looking into the regret bound, the summand m

∑
a∈A ∆a is clearly the regret from the

exploration phase.

Summands of the form
∑

a∈A ∆a must appear in all reasonable regret bounds as
every reasonable algorithm must try every arm at least once.

The interesting question is the regret obtained during the exploitation phase if a suboptimal arm
is played. It seems clear that the best arm is the most likely to be exploited as Q̂a(n) ≈ Qa(n)
for large n by the law of large numbers. The regret thus comes from deviations of this large
n principle, if the rewards of an arm exceed what they would yield on average. Since the
simple explore-then-commit algorithm involves a lot of indepence probabilitites overestimation
of arms can easily be estimated by inequalities which are known as concentration inequalities in
probability theory.

Proof, decomposing exploration and exploitation: Without loss of generality (the order or the
arms does not matter) we may assume that Q∗ = Qa1 . Using the regret decomposition and the
algorithm yields the following decomposition into exploitation and exploration:

Rn(π) =
∑
a∈A

∆aE[Ta(n)] = m
∑
a∈A

∆a +
∑
a∈A

∆a(n−mK) P
(
Q̂a(mK) ≥ max

b∈A
Q̂b(mK)

)
.

Where does this come from? Each arm is explored m times and, if the arm was the best, then
another n −mK times. Hence, Ta(n) = m + (n −mk)1{a was best up to mK}. Computing the
expectation the probability appears due to the construction of the learning strategy π. The
probability can be estimated from above by replacing the maximal arm by some other arm (we
chose the first). This leads to

Rn(π) ≤ m
∑
a∈A

∆a + (n−mK)
∑
a∈A

∆aP(Q̂a(mK) ≥ Q̂a1(mK))

= m
∑
a∈A

∆a + (n−mK)
∑
a∈A

∆aP
(
(Q̂a(mK)− Q̂a1(mK))− (Qa −Qa1) ≥ ∆a

)
.

The appearing probability has the particularly nice form

P(Za − E[Za] ≥ ∆a), with Za = 1
m

m∑
j=1

(X(a)
j −X

(1)
j ),

where X
(a)
1 , . . . , X

(a)
m are distributed according to arm a and all of them are independent. If we

can estimate the probabilities by exp(−m∆2
a/(4σ2)) the proof is complete. In order to do so we

first need an excursion to probability theory.



1.3. ALGORITHMS: THE EXPLORATION-EXPLOITATION TRADE-OFF 13

Let’s have a short excursion into the topic of concentration. A concentration inequality is a
bound on the deviation of a random variable from its mean, either in a two- or one-sided fashion:

c(a) ≤ P(|X − E[X]| > a) ≤ C(a) or c(a) ≤ P(X − E[X] > a) ≤ C(a).

The faster the function C(a) decreases in a the more the random variable is concentrated (takes
values close to its expectation with larger probability, the randomness is less significant). The
idea is that a random variable is stronger concentrated (has less mass away from its expectation)
if larger moments are finite. Where this idea comes from is easily seen from the expectation
formula

E[g(X)] =
{∫

R g(y)fX(y)dy : X has the probability density function fX∑N
k=1 g(ak)pk : X takes the values ak with probabilities pk

,

so that finite expectation for a (strongly) increasing function g such as an exponential function
forces the density (or probability weights) to decrease (strongly) at infinity and thus to be more
concentrated. Here is an example: Markov’s inequality states that

P(|X − E[X]| > a) ≤ V[X]
a2

for every random variable for which E[X2] <∞. Markov’s (concentration) inequality is useful as
it holds for many random variables but the concentration inequality is very bad, the upper bound
only decreases like a polynomial as we move away from the mean. A more useful inequality holds
for so-called subgaussian random variables.

Definition 1.3.3. A random variable X on a probability space (Ω,A,P) is called
σ-subgaussian for σ > 0, if MX−E[X](λ) = E[eλ(X−E[X])] ≤ e

λ2σ2
2 for all λ ∈ R.

The wording subgaussian of course comes from the fact that E[eλX ] = eλ2σ2/2 if X ∼ N (0, σ2).
Here is a little exercise to get aquainted to the definition:

• Show that every σ-subgaussian random variable satisfies V[X] ≤ σ2.

• If X is σ-subgaussian, then cX is |c|σ-subgaussian.

• Show that X1 + X2 is
√

σ2
1 + σ2

2-subgaussian if X1 and X2 are independent
σ1-subgaussian and σ2-subgaussian random variables.

• Show that a Bernoulli-variable is 1
4 -subgaussian by explicitly computing

logMX−p(λ), checking for which p the formula for logMX−p(λ) is maximal
and then estimating the remaining function by λ2

8 .

• Every centered bounded random variable, say bounded below by a and above
by b is (b−a)

2 -subgaussian (this is called Hoeffding’s lemma).

It is important to note that every σ-subgaussian random variable is also σ′-subgaussian for every
σ′ > σ but this is not interesting as we will use σ to bound the variability (σ somehow measures
the variance) as good as possible. This becomes clear in the next proposition, using σ larger
than necessary only weakens the concentration inequality:

Proposition 1.3.4. If X is σ-subgaussian, then

P(X ≥ a) ≤ e− a2
2σ2 and P(|X| ≥ a) ≤ 2e− a2

2σ2

for all a > 0.
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Proof. The proof is based on a trick called Cramér-Chernoff method. The trick uses the Markov
inequality for a parametrized family of functions and then optimising over the parameter to find
the best estimate:

P(X ≥ a) = P
(
eλX ≥ eλa

)
≤ E[eλX ]

eλa
≤ e

λ2σ2
2

eλa
= e

λ2σ2
2 −λa.

Minimizing the right hand side for λ (differentiation!) shows that λ = a
σ2 yields the smallest

bound and this is the first claim of the proposition. Since the same holds for −X we obtain the
second claim by writing P(|X| ≥ a) = P(X ≥ a or X ≤ −a) ≤ P(X ≥ a) + P(−X ≥ a).

As an application of the above we get a first simple concentration inequality for sums of random
variables:

Corollary 1.3.5. (Hoeffding’s inequality)
Suppose X1, . . . , Xn are iid random variables on a probability space (Ω,A,P) with
expectation µ = E[X1] such that X1 is σ-subgaussian. Then

P
( 1

n

n∑
k=1

Xk − µ ≥ a
)
≤ e− na2

2σ2 and P
(∣∣∣ 1

n

n∑
k=1

Xk − µ
∣∣∣ ≥ a

)
≤ 2e− na2

2σ2 , ∀a > 0.

Proof. This follows from the exercise and the proposition above because 1
n

∑n
k=1 Xk − µ =

1
n

∑n
k=1(Xk − E[Xk]) is a centered σ√

n
-subgaussian random variable.

We can now combine the exploration exploration decomposition with the concentration inequality
to derive the upper bound of the regret in the explore-then-commit algorithm:

Completing the proof of Theorem 1.3.2. Since we assumed that the exploitation phase consists
of independent runs of the same arm we are exactly in the situation of Corollary 1.3.5. Hence,
with the notation from the first part of the proof we get the concentration bound

P(Za − E[Za] ≥ ∆a) ≤ exp
(
− ∆2

a

2 2σ2

m

)
= exp

(
− m∆2

a

4σ2

)
.

Plugging-in yields the upper bound from the theorem.

Also without the estimates the following logic is clear: If m is large (a lot of exploration) then
the exploration regret is large (this is the first summand) and the exploitation regret is small
(second summand). In the exercises you will explore numerically how to properly chose m in
different examples. Let’s explore the regret upper bound to find a reasonable choice of m. Of
course, this approach is only reasonable if the upper bound is reasonably good. Indeed, the
first summand is an equality, the second summand only uses Hoeffding’s inequality which is a
reasonably good estimate. To show how to find a good exploration length let us consider the
simple case K = 2 of two arms (again, the first arm is assumed to be the optimal one). Since
∆a1 = 0, we abbreviate ∆ = ∆a2 , the estimate simplifies to

Rn(π) ≤ m∆ + (n− 2m)∆ exp
(
− m∆2

4σ2

)
≤ ∆

(
m + n exp

(
− m∆2

4σ2

))
.

Pretending that m is a continuous parameter the righthand side can be minimized (in m) by
differentation. Do this to solve the following exercise:

The regret upper bound is minimized by

m = max
{

1,
⌈4σ2

∆2 log
(n∆2

4σ2

)⌉}
. (1.1)

Thus, in terms of regret optimisation, our best guess is the explore-then-committ
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algorithm with this particular m. For this choice of m the regret is upper bounded
by

Rn(π) ≤ min
{

n∆, ∆ + 4σ2

∆

(
1 + max

{
0, log

(n∆2

4σ2

)})}
(1.2)

which for n ≥ 4
∆2 gives a model-dependent logarithmic regret bound Rn(π) ≤

C∆ + log(n)
∆ .

In the programming exercises you will be asked to compare this theoretical m with the best
m that can be „seen“ from simulations in a special example. No doubt, tuning parameters by
simulating examples is not very appealing as the parameter might be useless for other examples.

Do you think the explore-then-committ strategy with m from (1.1) is reasonable?
No, it’s cheating. The algorithm relies on n, σ, and ∆ through the choice of m.

• The number of rounds n might be fixed in advance for some examples it might
be not for other examples. For infinite time-horizon there is a trick called the
"doubling-trick" that allows to combine fixed-time algorithms into an infinite
time-horizon algorithm so we do accept dependence on n.

• The variance parameter σ might be known in some situations (for instance
Gaussian rewards with fixed variance but unknown mean) but will typically
be unknown as well. There are algorithms that estimate σ on the run.

• The dependence on ∆ = Qa1 −Qa2 is much more severe as the action values
are never known in advance (otherwise we could just chose a best arm to
obtain zero regret). Hence, the only non-trivial situation is that of unknown
action values but known difference ∆ = Qa1 − Qa2 , but this is extremely
special.

It will turn out below in the Lai-Robbins Theorem 1.4.8 that the regret upper bound from
(1.2) is close to optimal for large n because of the learning strategy independent lower bound
lim infn→∞

Rn(π)
log(n) ≥

σ2

∆ at least for Gaussian bandit models. In the next section we will show
how to construct a similarly good algorithm without cheating in the choice of the algorithm
parameters.

1.3.2 From greedy to UCB
A greedy learning strategy is a strategy that always choses the option the algorithm currently
believes to be the best. For bandits this is the arm with the highest believed reward, typically
measured in terms of the empirical mean, that is the mean of the already observed rewards
Q̂a(t− 1) = 1

Ta(t−1)
∑t−1

k=1 Xk1At=a. As similar concepts will reappear in reinforcement learning
we will spend some time on this topic. It will turn out that pure greedy algorithms do not work
at all, but simple modifications that force additional exploitation work very well.

Purely greedy bandit algorithm

The pure greedy algorithm turns out to be complete non-sense. Nonetheless, it is a good start
into the discussion to get aquainted with the notation and simple modifications give useful
algorithms. The plain idea is as follows: Take the past observations of each arm to define
estimates Q̂a(t− 1) of the action values Qa at time t and then chose the maximal estimated arm,
i.e. At := argmaxaQ̂a(t− 1). As always, since there is no preference order for the arms, if several
estimated action values are equal we randomly chose one of them. In the algorithm we only use
one vector Q̂ to store the estimates Q̂(t) as we only need the current estimated action values.
The computation of Q̂ looks a bit strange and relies on a simple memory trick that allows to
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Algorithm 2: Purely greedy bandit algorithm
Data: bandit model ν, vector Q̂, n
Result: actions A1, ..., An and rewards X1, ..., Xn

Initialise Ta = 0 for all a;
while t ≤ n do

Set At = argmaxaQ̂a;
Obtain reward Xt by playing arm At;
Set TAt

= TAt
+ 1;

Set Q̂At
= Q̂At

+ 1
TAt

(Xt − Q̂At
);

end

compute successive averages without storing all numbers. Suppose R1, ... are real numbers and
all averages Qn = 1

n

∑n
k=1 Rk should be computed without storing the rewards Rn forever. To

compute Qn it is actually only needed to know Qn−1 and Rn:

Qn = 1
n

n∑
k=1

Rk

= 1
n

(
Rn +

n−1∑
k=1

Rk

)
= 1

n

(
Rn + (n− 1) 1

n− 1

n−1∑
k=1

Rk

)
= 1

n

(
Rn + (n− 1)Qn−1)

= Qn−1 + 1
n

(
Rn −Qn−1

)

(1.3)

Under the initialisation Q̂ ≡ 0 the Q̂ are nothing but the sample means and the greedy algorithm
plays greedily the arms with the largest empirical mean. We can also think differently about the
algorithm. The actor suggests a vector with some initial estimates Q̂a of the action values. If
nothing is known the actor will always choose Q̂ ≡ 0. Then the actor plays greedily by always
playing the arm that is believed to be best. After playing the Q-values are updated by adding

1
TAt

(Xt− Q̂At
). They are increased (resp. decreased) if the reward was higher (resp. lower) than

what was believed before.

An algorithm is called a tabular algorithm if there is a table of real numbers (here
a vector) that is constantly updated and used to make the decisions. We will get to
know a similar approach as Q-learning in Chapter 3.

The pure greedy algorithm depends extremely on the initialisation of the vector Q̂ and the
distribution of the arms. Suppose Q̂ ≡ 0 and suppose one arm only returns positive values and
this arm is chosen at the beginning. Then the estimated action value is increased to a positive
number and no other arm will be played in the future. Similarly, if an arm takes positive values
with high probability then future exploration is very unlikely to occur. Also for a Gaussian bandit
model a similar phenomenon arises. Suppose (at least) one arm has positive expectation and
suppose 3σ < µ. If initially that arm is played then with probability at least 0.997 (three-σ-rule)
the result will be positive so that the arm will be played again. Continuing like that it will take
a long time until eventually a different arm will be explored. Since that phenomenal will occur
again we give it a name:

Definition 1.3.6. The phenomenon that a bandit (later: reinforcement learning)
algorithm focuses too early on a suboptimal decision is called committal behavior.
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From a practical point of view there are workarounds for instance using different initialisations
Q̂. As an example one might start with large Q̂. In that case the algorithms would start with
many rounds of exploitation before starting the greedy update. A problem remains: How large
would be good without knowing details of the bandit model? If Q̂ is chosen too large there
would be too much exploitation before playing greedy the arms with the largest estimated action
values. If Q̂ would not be large enough then there would be too little exploitation. A second
workaround would be trying to center the distributions of all arms by substracting the same
constant from all arms to reduce the committal behavior effect described above. Again, it is
unclear what constant should be substracted without a priori knowledge on the action values.
We will get back to this idea when we discuss the policy gradient method where this idea will
return as the base-line trick.

ε-greedy bandit algorithms

The simplest variant to make the pure greedy algorithm more reasonable is to force completely
random additional exploitation. The idea originates from the reinforcement learning community
as from the point of view of minimizing regret the algorithm is completely useles. To get a

Algorithm 3: ε-greedy bandit algorithm
Data: bandit model ν, exploration rate ε ∈ (0, 1), vector Q̂, n
Result: actions A1, ..., An and rewards X1, ..., Xn

while t ≤ n do
Initialise Ta = 0 for all a;
Sample U ∼ U([0, 1]);
if U < ε then

[exploration part];
Uniformly chose an arm At;
Obtain reward Xt by playing arm At;
Set TAt

= TAt
+ 1;

Set Q̂At
= Q̂At

+ 1
TAt

(Xt − Q̂At
);

end
if U ≥ ε then

[greedy part];
Set At = argmaxaQ̂a;
Obtain reward Xt by playing arm At;
Set TAt = TAt + 1;
Set Q̂At = Q̂At + 1

TAt
(Xt − Q̂At);

end
end

Lecture 3
feeling for the algorithm you can run different simulations in the exercises. Simulations of this
kind can be very useful to understand basic mechanisms, but not much more. Of course, for this
particular example we could repeat the simulations again and again to fine-tune the choice of
ε. But this does not result in further understanding of the basic mechanisms for an unknown
problem. The following exercise shows that there is no use of the simple greedy learning strategy,
it has linear regret even if each arm is explored once.

Let π the learning strategy that first explores each arm once and then continus
according to ε-greedy for some ε ∈ (0, 1) fixed. Show that the regret grows linearly:

lim
n→∞

Rn(π)
n

= ε

K

∑
a∈A

∆a.
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Hint: Lower bound E[Ta(n)] by the random exploration and upper bound E[Ta(n)]
using arguments inspired by the proof of Theorem 1.3.7 below.

There are many versions of ε-greedy with reasonable regret bounds. We will only touch upon an
example (introduced an studied in Auer et al.1) that one could call „explore-then-ε-greedy with
decreasing exploitation rate“. The algorithm replaces in the simple ε-greedy algorithm ε by the
time-dependent exploration rate εt = min

{
1, CK

d2 t

}
. To justify the name note that for the first

CK
d2 rounds the exploration rate is 1. Thus, the algorithm first explores randomly and then plays

ε-greedy with decreasing exploration rate ε.

Theorem 1.3.7. (Explore-then-ε-greedy with decreasing ε)
Suppose that all arms take values in [0, 1], d < mina:Qa ̸=Qa∗

∆a, and C >
max{5d2, 2}. Then the ε-greedy algorithm with decreasing exploration rate
εt = min

{
1, CK

d2 t

}
satisfies

lim sup
n→∞

τn(π) · n ≤ (K − 1)C
d2 .

Using Lemma 1.2.10 (note that ∆a ≤ 1 if the arms only take values in [0, 1]) a consequence of
the theorem is logarithmic upper bound

lim sup
n→∞

Rn(π)
log(n) ≤

(K − 1)C
d2 . (1.4)

While logarithmically growing regret is very good (compare the UCB algorithm in Theorem 1.3.8
below) there are two disadvantages. First, the constants are pretty big (the possibly very small
reward gap appears squared in the numerator) and will dominate the logarithm for reasonably
sized n (log(100.000) ≈ 11.5 so that even an additional factor 5 matters quite a lot). Secondly,
with the appearing constant d the algorithm assumes prior knowledge on the bandit model
reward gaps, the algorithm cheats!

Set K = 2 and ∆ small and then compare the algorithm with the explore-then-
committ algorith for two arms.

Proof (not part of the course). Auer et al. proved a much more precise estimate. Suppose j is a
suboptimal arm and n > CK

d2 . Then we prove for all C > 0 that

P(At = j) ≤ C

d2n
+ 2
(C

d2 log
( (n− 1)d2e1/2

CK

))( CK

(n− 1)d2e1/2

)C/(5d2)

+ 4e

d2

( CK

(n− 1)d2e1/2

)C/2
.

Since there are at most K − 1 suboptimal arms an upper bound for τt(π) is obtained by
multiplying by (K − 1). The choice C > 5 (C > 5d actually suffices) implies that the first
summand domminates in the limit.

The failure probability for the first CK
d2 rounds (uniform exploration) is easily seen

to be τt(π) = 1− K∗
K , the probability to chose one of the suboptimal arms.

The proof is mostly a brute force estimation of the probabilities plus Bernstein’s inequality a
concentration inequality that is a bit more general than Hoeffding’s inequality:

1P. Auer, N. Cesa-Bianchi, P. Fischer: „Finite-time Analysis of the Multiarmed Bandit Problem“, Machine
Learning, 47:235-256, (2002)
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Suppose X1, ..., Xn are independent (not necessarily identically distributed!) random
variables with variances σ2

k and expectations µk = E[Xk]. If all Xi are bounded by
M , i.e. |Xi| ≤M for all i, and σ2 :=

∑n
k=1 σ2

k, then

P
( 1

n

n∑
k=1

Xk −
1
n

n∑
k=1

µk ≥ a
)
≤ e

− n2a2

2(σ2+ 1
3 naM) .

In particular, if X1, ..., Xn are iid with variance σ2 and expectation µ then Bernstein’s
inequality becomes

P
( 1

n

n∑
k=1

Xk − µ ≥ a
)
≤ e

− na2

2(σ2+ 1
3 aM) .

Let x0 := 1
2K

∑t
s=1 εs with εn = CK

d2 n the exploration rate from the algorithm. Suppose j is a
suboptimal arm, we are going to estimate P(At = j). From the algorithm we obtain

P(At = j) = εn

K
+
(

1− εn

K

)
P
(
Q̂j(t− 1) ≥ max

a
Q̂a(t− 1)

)
≤ εn

K
+
(

1− εn

K

)
P
(
Q̂j(t− 1) ≥ Q̂∗(t− 1)

)
≤ εn

K
+
(

1− εn

K

)(
P
(
Q̂j(t− 1) ≥ Qj + ∆j/2

)
+ P

(
Q̂∗(t− 1) < Qa∗ −∆j/2

))
,

where Q∗ denotes the estimated action value for a fixed optimal arm, say the first. Here we used
that, by definition of ∆j , Q∗ − ∆j

2 = Qj + ∆j

2 and the elementary estimate

P(X ≥ Y ) = P(X ≥ Y, Y ≥ a) + P(X ≥ Y, Y < a) ≤ P(X ≥ a) + P(Y < a).

From the above we estimate both probabilities separately (the argument is the same). Denote
by T R

j (t) the numbers of random explorations of the arm j before time t. Then

P
(
Q̂j(t) ≥ Qj + ∆j/2

)
=

t∑
s=1

P
(
Q̂j(t) ≥ Qj + ∆j/2, Tj(t) = s

)
=

t∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)
P
(
Q̂j(t) ≥ Qj + ∆j/2

)
1.3.5
≤

t∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)

e−∆2
j s/2,

using that random variables with values in [0, 1] are 1
2 -subgaussian. Splitting the sum into the

sum up to ⌊x0⌋ and the rest, using the estimate
∑∞

t=x+1 e−κt ≤ 1
κ e−κx (think of the integral!)

yields the upper bounded
⌊x0⌋∑
s=1

P
(
Tj(t) = s

∣∣ Q̂j(t) ≥ Qj + ∆j/2
)

+ 2
∆2

j

e−∆2
j ⌊x0⌋/2

≤
⌊x0⌋∑
s=1

P
(
T R

j (t) ≤ ⌊x0⌋
∣∣ Q̂j(T ) ≥ Qj + ∆j/2

)
+ 2

∆2
j

e−∆2
j ⌊x0⌋/2

= ⌊x0⌋P
(
T R

j (n) ≤ ⌊x0⌋
)

+ 2
∆2

j

e−∆2
j ⌊x0⌋/2,

where the conditioning could be dropped because the exploration is independent. Using Bienaymé
and mean, variance of Bernoulli random variables yields

E
[
T R

j (t)
]

= 1
K

t∑
s=1

εs = 2x0 and V
[
T R

j (t)
]

=
t∑

s=1

εs

K

(
1− εs

K

)
≤ 1

K

t∑
s=1

εs
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so that Bernstein’s inequality gives P
(
T R

j (t) ≤ ⌊x0⌋
)
≤ e−x0/5. In total we derived the bound

P
(
Q̂j(t) ≥ Qj + ∆j/2

)
≤ ⌊x0⌋e−x0/5 + 2

∆2
j

e−∆2
j ⌊x0⌋/2

From the probabilistic point the proof is complete but we have not taking into account the choice
of ε. It only remains to play around with x0 = 1

2K

∑n
t=1 εt to simpilfy the presentation. Recall

the choice of the exploitation rate εt and set n′ = CK
d2 . The exploitation rate is constant 1 up to

n′ and then equal to εt = CK
d2 t , hence,

x0 = 1
2K

n′∑
t=1

εt + 1
2K

n∑
t=n′+1

εt ≥
n′

2K
+ C

d2 log
( n

n′

)
≥ C

d2 log
(nd2e1/2

CK

)
.

Putting everything together yields, x 7→ xe−x/5 is decreasing for x > 5, for a suboptimal arm j
and n ≥ n′,

P(At = j) ≤ εn

K
+ 2⌊x0⌋e−⌊x0⌋/5 + 4

∆2
j

e−∆2
j ⌊x0⌋/2

≤ C

d2n
+ 2
(C

d2 log
( (n− 1)d2e1/2

CK

))( CK

(n− 1)d2e1/2

)C/(5d2)

+ 4e

d2

( CK

(n− 1)d2e1/2

)C/2
.

We are not going to discuss further the ε-greedy algorithm. It turns out that that the dependence
on the parameters K, ∆a, C is horribly bad compared to the UCB algorithm that is discussed
next. Still, it is important to keep the previous algorithm in mind as ε-greedy algorithms are
used frequently in reinforcement learning.

UCB algorithm - optimism in the face of uncertainty

The UCB algorithm (upper confidence bound algorithm) is usually not considered as a version
of the greedy algorithm but more a further development of explore-then-commit. UCB follows
similar ideas that involve concentration inequalities but with more thoughts. Still, since UCB
can also be seen as greedy with an additional exploration bonus we prefer to interprete UCB
as an extension of greedy. Here is the main idea, optimism in the face of uncertainty. The
principle suggests to be more optimistic, more curious, in situations that are less certain. For
instance, trying more new dishes when travelling unknown regions of the world. In the context
of bandits the principle states to add an exploration bonus for less good estimated action values.
In the context of estimations involving the approximate action values Q̂ one should thus add
an exploration bonus that decreases with Ta because the uncertainty in the estimate Q̂a ≈ Qa

decreases as Ta increases. In fact, the estimated empirical variance should also play a role but
for the simple UCB algorithm this is ignored. Following the principle in the greedy algorithm we
should add an exploration bonus to the estimated action values that decreases as Ta increases.
The bonus should be something of the kind

Q̂a(t) + ...

Ta(t) .

The choice of the exact exploration bonus is critical. For later purposes one typically uses the

UCBa(t, δ) :=


∞ : Ta(t) = 0

Q̂a(t)︸ ︷︷ ︸
greedy

+

√
2 log(1/δ)

Ta(t)︸ ︷︷ ︸
exploration bonus

: Ta(t) ̸= 0 .
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The exploration bonus is motivated by concentration inequalities, this is the upper bound of
confidence intervals for sums of iid random variables, justifying the name UCB. More precisely,
for 1-subgaussian random variablies with mean Q, plugging-into Hoeffdings inequality 1.3.5 yields

P
( 1

n

n∑
k=1

Xk ≥ Q +
√

2 log(1/δ)
n

)
≤ exp

(
−

n
(√ 2 log(1/δ)

n

)2

2

)
= δ. (1.5)

Thus, the UCB exploration gives a simple control of the overestimation probabilities and with it
the exploration caused by the optimism principle. The parameter δ can be chosen and it turns
out later that δ = 1

n2 is a good choice of the time-horizon is fixed and known. Instead of writing

Algorithm 4: UCB algorithms with parameter δ

Data: bandit model ν, δ ∈ (0, 1), n, vector Q̂
Result: actions A1, ..., An and rewards X1, ..., Xn

Initialise Ta = 0 for all a;
while t ≤ n do

At = argmaxaUCBa(t− 1, δ);
Obtain reward Xt by playing arm At;
Set TAt

= TAt
+ 1;

Set Q̂At
(t) = Q̂At

(t) + 1
TAt

(Xt − Q̂At
(t));

end

down the algorithm to run the bandit we could also write down the learning strategy explicitly:

πt(a; a1, x1, ..., xt) = argmaxaUCBa(t− 1, δ)

with the dependence Q̂a(t) = 1
Ta(t)

∑t
k=1 xk1ak=a and Ta(t) =

∑t
k=1 1ak=a of the past. Note

that the initialisation UCB(0, δ) ≡ +∞ forces the algorithm to explore every arm at least once,
a condition that reasonable algorithms should fulfill.

Theorem 1.3.8. Suppose ν is a bandit model with 1-subgaussian arms, n ∈ N,
δ = 1

n2 . Then the UCB algorithms initialised with Q̂ ≡ 0 has the following regret
upper bound:

Rn(π) ≤ 3
∑
a∈A

∆a + 16 log(n)
∑

a:Qa ̸=Q∗

1
∆a

.

Simulations show that the simple UCB algorithms performs very well on most examples. In
contrast to the optimal version of ECT (cheating by using reward gaps) there is no need to use
reward gaps.

Proof. We will assume without loss of generality that a∗ = a1 and estimate the expected times a
suboptimal arm a will be played. Since δ is fixed as 1

n2 we skip the δ from UCB(t, δ). Combined
with the regret decomposition Lemma 1.2.8 this will give the upper bound on the regret.

Here is the idea of the analysis. Using the regret decomposition it suffices to estimate
E[Ta(n)]. A bit similarly to the analysis of ECT we decompose

E[Ta(n)] = E[Ta(n)1Hm
] + E[Ta(n)1Hc

m
],

where the events Hm should be {arm a is played at most m times}. In that case
we can estimate

E[Ta(n)] ≤ mP(Hm) + nP(Hc
m) (1.6)
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since Ta(n) can be at most n. If now the probability can be estimated then one can
optimise over m. The proof is a bit more delicate, we cannot compute Hm. Instead
we use smaller events Gm ⊆ Hm for which the probabilities can be computed. The
decomposition (1.6) works equally but the way the Gm are defined their probabilities
can be estimated using the independence of all rewards.

The estimates are based on Hoeffding’s inequality for sums of iid random variables. This is why
we use the random stack construction of the bandit process (A, X). For that sake recall the table
{X(a)

t }t≤n,a∈A of independent random variables with X
(a)
t ∼ Pa. Using

Q̄(a)
s = 1

s

s∑
k=s

X
(a)
k

this means that Q̂a(t) = Q̄
(a)
s if Ta(t) = s. From now on we fix arm a and estimate E[Ta(n)].

Define Gm = G1 ∩G2,m with

G1 =
{

ω : Qa1 < min
t≤n

UCBa1(t)(ω)
}

,

G2,m =
{

ω : Q̄(a)
m (ω) +

√
2 log(1/δ)

m
< Qa1

}
,

with a natural number m to be specified later. Thus, Gm is the event when Qa1 is never
underestimated by the upper confidence bound of the first arm, while at the same time the upper
confidence bound for the mean of arm a after m observations are taken from this arm is below
the action value of the optimal arm. In what follows we will estimate the probability of Gm and
show that Gm ⊆ Hm with Hm from above. Let us start with the latter and prove that

if ω ∈ Gm, then Ta(n)(ω) ≤ m. (1.7)

First in words: If ω ∈ G2,m and ω ∈ G1 then the UCB value for the mth round of playing arm a
is smaller than that for playing arm a1 (because one is smaller, the other bigger than Qa1). Thus,
arm a is not played more than m times. Now more formally. Suppose ω ∈ Gm but Ta(n)(ω) > m
holds. Then there must be some time index t ≤ n with Ta(t− 1)(ω) = m and At(ω) = a. Using
the definitions of G1, Ga,2, and UCB yields

UCBa(t− 1)(ω) Def.= Q̂a(t− 1)(ω) +

√
2 log(1/δ)

Ta(t− 1)(ω)

= Q̄(a)
m (ω) +

√
2 log(1/tδ)

m
Ga,2
< Qa1

G1
< UCBa1(t− 1)(ω),

a contradiction to a = At(ω) = argmaxbUCBb(t− 1). Hence, (1.7) holds.

We now follow the idea sketched above. Since Ta(n) is trivially bounded by n the following key
estimate holds:

E[Ta(n)] = E
[
Ta(n)1Gm

]
+ E

[
Ta(n)1Gc

m

]
≤ m + n

(
P(Gc

1) + P(Gc
2,m)

)
. (1.8)

It now suffices to estimate separately both summands on the right hand side of (1.8). First, it
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holds that

P
(
Gc

1
)

= P
(
Qa1 ≥ UCBa1(t) for some t ≤ n

)
≤
∑
s≤n

P
(

Qa1 −
√

2 log(1/δ)
s

≥ Q̄s(a1)
)

Hoeffding
≤

∑
t≤n

δ = nδ.

Next, we chose m which so far was left unspecified. Let us chose m large enough so that

∆a −
√

2 log(1/δ)
m

≥ 1
2∆a (1.9)

holds, for instance m =
⌈

2 log(1/δ)
1
4 ∆2

a

⌉
. Then

P
(
Gc

2,m

)
= P

(
Q̄(a)

m +
√

2 log(1/δ)
m

≥ Qa1

)
= P

(
Q̄(a)

m −Qa ≥ ∆a −
√

2 log(1/δ)
m

)
(1.9)
≤ P

(
Q̄(a)

m ≥ Qa + 1
2∆a

)
Hoeffding
≤ exp

(
− m∆2

a

8

)
.

Combining the above yields

E
[
Ta(n)

]
≤ m + n

(
nδ + exp

(
− m∆2

a

8

))
. (1.10)

It remains to plug-in. Using δ = 1
n2 yields

m =
⌈

2 log(n2)
1
4 ∆2

a

⌉
≤ 1 + 16 log(n)

∆2
a

so that

E[Ta(n)] ≤ m + 1 + n n−2 ≤ m + 2 ≤ 3 + 16 log(n)
∆2

a

.

Combined with the regret decomposition the claim follows.
Lecture 4

The previous bound is logarithmic in n with inverse reward gaps. While the dependency in n is
very good the inverse reward gaps can be arbitrarily large if the second best arm is close to the
best arm. Estimating slightly differently in the final step of the proof we can derive a different
upper bound which is less favorable in the dependency of n but more favorable in term of the
reward gap (which of course is a priori unknown).

Theorem 1.3.9. Suppose ν is a bandit model with 1-subgaussian arms, n ∈ N,
and δ = 1

n2 . Then the UCB algorithms also has the alternative regret upper bound

Rn(π) ≤ 8
√

Kn log(n) + 3
∑
a∈A

∆a.

The term
∑

a∈A ∆a appearing in both bounds is very natural as every reasonable algorithm
plays each arm at least once and thus, by the regret decomposition lemma, gives

∑
a∈A ∆a. In

many examples the sum of the reward gaps can be bounded. If for instance all arms are Bernoulli
distributed, then the sum can be replaced by k and be neglected as it will be dominated by the
first summand. More interesting is the first summand for which one can decide to emphasie
more the dependence on n or the regret gap.
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Proof. The proof of the regret bound given above revealed that E[Ta(n)] ≤ 3 + 16 log(n)
∆2

a
s. The

idea of the proof is as follows. From the regret decomposition we know that small reward gaps
should not pose problems as they appear multiplicatively. Separating the arms by a threshold
into those with small and those with large reward gaps we only use the estimate for the ones
with large reward gaps and then minimise over the threshold. Persuing this way leads to

Rn(π) =
∑
a∈A

∆aE[Ta(n)]

=
∑

a∈A:∆a<∆

∆aE[Ta(n)] +
∑

a∈A:∆a≥∆

∆aE[Ta(n)]

≤ n∆ +
∑

a∈A:∆a≥∆

(
∆a3 + 16 log(n)

∆a

)
≤ n∆ + 16K log(n)

∆ + 3
∑
a∈A

∆a.

Since ∆ can be chosen arbitrarily it suffices to minimise the righthand side as a function in ∆.
The minimum can be found easily by differentiation in ∆ to be located at ∆ =

√
16K log(n)/n.

Plugging-in yields

Rn(π) ≤ 8
√

Kn log(n) + 3
∑
a∈A

∆a.

For σ-subgaussian bandit models the UCB exploration bonus is modified as

UCBa(t) :=


∞ : Ta(t) = 0

Q̂a(t)︸ ︷︷ ︸
greedy

+

√
4σ2 log(n)

Ta(t)︸ ︷︷ ︸
exploration bonus

: Ta(t) ̸= 0 .

Check that the regret bound in Theorem 1.3.8 changes to

Rn(π) ≤ 3
∑
a∈A

∆a + 16σ2 log(n)
∑

a:Qa ̸=Q∗

1
∆a

,

and this leads to

Rn(π) ≤ 8σ
√

Kn log(n) + 3
∑
a∈A

∆a

in Theorem 1.3.9. Thus, for Bernoulli bandits the exploration bonus should be√
1
4 log(n)

Ta(t) and, as you should check in simulations (!) the constant 1
4 is crucial for a

good performance.

The idea of the last proof is very important. The model based regret bounds are often com-
pletely useless as they emphasise too strongly small reward gaps which by means of the regret
decomposition should not be important at all. To get a better feeling please think a moment
about the following exercise:

Recall (1.2), the upper bound for ETC in the case of two arms. Use the idea from
the proof of Theorem 1.3.9 to derive the following upper bound of the ETC regret:

Rn(π) ≤ ∆ + C
√

n,
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for some model-free constant C (for instance C = 8 + 2
e ) so that, in particular,

Rn(π) ≤ 1 + C
√

n for all bandit models with regret bound ∆ ≤ 1 (for instance for
Bernoulli bandits).

It is very crucial to compare the constants appearing in the regret bounds. As mathematicians
we tend to overestimate the importance of n and always think of n → ∞ (as we did in the
formulation of Theorem 1.3.7). Keeping in mind logarithmic growht one quickly realises the
importance of constants. As an example log(1.000.000) ≈ 13 so that a constant

√
K or even

worse 1/∆ can be much more interesting. As an example the constants (5 and 1/∆ appears
even squared) in the regret bound of explore-then-ε greedy are extremely bad even though the
logarithm in n is right order.

UCB is typically used as benchmark algorithm to compare other bandit algorithms.
The reason is that UCB is simple to state, simple to analyse, and also pretty
close to optimal both in the model-based and model-independent regret bounds.
Authors typically compare their bounds with the growth in n (typically logarithmic
model-based and square-root model-independent), the appearing generic constants
(such as 8 in UCB), and how the reward bounds enter the regret upper bounds.

Comparing with the Lai-Robbins lower bounds for subgaussian bandit algorithms shows that the
UCB algorithm is pretty close to optimal. There are more refined versions of the simple UCB
algorithm presented above, such as the MOOS algorithm. What changes are different choices for
additional exploitation. For further reading we refer to the wonderful book „Bandit Algorithms“
of Tor Lattimore and Csaba Szepesvári which is available online for free.

1.3.3 Boltzmann exploration
In this section we present a method that connects greedy exploration and the UCB algorithm in
a surprising way. Before explaining the algorithm the concept of softmax distributions is needed.

Definition 1.3.10. Suppose x, θ ∈ Rd, then x defines a discrete distribution
SM(θ, x) on finite sets with d elements with probability weights

pk := eθkxk∑d
i=1 eθixi

, k = 1, ..., d.

The weights are called Boltzmann weights of the vector x.

Typically, all θi are equal, in which case θ is called inverse temperature. The origin of such
distributions lies in statistical physics. The softmax distributions is a so-called catagorial distri-
bution, written Categorial(p1, ..., pd) which is also called a multinoulli or generalised Bernoulli
distribution with probabilities p1, ..., pd. For us, the following idea is much more important. If
all θk are non-negative then sampling from SM(θ, x) is somewhat similar to the deterministic
distribution Mx that only charges mass on the index argmaxkxk because SM(θ, x) assigns the
highest probabilities to the coordinate with largest value xk. But unlike the deterministic
maximum distribution the softmax distribution only weights stronger the maximal element than
the smaller elements. The role of θ is important: for large θ the softmax resembles the argmax
distribution while for small θ the distribution resembles the uniform distribution on {1, ..., d}.
Replacing sampling from the (deterministic) argmax distribution in the greedy algorithm yields
the Boltzmann exploration algorithm. In contrast to the greedy algorithm there is continuous
exploration as all arms have positive probabilities. It is quite obvious that the choice of θ is
crucial as the algorithm resembles two unfavorable algorithms with linear regret, both for small
and large θ (uniform and greedy exploration). In fact2, both constant and decreasing choices of

2N. Cesa-Bianchi, C. Gentile, G. Lugosi, G. Neu: Boltzmann exploration done right, NeuRIPS, (2017)



1.3. ALGORITHMS: THE EXPLORATION-EXPLOITATION TRADE-OFF 26

Algorithm 5: Simple Boltzmann exploration
Data: bandit model ν, vector Q̂, parameter θ
Result: actions A1, ..., An and rewards X1, ..., Xn

Initialise Ta = 0 for all a;
while t ≤ n do

Sample At from SM(θ, Q̂);
Obtain reward Xt by playing arm At;
Set TAt

= TAt
+ 1;

Set Q̂At
= Q̂At

+ 1
TAt

(Xt − Q̂At
);

end

θ are unfavorible. To guess a better choice for θ we need the following surprising lemma:

Lemma 1.3.11. Let x, θ ∈ Rd, then

SM(θ, x) (d)= argmaxk{θkxk + gk},

where g1, ..., gd are iid Gumbel random variables with scale 1 and mode 0, i.e. have
probability density function f(x) = e−(x+e−x) or CDF F (t) = e−e−t .

Proof. Reformulated right the proof is quite simple. We first prove very well-known statement
from elementary probability theory on exponential random variables. Suppose E1, E2 are
independent exponential random variables with parameters λ1, λ2. Then P(E1 ≤ E2) = λ1

λ1+λ2
.

This is a simple integration exercise: with A = {0 ≤ x1 ≤ x2} ∈ B(R2) the computation rules for
vectors of independent random variables yields

P(E1 ≤ E2) = E
[
1A(E1, E2)

]
=
∫

A

f(E1,E2)(x1, x2) d(x1, x2)

=
∫ ∞

0

∫ x2

0
λ1e−λ1x1λ2e−λ2x2 dx1 dx2

= λ1λ2

∫ ∞

0
e−λ2x2

1
λ1

(
1− e−λ1x2

)
dx2

= λ2

∫ ∞

0

(
e−λ2x2 − e−(λ1+λ2)x2

)
dx2

= 1− λ2

λ1 + λ2
= λ1

λ1 + λ2
.

Next, we can compute the argmin distribution of independent exponential variables. Sup-
pose E1, ..., En are independent exponential random variables with parameters λ1, ..., λn, then
P(argminj≤nEj = i) = λi

λi+
∑

k ̸=i
λk

. The identity is a direct consequence from the above:

P
(
argminj≤nEi = i

)
= P

(
Ei ≤ Ek,∀k ̸= i

)
= P(Ei ≤ E) = λi

λi +
∑

k ̸=i λk
,

where E := mink ̸=i Ek is independent of Ei and exponentially distributed with parameter∑
k ̸=i λk. Here recall from elementary probability that the minimum of independent exponentials

is again exponential and the parameter is the sum of the parameters. The second ingredient is a
connection between exponential and Gumbel variables. If X ∼ Exp(1), then Z := − log(X) is
Gumbel with scale parameter β = 1 and mode µ = 0. The claim is checked by computing the
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cummulative distribution function:

P(Z ≤ t) = P(X ≥ e−t) = e−e−t

, t ∈ R.

As a consequence, with g Gumbel with scale β = 1 and mode µ = 0 and Eλ ∼ Exp(λ), we obtain
the identity in law

c + g ∼ − log(e−c)− log(E1) = − log(e−cE1) ∼ − log(Eec).

For the last equality in law we have also used the scaling property of the exponential distribution.
If g1, ..., gk are iid Gumbel with scale β = 1 and mode µ = 0 we finally obtain

P
(
argmaxk≤n(θkxk + gk) = i

)
= P

(
argmaxk≤n − log(Eeθkxk ) = i

)
= P

(
argmink≤nEeθkxk = i

)
= eθixi∑

k eθkxk
.

In other words, the Gumbel argmax is distributed according to SM(θ, x).

Using the lemma the Boltzmann algorithm can now be interpreted differently: arms are chosen
according to the distribution

At ∼ argmaxa

{
θQ̂a(t− 1) + ga

}
= argmaxa

{
Q̂a(t− 1) + θ−1ga

}
,

where the ga are iid Gumbel and independent of Q̂. Does this look familiar? Of course, this is
the greedy strategy with an additional random exploration bonus as we have seen in the UCB
algorithm. Since typical values of g are around 1, motivated by the UCB algorithm a first idea
should immediately come to mind: θ−1 should be arm-dependent and

√
C
Ta

might be a good
idea. In fact, that’s true as was shown in the article of Cesa-Bianci et al. We will not go into
detail here. The aim of this section was to link the Boltzmann explortation with greedy-type
algorithms. Here is an interesting research question to think about. Let us forget that UCB-type
exploration with Gumbel random exploration bonus is linked to the rather natural exploitation
strategy given by Boltzmann softmax weights. It is then very natural to replace the Gumbel
distribution by some other distribution. It seems most plausible that non-negative distributions
should be more reasonable as a negative value turns the exploration bonus into an exploration
malus which was never intended.

Use the simulation code provided for the exercises to play with different distributions
and see if replacing the Gumbel distribution can be favorable. Chosing distributions
that concentrate around 1 (Dirac measure at 1 gives UCB) might be reasonsble, such
as a Gamma distribution with shaper parameter larger than 1 and scale parameter
that forces expectation 1.

Lecture 5

1.3.4 Simple policy gradient for stochastic bandits
We now come to a completely different approach, the so-called policy gradient approach. The
approach presented here is not really part of the research field of multiarmed bandits but is a
very simple special case of which will later be called policy gradient method for reinforcement
learning. We use the softmax policy gradient method to connect the topic of multiarmed bandits
with reinforcement learning that will be started in the next lecture. For that sake, here is a new
way of thinking of bandits. The bandit game is a one-step game, the game of chosing one of the
K arms and obtaining the corresponding outcome.
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Definition 1.3.12. A probability distribution π on A is called a policy for the
bandit game, the expected reward V (π) := Qπ :=

∑
a∈A Qaπ(a) when playing the

policy is called the value of the policy.

Keep in mind that since A is assumed to be finite a distribution on A is nothing but a probability
vector, a vector of non-negative numbers that sums up to 1. A vector (0, ..., 1, ...0) with 1 for the
ath arm (position) corresponds to playing only arm a and in this case Qπ = Qa. A policy is
optimal if the expected outcome Qπ is maximal, i.e. equals Q∗. If there are several optimal arms,
i.e. arms satisfying Qa = Q∗, then any policy is optimal that has mass only on optimal arms.

The goal in reinforcement learning is similar to that of multiarmed bandits, but
different. In reinforcement learning we are typically concerned with finding the best
(at least very good) policy (here: in the bandit game the best arm) as quickly as
possible. In reinforcement learing we are not aiming to minimise regret. Essentially,
we do not care if very bad arms are played as long as the best arm is found quickly.
A learning strategy is used to find the optimal policy.

One of the reasons for this different point of view is the field of applications. While one of the
main motivations for the multiarmed bandit stems from medicine where every single life counts a
major field of applications that pushed the development of reinforcment is automated learning of
optimal strategies in gaming or online advertisement where obviously the impact of suboptimal
attempts is much less severe.
In this section we start with a simple approach to policy search. A set of possible policies is
defined and then a learning strategy tries to find the best among these policies.

Definition 1.3.13. If Θ ⊆ Rd, then a set {πθ : θ ∈ Θ} of probability distributions
on A is called a parametrised family of policies.

The policy gradient idea is as follows: given a parametrised policy over a continuous index set
we aim to maximise the value function J over the parameter set:

θ 7→ J(θ) := Qπθ
=
∑
a∈A

πθ(a)Qa.

The value function J is nothing but a multidimensional function, hence, maximisation algorithms
can be used. If the parametric family can approximate Dirac-measures δa then one could hope
to identify the optimal arm using an optimisation procedure. So how can we find the optimal
arm with policy gradient? By typical optimization methods from lectures on numerical analysis.
One example is the classical gradient ascent method:

θn+1 := θn + α∇J(θn), n ∈ N.

Under suitable assumptions on J (such as convexity) that algorithm converges to a maximum θ∗
of J . Unfortunately, that approach has diverse difficulties which are topcis of ongoing research:

1. Given a bandit model, what is a good parametric family of policies?

2. If J is unknown (because the expectations Qa are unknown) how can gradient descent be
carried out (most efficiently)?

3. Even if the function J would be known explicitly, will the gradient ascent algorithm
converge to an optimal policy? How fast?

In this first section on the policy gradient method we will address the first two issues by a
discussion of one particular parametrised family and a sketch of what later will be discussed in
details in the chapter on the policy gradient method. The third question is widely open with
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some recent progress3. We will start with the second issue on how to deal with the gradient of
J if J is unknown but samples can be generated. The trick that will occur a few times in this
lecture course is the so-called log-trick, here in its simplest form:

The following short computation is typically called log-trick (or score-function trick):

∇J(θ) = ∇
∑
a∈A

Qaπθ(a)

=
∑
a∈A

Qa∇πθ(a)πθ(a)
πθ(a)

=
∑
a∈A

Qa∇ log(πθ(a))πθ(a)

= Eπθ
[QA∇ log(πθ(A))]

= Eπθ
[XA∇ log(πθ(A))],

where the last equality follows from the tower-property and E[XA|A] = QA for
instance by using Xt =

∑
a∈A X

(a)
t 1At=a the random table model from the proof of

Theorem 1.2.4. Note that whenever we take the expectation of a vector of random
variables (the gradient is a vector) the expectation is taken coordinate wise.

Now that the gradient is expressed as the expectation of a random vector the idea is to replace
in the gradient ascent algorithm the true gradient by samples of the underyling random variable.
Either by one sample

θ̃n+1 := θ̃n + αXAn∇ log(πθ̃n
(An)), n ∈ N, (1.11)

or by a so-called batch of independent samples:

θ̃n+1 := θ̃n + α
1
N

N∑
i=1

Xi
Ai

n
∇ log(πθ̃n

(Ai
n)), n ∈ N, (1.12)

where the Ai
n are independently sampled according to π̃θn and the Xi

Ai
n

are independent samples
from the arms Ai

n. The sequence of πθ̃n
of policies obtained from gradient is a learning strategy

that hopefully approximates the optimal policy.

Definition 1.3.14. The appearing function (a, θ) 7→ ∇ log πθ(a) is called the
score-function of πθ.

Of course the algorithm is most useful if the score-function is nice so that the gradient dissapears.
Here is the most prominent example:

Example 1.3.15. Suppose d = |A|, so that there is a parameter θa for each arm a. Furthermore,
define

πθ(a) = eθa∑
k∈A eθk

.

Then the family {πθ : θ ∈ Rd} is called the tabular softmax family. The softmax family is huge
(way too big to be used in practice) and rich enough to approximate all optimal policies. Indeed,
if an arm a is optimal, then the parameter θa needs to be sent to +∞. The score-function is
easily computed to be(

∇ log πθ(a)
)

i
= 1a=i −

(
∇ log

(∑
a∈A

eθa

))
i

= 1a=i −
eθi∑

a∈A eθa
= 1a=i − πθ(i).

3see for instance A. Agarwal, S. Kakade, J. Lee, G. Mahajan: „On the Theory of Policy Gradient Methods:
Optimality, Approximation, and Distribution Shift“, JMLR, 1-76, (2021)
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Plugging-into (1.11) yields the updates (now written component wise)

θ1,n+1 = θ1,n − αXiπθ(1),
· · · = · · ·

θi,n+1 = θi,n + αXi(1− πθ(i)),
· · · = · · ·

θd,n+1 = θd,n − αXiπθ(d)

if N = 1, An = i, and Xi is a sample of arm i. Here is the first explanation why reinforcment
learning is called reinforcement learning. Remember that the θa are indirect parametrisations of
the probabilities to play arm a. If at time n the policy current policy decides to play arm i then
the probabilities are reinforced as follows. If the reward obtained by playing arm i is positive,
let’s interprete the positive reward as positive feedback, then the probability to play arm i is
increased and all other probabilities are decreased. Similarly, if the feedback from playing arm i
is negative, then the probability to do so in the next round is decreased and all other probabilities
are increased. But how about the situation in which all rewards are positive? How do we learn
to distinguish good and bad arms? It would be much easier if bad arms have negative rewards
leading to a reduction of likelihood in the softmax update. In that situation the actor only
learns indirectly. The actor only learns an arm is bad by playing good arms which reduces the
likelihood to play the bad arms. It would be much more effective to learn directly that bad arms
are bad. One might think about the mensa food. If a dish is bad we can learn it is bad by trying
it. If all dishes are good and a few are pretty good we can only learn a dish is relatively bad by
eating better food.

Another way of seeing the same problem is to think about committal behavior. Suppose for
instance that the starting vector is θ0 ≡ 0 and all arms return positive values (for instance
Bernoulli bandits). Then the first arm is chosen uniformly as πθ0 is uniform on A. If the first
chosen arm, say a, yields a positive return then the the updated parameter vector θ1 only has
one positive entry, namely the ath entry. Hence, for the second update the ath arm is most
likely to be chosen again. A way to reduce committal behavior is to substract a baseline that is
supposed to help distinguish good and bad arms4.

Here is another representation for the gradient:

∇J(θ) = Eπθ
[(XA − b)∇ log(πθ(A))],

where b is any constant. The reason is simply that, using the same computation as
above,

Eπθ
[b∇ log(πθ(A))] = b

∑
a∈A
∇ log(πθ(a))πθ(a)

= b
∑
a∈A
∇πθ(a)πθ(a)

πθ(a)

= b∇
∑
a∈A

πθ(a)

= b∇1 = 0.

It is important to realise that b can be chosen arbitrary without changing the
gradient and as such not changing the gradient ascent algorithm

θn+1 := θn + α∇J(θ), n ∈ N.

Still, it drastically changes the stochastic version (here for the softmax parametrisa-

4W. Chung, V. Thomas, M. Machado, N. Le Roux: „Beyond Variance Reduction: Understanding the True
Impact of Baselines on Policy Optimization“, ICML, (2021)
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tion)

θ̃i,n+1 := θ̃i,n + α(XAn
− b)

(
1An=i − πθ̃n

(i)
)
, n ∈ N, i ∈ A,

as now the effect of committal behavior can be reduced drastically. An important
question is what baseline to choose so that the algorithm is speed up the most.
Usually people choose b to minimise the variance of the estimator of ∇J , but on
the pathwise level this choice is not optimal. Thinking about the pathwise behavior
it would be more reasonable to use b = V (πθ) as it turns rewards negatives if the
arm returns less then expectation. Unfortunately, this b is unknown and should be
estimated again. Later we will call such algorithms actor-critic.

Even though not optimal on a pathwise level it can be instructive to compute the minimum
variance baseline for every step of the policy gradient scheme. Intuitively that makes sense as
variance in the gradient approximations leads to wrong update directions and thus slows down
the convergence.

The variance of a random vector X is defined by to be V[X] = E[||X2||]−E[X]TE[X].
Show by differentiation that

b∗ = Eπθ
[XA||∇ log πθ(A)||22]

Eπθ
[||∇ log πθ(A)||22]

is the baseline that minimises the variance of the unbiased estimators

(XA − b)∇ log(πθ(A)), A ∼ πθ,

of J(θ).

To finish the discussion we might wish to estimate the regret Rn(π) of a learning strategy (πθn
)n≥1.

In fact, almost nothing is known, only some rough estimates for the softmax parametrisation can
be found in the literature. Give it a try!

1.4 Lower bounds for stochastic bandits
In the previous sections we have discussed a number of explicit algorithms to learn the optimal
arm of a bandit model. For reward distributions with very small tails (such as Gaussian or even
bounded) we derived log(n) and

√
n type estimates for the regret. In this section we derive lower

bounds using estimates from classical statistics (essentiallly hypothesis testing).

1.4.1 A bit on relative entropy
Let us first recall some notion from probability theory. Suppose P and Q are probability measures
on some probability space (Ω,A). One says P ≪ Q, P is dominated by Q or P is absolutely
continuous with respect to Q, if P (A) implies Q(A) for all A ∈ A. The Radon-Nykodym
theorem states that in that situation there is a non-negative measurable mapping f such that
Q(A) =

∫
A

f dP . While it is not too hard to show the domination property computing densities
might be a complicated matter.

Definition 1.4.1. (Relative Entropie or Kullback-Leibler divergence)
Suppose P and Q are probability measures on a probability space (Ω,F). Then

D(P, Q) =
{∫

log( dP
dQ ) dP : if P ≪ Q

∞ : otherwise
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is called relative entropie (or KL-divergence) of P with respect to Q.

The expression divergence refers to a non-negative mapping on the cartesian product with
properties similar (but weaker) than a metric. For instance, the KL divergence is not symmetric
and does not satisfy the triangle inequality. Nonetheless, the KL-divergence is meant to measure
in a way the difference of the measures. It is non-negative and zero if and only if P = Q. There
is a lot of information theretic meaning hidden in the definition, we will use the divergence for
hypotheses testing. The assumption of absolute continuity is nothing but saying the integral is
well-defined. Most importantly, if both measures are absolutely continuous, then they are clearly
absolutely continuous and the Radon-Nykodym deriviative is the ratio of the densities.

Lemma 1.4.2. Suppose P ≪ Q≪ v, then dP
dQ

dQ
dv = dP

dv .

Solving the equation yields dP
dQ =

dP
dv
dQ
dv

but one should be a bit careful with division by zero. There
is no big problem as {dQ

dv = 0} is a Q-zero set and thus also a P zero set. Since densities are
only unique up to nullsets one typically just modifies dP

dQ = 1 dQ
dv >0

dP
dv
dQ
dv

Proof.

P (B) =
∫

B

dP

dQ
dQ =

∫
B

dP

dQ

dQ

dv
dv

Note that there is no problem with the denomination as P ≪ Q implies that zeros of q are also
zeros of p (except on a Q-zero set).

The lemma shows how to compute densities dP
dQ if one can compute densities with respect to the

same dominating measure.

There are two important examples to which the lemma is usually applied. Two
discrete (dominating measures the counting measure) or two absolutely continu-
ous measures (dominating measure the Lebesgue measure). For two absolutely
continuous measures P and Q with positive densities p and q the formula yields
dP
dQ (x) = p(x)

q(x) . For discrete measures on a1, ..., aN the formula yields dP
dQ (ak) = pk

qk
.

The formulas can be used to compute relative entropies for two discrete (resp. absolutely
continuous) measures. Let’s check two particularly important examples, discrete Bernoulli
variables and Gaussian random variables. If P ∼ Ber(p) and Q ∼ Ber(q) with p, q ∈ (0, 1), then

D(P, Q) = p log
(

p

q

)
+ (1− p) log

(
1− p

1− q

)
because both are absolutely continuous with respect to the counting measures on {0, 1}. If
P ∼ N (µ1, σ2) and Q ∼ N (µ2, σ2), then, using that both are absolutely continuous with respect
to the Lebesgues measure,

d(P, Q) = 1√
2πσ2

∫
R

(
− (x− µ1)2

2σ2 − (x− µ2)2

2σ2

)
e− (x−µ1)2

2σ2 dx

= 1√
2πσ2

∫
R

e− (x−µ1)2

2σ2
1
σ2 x(µ1 − µ2)dx + 1√

2πσ2

∫
R

e− (x−µ2)2

2σ2
µ2

2 − µ2
1

2σ2 dx

= 1
σ2

(
µ1(µ1 − µ2) + µ2

2 − µ2
1

2

)
= (µ2 − µ1)2

2σ2 .
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There is also a sufficiently handy formula for the relative entropy of two general Gaussian vectors.
We will later see how to compute relative entropies for bandit processes using absolute continuity
with respect to the uniform path measure.
Here is the key application of KL-divergence needed for our purposes:

Theorem 1.4.3. (Bretagnolle-Huber)
Suppose P and Q are probability measures on a probability space (Ω,F). Then

P (A) + Q(AC) ≥ 1
2 exp(−D(P, Q)), ∀A ∈ F .

Usually the Bretagnolle-Huber inequality is stated in terms of bounding the total-variation
distance of two probability measures. The version we state here is a direct consequence of the
total-variation version.

Proof. Let us denote a ∧ b = min{a, b} and a ∨ b = max{a, b}. We set v = P + Q and denote by
p und q the densities of P and Q with respect to v. Those exist as clearly P ≪ v and Q≪ v.
According to the remark above it follows that

D(P, Q) =
∫

Ω
log
(

p(ω)
q(ω)

)
P (dω). (1.13)

Next, we show that ∫
(p ∧ q)dv ≥ 1

2 exp(−D(P, Q)). (1.14)

Since {ω : q(ω) = 0} is a Q-zero set it follows that

exp(−D(P, Q)) = exp
(
−
∫

{q>0}
log
(

p

q

)
dP

)

= exp
(∫

{q>0}
log
(

q

p

)
dP

)
Jensen
≤ exp

(
2 log

(∫ √
q

p
dP

))
= exp

(
2 log

(∫ √
q

p
p dv

))
=
(∫
√

pq dv

)2

=
(∫ √

(p ∧ q)(q ∨ p) dv

)2

Cauchy-Schwarz
≤

(∫
(p ∧ q) dv

)(∫
(p ∨ q) dv

)
≤ 2

(∫
(p ∧ q) dv

)
.

For the final step we used that p ∧ q + p ∨ q = p + q so that
∫

(p ∨ q) dv = 2−
∫

(p ∧ q) dv ≤ 2.
This proves (1.14). Finally, using∫

(p ∧ q) dv =
∫

A

(p ∧ q)︸ ︷︷ ︸
≤p

dv +
∫

AC

(p ∧ q)︸ ︷︷ ︸
≤q

dv ≤ P (A) + Q(AC).

the claim follows.
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Here is an interesting example that explains the importance for hypothesis testing. Suppose we
are given an observation and know it is Gaussian with a given variance σ2. What is unknown
is the mean, it might be 0 or ∆. Now we want to give a rule on how to determine if 0 or ∆
was the mean underlying the observation. How good can such a rule be? A rule consists of a
measurable set A ⊆ R, if the observation falls in A the rule predicts µ = 0, otherwise µ = ∆.
Denote P ∼ N (∆, σ2) and Q ∼ N (0, σ2). Then the error made if the underlying distribution is
P is P (A), Q(Ac) if the true distribution is Q. Now the Bretagnolle-Huber inequality yields

P (A) + Q(Ac) ≥ 1
2 exp(−D(P, Q)) = 1

2 exp(− ∆2

2σ2 .)

If for instance ∆2 < σ2 (signal (expectation) to noise (variance) ratio is small), then the
righthand side is larger than 3

10 implying that max{P (A), Q(Ac)} ≥ 3
10 . What does it mean?

Either false-positive or false-negative must occur with at least probability 3
10 if only one sample

is used.

1.4.2 Mini-Max lower bounds (model-dependent)

Definition 1.4.4. If ξ = {v(i)}i∈I is a family of stochastic bandit models, then

R∗
n(ξ) = inf

π
sup
v∈ξ

Rn(π, v)

is called the minimax-regret of ξ.

Minimising the minimax-regrets means finding a learning strategy that performs on all models,
not only a fixed one. The worst possible regret should be small. In order to give a lower bound on
the minimax-regret we will use the Bretagnolle-Huber inequality. To get the inequality working
in the context of bandits the following lemma is neeeded:

Lemma 1.4.5. (Entropie-decomposition)
Let k the number of arms and v = {P1, . . . , Pk}, v′ = {P ′

1, . . . , P ′
k} the reward

distributions of two k-armed bandits. Furthermore, let π a learning strategy and
P and P′ the probability distributions on (R × {1, . . . , k})n, that describe the
n-step bandit process for the two models under the learning strategy π. In this
notation R describes the reward and A = {1, . . . , k} the arms. Then the following
decomposition holds:

D(Pπ,P′
π) =

∑
a∈A

Eπ[Ta(n)] D(Pa, P ′
a).

Proof. For simplicity let us first assume the bandit model is discrete, i.e. the reward distributions
Pa are discrete (absolutely continuous with respect to a counting measure λ). The main
observation is that the law of the bandit process for a given policy π is absolutely continuous
with respect to counting measure on the finite set of action-reward paths taking values in the
support of Pa. The counting measure on paths is (ρ⊗ λ)⊗n, where ρ is the counting measure
on {1, ..., K}. Keep in mind, we are only talking about discrete measures which are absolutely
continuous with respect to the counting measure of the underlying set and the density is giving
by the singleton probabilities. Hence,

Pπ(A) =
∫

A

p(a1, x1, . . . , an, xn)(ρ⊗ λ)⊗n( d(a1, x1, ..., an, xn))

with the density being the singleton probabilities A = {(a1, x1, ..., an, xn)} of paths:

p(a1, x1, . . . , an, xn) =
n∏

t=1
πt({at} ; a1, x1, . . . at−1, xt−1) Pat

({xt})
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Similarly, P′
π has density

p′(a1, x1, . . . , an, xn) =
n∏

t=1
πt({at} ; a1, x1, . . . at−1, xt−1) P ′

at
({xt})

with respect to (ρ⊗λ)⊗n. Now we are in the situation that both measures P and P′ are absolutely
continuous to the same domination measure. Hence, the density of P with respect to P′ is

dPπ

dP′
π

(a1, x1, . . . , an, xn) =
∏n

t=1 πt({at} ; a1, x1, . . . at−1, xt−1) Pat
(xt)∏n

t=1 πt({at} ; a1, x1, . . . at−1, xt−1) P ′
at

({xt})
=
∏n

t=1 Pat
({xt})∏n

t=1 P ′
at

({xt})

Plugging-into the definition of relative entropy yields

D(Pπ,P′
π) = Eπ

[
log
(∏

t≤n

PAt
({Xt})

P ′
At

({Xt})

)]
=
∑
t≤n

Eπ

[
log
(PAt

({Xt})
P ′

At
({Xt})

)]

=
∑
t≤n

k∑
a=1

Eπ

[
1{At=a} log

(Pa({Xt})
P ′

a({Xt})

)]

=
k∑

a=1

∑
t≤n

Pπ(At = a)D(Pa, P ′
a)

=
k∑

a=1
Eπ[Ta(n)]D(Pa, P ′

a),

using that P(Xt ∈ B | At = a) = Pa(B).
If all arms are absolutely continuous the same argument works chosing λ to be Lebesgues measure
replacing Pa by the densities pa of Pa.

Here is the main theorem, a minimax-regret bound for Gaussian rewards.

Theorem 1.4.6. Let ξk the family of all k-armed bandits with Gaussian rewards
unit variance and expectations µ1, ..., µk ∈ [0, 1]. Then

R∗
n(ξk) ≥ 1

27
√

(k − 1)n

holds for all n ≥ k.

Proof of Theorem 1.4.6. Every model is described by an expectation vector µ = (µ1, ..., µk) ∈
[0, 1]k. We show that for all n ≥ k − 1 and every learning strategy π there is an expectation
vector µ with

Rn(π, vµ) ≥ 1
27
√

(k − 1)n.

Let ∆ ∈ [0, 1
2 ] arbitrary and set µ = µ(∆) = (∆, 0, . . . , 0). Next, let a = argmini≤k Evµ,π[Ti(n)]

the arm which is played the least under learning strategy π on the bandit model vµ. Furthermore,
define

µ′ = (∆, 0, . . . , 0, 2∆︸︷︷︸
ath position

, 0, . . . , 0).
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To safe some notation we write P and P′ for the laws of the bandit processes playing both policy
π but on the different bandit models µ and µ′. In what follows we show that

min{Rn(π, vµ), Rn(π, vµ′)} ≥ 1
27
√

(k − 1)n

for a suitably chosen ∆. Thus, there is (at least) one bandit model with regret lower bound
1

27
√

(k − 1)n. To do so, we start with a first computation based on the regret decomposition:

Rn(π, vµ) =
∑

i

E[Ti(n)]∆i

=
∑
i̸=1

E[Ti(n)]∆

= ∆
(
n− E[T1(n)]

)
= ∆

(
n− E[T1(n)(1T1(n)>n/2 + 1T1(n)≤n/2)]

)
T1(n)≤n

≥ ∆
(

n− nP
(

T1(n) >
n

2

)
− n

2

(
P
(

T1(n) ≤ n

2

)))
= n∆

2 P
(

T1(n) ≤ n

2

)
Estimating Rn(π, vµ′) with the complementary probability is simpler as the bandit model was
chosen in a way to produce regret gaps ∆ when playing arm 1:

Rn(π, vµ′) =
∑

i

E′[Ti(n)]∆′
i ≥ E′[T1(n)]∆ ≥ E′[T1(n)1T1(n)> n

2
]∆ ≥ n∆

2 P′
(

T1(n) >
n

2

)
.

Combining both and applying Bretagnolle-Huber with A = {T1(n) ≤ n
2 } yields

Rn(π, vµ) + Rn(π, vµ′) ≥ n∆
2

(
P
(

T1(n) ≤ n

2

)
+ P′

(
T1(n) >

n

2

))
Thm 1.4.3
≥ n∆

4 exp(−D(P,P′))

Thm 1.4.5= n∆
4 exp

(
−
∑

i

Eµ[Ti(n)] D(N (µi, 1),N (µ′
i, 1))︸ ︷︷ ︸

=0, except i=a

)

= n∆
4 exp

(
− Eµ[Ta(n)] (2∆)2

2

)
≥n∆

4 exp
(
−2n∆2

k − 1

)
.

5 The final inequality holds because a is the arm with smallest expected number of play, hence,
(k − 1)E[Ta(n)] ≤

∑
i E[Ti(n)] = n. Minimising the righthand side over ∆ (or just chosing)

∆ =
√

k−1
4n yields

Rn(π, vµ) + Rn(π, vµ′) ≥
√

(k − 1)n1
8e− 1

2 ≥ 2
27
√

(k − 1)n.

1.4.3 Asymptotic lower bound (model-dependent)
We next turn towards model-dependent asymptotic bounds. What we try to do is to find lower
bounds (asymptotically in n) for a policy for a fixed model from a certain class of models. For
instance a lower bound of the UCB algorithm for a given sub-Gaussian bandit model. A general

5warum nicht k statt k − 1?
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solution is problematic for the following reason. If a policy only plays a fixed arm then the
regret is either 0 or grows linearly depending on that arm to be optimal or not. To rule out such
extremal cases we only consider policies that certainly have sublinear growth in the following
sense:

Definition 1.4.7. A policy π is called consistent over a class of bandits E if for
all µ ∈ E and all p > 0 it holds that

lim
n→∞

Rn(π, ν)
np

= 0.

An example of a consistent policy over all sub-Gaussian bandits is the policy obtained from the
UCB algorithm. Here is the famous Lai-Robbins theorem on asymptotic lower bounds6:

Theorem 1.4.8. (Lai-Robbins lower bound)
If π is a consistent policy for a set E =M1 × ...×Mk of bandit models, then the
regret for all bandits ν = (P1, ..., Pk) from E satisfies

lim inf
n→∞

Rn(π)
log(n) ≥ c∗(ν, E) :=

∑
a∈A

∆a

da
,

where da = infP ′∈Ma
{D(Pa, P ′) : QP ′ > Q∗} and QP is the expectation of P .

Lai Robbins actually assumed all Ma to be equal and an additional continuity property on the
relative entropies of that class (continuity of the KL-distance as a function of the expectations).
In that case the lower bound looks simpler because da = D(Pa, P∗), where P∗ is the law of the
optimal arm:

lim inf
n→∞

Rn(π)
log(n) ≥

∑
a∈A

∆a

D(Pa, P∗)

Here is an example in which a directly computation shows the same. If for instance Ma =
{N (µ, σ2) : µ ∈ R} for all a then da = (Qa−Q∗)2

σ2 = ∆2

σ2 = D(Pa, P∗). Thus, if all arms are
Gaussian with variance σ2, then the lower bound for UCB is

lim inf
n→∞

Rn

log(n) ≥
∑

a̸=a∗

σ2

∆a
.

Comparing with the UCB upper bound of Theorem 1.3.8, σ = 1 this is pretty close. In fact, it is
not too difficult to modify the UCB bonus so that the upper bound matches the lower bound,
thus, the algorithm is asymptotically optimal. The term da in a way also measures the reward
gap but rather the KL-distance from the optimal arm, not the mean distance.

Proof. Fix a consistent policy and suppose ν = (P1, ..., Pk) ∈ E . Recalling the regret decomposi-
tion it is enough to prove that

lim inf
n→∞

Eπ[Ta(n)]
log(n) ≥ 1

da

holds for all suboptimal arm. Fix such an arm a and fix an ε > 0 and define ν′ as the bandit
model in which the arm distribution Pa is replaced by a distribution P ′

a ∈ Ma such that
D(Pa, P ′

a) ≤ da + ε and QP ′
a

> Q∗. By the definition of the infimum such a bandit model
exists in the class E . Since only one arm differs the entropie decomposition for bandits yields

6T.L Lai, H. Robbins: "Asymptotically efficient adaptive allocation rules", Advances in Applied Mathematics,
1985, pp. 4-22
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D(P,P′) ≤ E[Ta(n)](da +ε). We next follow an argument that is inspired by the proof of Theorem
1.4.6. First note that

Rn(π) + R′
n(π)) ≥ n

2

(
P
(

Ta(n) >
n

2

)
∆a + P

(
Ta(n) ≤ n

2

)
(Q′

a −Q∗)
)

.

First, from the regret decomposition it clearly holds that

Rn(π)) ≥ ∆aE[Ta(n)] ≥ ∆aE[Ta(n)1Ta(n)>n/2] ≥ ∆a
n

2P
(

Ta(n) >
n

2

)
.

Secondly, note that for ν′ the best arm is a as the new arm distribution has a mean strictly
larger than Q∗. Hence, if arm a is played less than n

2 times, then all other arms in are platyed at
least n

2 times in total. Thus,

R′
n(π) =

∑
i ̸=a

∆′
iE′[Ti(n)]

≥
∑
i̸=a

(Q′
a −Q∗)E′[Ti(n)]

≥
∑
i̸=a

(Q′
a −Q∗)E′[Ti(n)1Ta(n)<n/2]

≥ n

2 (Q′
a −Q∗)P′

(
Ta(n) ≤ n

2

)
.

Chosing A = {Ta(n) > n/2} we continue with Bretagnolle-Huber:

Rn(π) + R′
n(π) ≥ n

2

(
P
(

Ta(n) >
n

2

)
∆a + P′

(
Ta(n) ≤ n

2

)
(Q′

a −Q∗)
)

≥ n

2 min{∆a, Q′
a −Q∗}

(
P(A) + P′(Ac)

)
≥ n

4 min{∆a, Q′
a −Q∗} exp

(
− E[Ta(n)](da + ε)

)
.

Rearranging and using the consistency property of the policy yields the claim:

lim inf
n→∞

E[Ta(n)]
log(n) ≥

1
da + ε

lim inf
n→∞

log
(

n min{∆a,Q′
a−Q∗}

4(Rn(π)+R′
n(π))

)
log(n)

≥ 1
da + ε

(
1− lim sup

n→∞

log(Rn(π) + R′
n(π))

log(n)

)
= 1

da + ε
.

For the last equality we used that, for n large enough, Rn(π) ≤ Cnp and R′
n(π) ≤ C ′np so that

0 ≤ lim sup
n→∞

log(Rn(π) + R′
n(π))

log(n) ≤ lim sup
n→∞

log(Cnp + C ′np)
log(n) = lim sup

n→∞

log(C) + p log(n)
log(n) = p.

Since p can be chosen arbitrarily close to 0 the limit superior exists and is equal to 0.
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Chapter 2

Basics: Stochastic Control and
Dynamic Programming Methods

Lecture 6
2.1 Markov decision problems
After the first introductory chapter on bandits we will now turn towards the main topic of this
course: optimal decision making in which decisions also influence the system (in contrast to
stochastic bandits). This basic chapter covers the following topics:

• Introduce the basic setup for decision making in complex systems under uncertainty, we
will use so-called Markov decision processes (MDP).

• Understand optimal decision policies and their relations to Bellman optimality and expec-
tation equations.

• Understand how to turn the theoretical results into algorithms, so-called value and policy
iteration algorithms.

All topics covered here are old and standard, they can be found in the comprehensive overview
of Putterman1. One should only keep in mind that the appearing Q-functions are not popular in
stochastic optimal control, Q-functions are much more relevant to the reinforcement learning
approaches developed in the next chapters.

2.1.1 A quick dive into Markov chains
Before starting with Markov decision processes let us briefly recall some facts on Markov chains.
A finite-state Markov chain is a discrete-time stochastic process (St)t∈N with values in some
finite set S on a probability space (Ω,F ,P) that satisfies the Markov property:

P(St+1 = st+1 |S0 = s0, ..., St = st) = P(St+1 = st+1 |St = sn)

for all t ∈ N0 and s0, ..., st+1 ∈ S. In words, transitions from a state to another do not depend
on the past. The most important special case is that of a time-homogeneous Markov chain for
which transition probabilities do not change over time. Time-homogeneous Markov chains are
closely related to stochastic matrices (non-negative elements, all rows sum to 1). Given an initial
distribution µ on S and a stochastic |S| × |S|-matrix P , a Markov chain on some probability
space (Ω,F ,P) with initial distribution µ and transition matrix P is uniquely determined through
the basic path probabilities

P(S0 = s0, ..., Sn = sn) = µ(s0)ps0,s1 · ... · psn−1,sn
. (2.1)

1M. Putterman: Markov decision processes: discrete stochastic dynamic programming, Wiley

40
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Alternatively, and this is how Markov chains are generalised to more than finitely many states,
the transition matrix can be interpreted as a Markov kernel on S × S, that is, a family of
probability measures P (·, s) on S for all s ∈ S. Then the path probabilities can be written as

P(S0 = s0, ..., Sn = sn) = µ({s0})P ({s1}, s0) · ... · P ({sn}, sn−1).

Many probabilities can be computed from the basic path formula, for instance

P(St+1 = st+1, ..., St+k = st+k |St = st) = pst,st+1 · ... · pst+k−1,st+k
.

The computation tricks are always the same. Spell out the conditional probability, write the
events of interest as disjoint union of simple paths, plug-in the path probability formula, and
finally cancel from the appearing products. We always imagine a Markov chain to jump on a graph
of states connected by arrows carrying the transition probabilities from states s to s′. Another
way of expressing the Markov property is as follows: If P(Sn = s′) > 0 and P̃ := P(· |Sn = s′),
then on (Ω,F , P̃) the shifted process (S̃t)t∈N := (St+n)t∈N is again a Markov chain with transition
matrix P but started from s′. To train yourself in using the path probabilities please check the
next claim:

Check that S̃ indeed is a Markov chain on (Ω,F , P̃) with the same transitions as S.
Hint: Compute path probabilities.

A Markov chain can be seen as a random process that can be observed from the outside, for
instance a game that changes states over time. The concept of a Markov reward process is
less well-known. A Markov reward process is a Markov chain with an addition coordinate
(Rt)t∈N that is sampled together with the next state. There is a transition/reward-kernel p on
(R×S)×S from which next state and reward are sampled, i.e. p(r, s′ ; s) denotes the probability
to transition the chain from s to s′ and obtain reward r. More generally, the defining property
of a reward Markov chain is

Pµ(St+1 = st+1, Rt+1 = rt+1 |S0 = s0, ..., St = st) = Pµ(St+1 = st+1, Rt+1 = rt+1 |St = st),

where the subscript refers to the initial distribution of S0. If we think of a Markov chain as
describing a game than the rewards might be direct consequences of the rules. As an example,
Rt = 1 if and only if the player that we observe has scored a goal. The path probabilities are
given by

Pµ(S0 = s0, R0 = r0, ..., Sn = sn, Rn = rn) = µ(s0) · p(r0, s1 ; s0) · ... · p(rn, sn ; sn−1)

Another way of expressing the Markov reward property is as follows: If P(Sn = s′) > 0 and
P̃ := P(· |Sn = s′), then on (Ω,F , P̃) the shifted process (S̃t, R̃t)t∈N := (St+n, Rt+n)t∈N is again
a Markov reward chain started from s′. To train yourself in using the path probabilities please
check the next claim:

Compute the path probabilities to check that (S̃, R̃) indeed is a Markov chain on
(Ω,F , P̃) with the same transitions as (S, R). Hint: Compute path probabilities.

In particular, and this is what we will need below

Es[f(Rt, Rt+1, ....)|St = s′] = Es′ [f(R0, R1, ...)]. (2.2)

2.1.2 Markov decision processes
The situation of Markov decision processes (MDPs) is slightly more complicated. For MDPS we
do not observe a game but take the role of a particpant. We observe the Markov chain describing
the match but can influence the transitions by taking actions. As an example, by substituting as
a coach an additional attack player we increase the probability of players scoring goals (positive
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reward) but decrease the probabilities of players winning duels which leads to larger probabilities
to receive a goal (negative reward). The target will be to find a strategy (called policy) that
maximises the expected reward of the game. Finding such a strategy, this is what reinforcement
learning is all about!
Unfortunately, the formal notion in Markov decision processes is more sophisticated. The
definition is kept quite general to emphasise that everything we will later prove in the discrete
setting could be kept much more general replacing vectors and matrices by Markov kernels. For
this course the intention is to keep the level of shophistication high enough to observe most
difficulties but stay simple enough to not disturb too much the understanding of concepts. We
will write down definitions and the existence theorem in a more general setting but then work
only with finite Markov decision processes which makes our lives much easier without loosing
most features of interest.

Definition 2.1.1. (Markov decision model)
A Markov decision model is a tuple (S,A,R, p) consisting of the following ingredi-
ents:

(i) (S, S̄) is a measurable space, called the state space,

(ii) For every s ∈ S, (As, Ās) is a measurable space, called the action space of
state s. The entire action space is defined to be A =

⋃
s∈S

As, A contains all

actions and is equipped with the σ-algebra Ā = σ(
⋃

s∈S

Ās).

(iii) A measurable set R ⊆ R of rewards with 0 ∈ R, it’s restricted Borel-σ-algebra
denoted by R̄.

(iv) A function

p : S̄ ⊗ R̄ × (S ×A)→ [0, 1], (B, (s, a)) 7→ p(B ; s, a)

is called transition/reward-function if p is a Markov kernel on S̄ ⊗R×(S×A),
i.e.

• (s, a) 7→ p(B ; s, a) is (Ā ⊗ S̄)-R̄-measurable for all B,
• B 7→ p(B ; s, a) is a probability measure on S̄ ⊗ R̄ for all s, a.

A Markov decision model is called discrete if S,A,R are finite or countably infinite
and the σ-algebras are chosen to be the corresponding power sets.

No worries if measure theory is something that makes you want to cry. Once we go into the
algorithmic theory of reinforcement learning we will assume the model to be discrete so that
all appearing functions are measurable and measures are nothing but vectors of non-negative
numbers that sum to 1.

The key ingredient of the definition is the kernel p with the following interpretation.
If the system is currently in state s and action a is played, then p(· ; s, a) is the joint
distribution of the next state s′ and the reward r obtained. If all sets are discrete
then p(s′, r; s, a) is the probability to obtain reward r and go to state s′ if action
a was taken in state s. According to the definition the reward can depend on the
current state/action pair and the next state, but in most examples the reward and
the next state will be independent (see Example 2.1.5 below).

In most books you will find the notion p(· | s, a). In this course the notion „|“ will be used
exclusively for conditional probabilities. A Markov decision model does not fully describe a
process that runs from state to state and returns rewards. Only the transitions (s, a) 7→ (s′, r) is
described but not how the next action a′ is chosen. For that purpose an additional ingredient is



2.1. MARKOV DECISION PROBLEMS 43

needed, the policy that can be chosen by the actor.

Definition 2.1.2. (Policy)
For a Markov decision model (S,A,R, p) a policy is

• an initial Markov kernel π0 on Ā × S,

• a sequence of probability kernels π = (πt)t∈N on Ā × ((S ×A)t−1 × S) such
that

πt(As; s0, a0, ..., st−1, at−1, s) = 1 (2.3)

for all (s0, a0, ..., st−1, at−1, s) ∈ (S ×A)t−1 × S.

The set of all policies is denoted by Π.

A policy governs the choices of actions given the current state and all previous states-action
pairs (not the rewards) seen before. Condition (2.3) means that only allowed actions from As

can be played in state s. Sometimes all As are identical but in most examples they are not. As
an example, playing a game like chess the allowed actions clearly depend strongly on the state of
the game.

From now on we assume the Markov decison models are discrete and all σ-algebras
are powersets. In particular, all measures are discrete and need to be defined only
for singleton sets. The brackets for singleton sets will often be omitted.

With the definition of a policy we can now define a stochastic process on S×A×R whose dynamics
are entirely defined by the function p and policy π (plus an initial probability distribution over
which state the stochastic process will start in). Let us formalize this stochastic process and
prove its existence.

Theorem 2.1.3. (Existence of (discrete) MDPs)
Let (S,A,R, p) be a (discrete) Markov decision model, π a policy, µ a probability
measure on S. Then there exists a probability space (Ω,F ,Pπ

µ) carrying a stochastic
process (St, At, Rt)t∈N0 with values in S × A× R on (Ω,F ,Pπ

µ) such that, for all
t ∈ N,

Pπ
µ(S0 = s0, A0 = a0) = µ(s0)π0(a0 ; s0)

Pπ
µ(At = at |S0 = s0, A0 = a0, ..., St = st) = πt(at ; s0, a0, ..., st),

Pπ
µ(St+1 = st+1, Rt = rt |St = s, At = a) = p(st+1, rt ; s, a).

To increase readability we will skipp the π and often µ from the notation.

2 In words the mechanism goes as follows. In a state s an action is sampled according to the
policy which is allowed to refer to the entire past of states and actions (not to the rewards!). The
current and past state-action pairs (s, a) are used to sample the next state s′ and the reward.
Note: The reward is allowed to depend both on the current state-action pair (s, a) and the future
state s′! Typically, the reward will only depend on (s, a), not on s′, but some examples require
this greater generality.

Proof. We only give the proof in the discrete setting to safe quite a bit of time. The proof is
essentially identical to the existence proof for Markov chains.

Measure for finite time-horizon T <∞.

2todo: Schreibe lieber allgemeinen Beweis fuer Markov reward chains auf und zitiere hier. Vermutlich besser
zugaenglich
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The probability space is written down explicitly as the set of trajectories, the σ-algebra is chosen
to be the power set, a canonical measure is defined for every element of the probability space by
an explicit definition, and the process using the identity mapping. Define the measurable space
(ΩT ,FT ) by Ω := (S ×A×R)T , the trajectories of length T , i.e.

ω = (s0, a0, r0, · · · , sT , aT , rT ),

and FT as the powerset. As for Markov chains the probabilities for paths are written down
explicitly (skipping brackets to increase readability):

PT ((s0, a0, r0, . . . , sT , aT , rT ))

:= µ(s0) · π0(a0 ; s0) ·
T∏

i=1
p(si, ri−1 ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si) · p(S × {rT } ; sT , aT ).

In words: An initial state is chosen by µ, the first action is sampled using π0, and the first reward
is set to 0. For every further time-step the new state si and the reward ri are determined by p,
an action ai is chosen according to πi.

Show that defining PT on the singletons as above yields a probability measure.

The exercise is important to get a feeling for the path probabilities. You will have to sum over all
possible paths, i.e. over

∑
a0,r0,s0

· · ·
∑

aT ,rT ,sT
, then pull out the factors that are independent of

the summands to simplify backwards using the kernel property to obtain (here for the summands
corresponding to T )∑

aT ,sT

p(sT , rT ; sT −1, aT −1) · πT (aT ; s0, a0, . . . , aT −1, sT )

=
∑
sT

p(sT , rT ; sT −1, aT −1)
∑
aT

πT (aT ; s0, a0, . . . , aT −1, sT ) = 1.

Summing over all trajectories shows easily that PT is a probability measure on the paths.

Measure for infinite time-horizon.

The same construction cannot work for T =∞ as the infinite products would be zero. Instead,
Kolmogorov’s extension theorem is employed. Define the measurable space (Ω,F) by Ω := (S ×
R×A)∞, the trajectories of infinite length, and the corresponding σ-algebra F := (S̄⊗Ā⊗R̄)⊗∞,
the cylinder σ-algebra. The elements of Ω can be written as infinite sequences of the form

ω = (s0, r0, a0, · · · ).

Consider the projections πT +1
T : ΩT +1 → ΩT , ω 7→ ω|T and πT : Ω → ΩT , ω 7→ ω|T . The

projections simply remove the triple corresponding to time T + 1 from the sequence. We now
show the consistency property PT = PT +1 ◦ (πT +1

T )−1 for any T ∈ N. If the consistency can be
proved, then Kolmogorov’s extension theorem gives a unique probability measure P on (Ω,F)
such that PT = P ◦ (πT )−1. The consistency property simply follows from the product structure
in the measures PT defined above. Since the measures are discrete the equality can be checked
on all elements separately:

PT +1
(
(πT +1

T )−1(s0, a0, r0, . . . , sT , aT , rT )
)

= PT +1(∪s∈S ∪a∈A ∪r∈R{(s0, a0, r0, . . . , sT , aT , rT , s, a, r)}
)

=
∑
s∈S

∑
a∈A

∑
r∈R

PT +1(s0, a0, r0, . . . , sT , aT , rT , s, a, r
)

linearity= µ(s0) · π0(a0 ; s0) ·
T∏

i=1
p(si, ri−1 ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)
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×
∑
s∈S

p(s, rT ; sT , aT )︸ ︷︷ ︸
p(S×{rT } ; ST ,aT )

·
∑
a∈A

πT +1(a ; s0, a0, . . . , aT , sT +1)︸ ︷︷ ︸
=1

∑
r∈R

p(S × {r} ; sT , aT )︸ ︷︷ ︸
=1

.

= µ(s0) · π0(a0 ; s0) ·
T∏

i=1
p(si, ri−1 ; si−1, ai−1) · πi(ai ; s0, a0, . . . , aT , sT +1)

· p(S × {rT } ; ST , aT )
= PT (s0, a0, r0, . . . , sT , aT , rT ).

Kolmogorov’s extension theorem now yields a unique measure P extending all PT . We set Pπ
µ := P

to indicate the dependency of µ and π.

Canonical construction (Ω,F ,Pπ
µ, (S, A, R)t∈N0).

The measurable space (Ω,F) has been defined above. On Ω we define (St, At, Rt)(ω) = (st, at, rt)
if ω takes the form (s0, a0, r0, ...).

The properties claimed in the theorem hold.

The first two claims follow directly from the definition of the measure Pπ
µ and (S0, A0, R0). We

check the claim for A and leave the other claims as an exercise. First note that putting no
restrictions to the rewards in the path probabilities leads to setting p({s′} × R ; s, a) in the
state-reward transitions (summing over all possibilities). Using the extension property of Pπ

µ

(there is no dependence later than t) yields

Pπ
µ(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st, At = at)

= µ(s0) · π0(a0 ; s0) ·
t∏

i=1
p({si} ×R ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)

and

Pπ
µ(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st)

= Pπ
µ(S0 = s0, A0 = a0, ..., At−1 = at−1, St = st, At ∈ A)

= µ(s0) · π0(a0 ; s0) ·
t−1∏
i=1

p({si} ×R ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)

× p({st} ×R ; st−1, at−1) ·
∑
a∈A

πt(a; s0, a0, ..., st−1, at−1, st)︸ ︷︷ ︸
=1

.

Hence, using the definition of conditional probability the products cancel in the fraction to give

Pπ
µ(At = at |S0 = s0, A0 = a0, ..., At−1 = at−1, St = st) = πt(at ; s0, a0, ..., st−1, at−1, st)

Check the other two claimed conditional probability identities.

Definition 2.1.4. (Markov decision process (MDP))
Given a Markov decision model (S,A,R, p), a policy π, and an initial distribution µ
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on S, the stochastic process (St, At)t∈N0 on (Ω,F ,Pπ
µ) is called discrete-time Markov

decision process (MDP), (Rt)t∈N0 the corresponding reward process. To abbreviate
we will write Pπ

s instead of Pπ
δs

. The super- and subscript are sometimes removed
from Eπ

µ and Pπ
µ if there is no possible confusion about the initial distribution of S

and the policy.

In the literature, a Markov decision model is mostly called an MDP directly and the terms model
and process are not distinguished. We keep in mind that the Markov decision model just provides
the prevailing instructions and together with any policy and initial distribution induces an MDP.
However, for reasons of convenience, we will mostly use the term MDP interchangeable, if we do
not want to emphasize the differences.

It is very important to remember the formula

P(S0 = s0, A0 = a0, R0 = r0, . . . , ST = sT , AT = aT , RT = rT )

= µ(s0) · π0(a0 ; s0) ·
T∏

i=1
p(si, ri−1 ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)

· p(S × {rT }, sT , at),

(2.4)

which gives the probabilitites an MDP follows a given path (s0, a0, r0, ...., sT , aT , rT )
of states, actions, and rewards. The formula will later explain the practical impor-
tance of the policy gradient theorem.

In is always very instructive to compare with the situation of an ordinary Markov chain that
appears as a special case if A = {a} and R = {0}. In that case then the process (St) is a
Markov chain with transition matrix psi,sj

= p(sj , 0 ; si, a) and the path probabilities immediately
simplify to the Markov chain formula (2.1). No doubt, for MDPs the formula is more complicated
but many probabilities can be computed simmilarly to the situation of a Markov chain. Playing
with conditional probabilities it is instructive to check the following formulas (using a cancellation
of the form

∑
i(a · bi)/

∑
i bi = a):

P(St = st, At = at, Rt = rt, . . . , ST = sT , AT = aT , RT = rT |St−1 = st−1, At−1 = at−1)
= p({st} ×R ; st−1, at−1) · πi(at ; s0, a0, . . . , at−1, st)

×
T∏

i=t+1
p(si, ri−1 ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si) · p(S × {rT } ; sT , aT )

and

P(St = st, At = at, Rt = rt, . . . , ST = sT , AT = aT , RT = rT |St−1 = s)

=
∑

a∈As

πt−1(a ; s0, a0, . . . , at−2, s)
T∏

i=t

p(si, ri ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si),

which are the analogues to the Markov chain formulas recalled above.
Here are two more special situations in which more simple Markov decision models can be
abstracted in our general definition:

Example 2.1.5. There are many situations in which the reward and the transition both only
depend on (s, a) but do not depend on each other. Suppose there are

• a kernel h on S̄ × (S ×A) for the transitions from (s, a) to s′,

• a kernel q on R̄ × (S ×A) for the rewards r obtained from (s, a).
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Note that in the discrete setting measurability is always satisfied, kernel only means that h(· ; s, a)
and q(· ; s, a) are discrete measures for all state-action pairs (s, a). If both transitions are assumed
to be independent then we can define the product kernel through

p(s′, r ; s, a) := h(s′ ; s, a) · q(r ; s, a) (2.5)

and the corresponding Markov decision process samples next states/rewards independently. Now
the Markov decision model in the sense of Definition 2.1.1 with Markov decision process from
Theorem 2.1.3 has exactly the claimed transitions. Plugging-in p immediately gives

P(Rt = rt |St = st, At = at, St+1 = st+1)
cond. prob.= P(St+1 = st+1, Rt = rt |St = st, At = at)

P(St+1 = st+1 |St = st, At = at)
2.1.3= p(st+1, rt ; st, at)

p({st+1} ×R ; st, at)
(2.5)= p(S × {rt} ; st, at)
2.1.3= P(Rt = rt |St = st, At = at),

so that the proclaimed independence of the future reward from the future state indeed holds.

Example 2.1.6. In many examples the rewards are deterministic functions of state, actions,
and next state but themselves do not influence the next state (say Rt = R(st, at, st+1)). An
example appears in the ice vendor example below. In that situation the kernel p is simply

p(s′, r ; s, a) =
{

h(s′ ; s, a) : r = R(s, a, s′)
0 : r ̸= R(s, a, s′)

where h is the transition function from (s, a) to the next state s′. An even simpler situation that
is very common is a relation Rt+1 = R(St, At) where the rewards are determined deterministically
by the prior state-action pair.

The discussion is sometimes reversed as follows, with slight abuse of notation:

Definition 2.1.7. For a Markov decision model we define state-action-state
probabilities and expected rewards as well as the state-action expected rewards as
follows:

p(s′ ; s, a) := p({s′} ×R ; s, a),
p(r ; s, a) := p({S × {r} ; s, a),

r(s, a) :=
∑
r∈R

r p(r ; s, a),

r(s, a, s′) :=
∑
r∈R

r
p(s′, r ; s, a)
p(s′ ; s, a)

for s, s′ ∈ S and a ∈ A if the denominator is non-zero.

The notation will be used frequently, in reinforcement algorithms of the upcoming chapters. If
for instance we are only interested in the state-action process, then it is more convenient to use
p(s′; s, a) instead of p({s′} ×R; s, a) in computations with the path probabilities.

Use the formal definition of the stochastic process (S, A, R) to check that

p(s′; s, a) = P(St+1 = s′ |St = s, At = a),
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p(r; s, a) = P(Rt = r |St = s, At = a),
r(s, a) = E[Rt |St = s, At = a],

r(s, a, s′) = E[Rt |St = s, At = a, St+1 = s′]

holds if the events in the condition have positive probability.

To get an idea about Markov decision processes we will discuss two examples of simple Markov
decision models, grid world and ice vendor. Many games, such as grid world, stop once a
particular state is reached. Such states are called terminating states.

Definition 2.1.8. A state s ∈ S satisfying p(s ; s, a) = 1 for all a ∈ As is called a
terminating state. The set of terminating states will be denoted by ∆ and we will
always assume p(s, 0 ; s, a) = 1 for all all s ∈ ∆, a ∈ As.

In words: Once a terminal state is hit the MDP will stop moving and all future rewards are 0.
To get a feeling for the definitions we will spell out a representative example in detail:

Example 2.1.9. (Grid world)
Suppose we have a robot that we want to teach to walk through our garden. The garden is
set up as a small grid and at each time the robot can go up, down, left or right, however the
robot cannot move trough a wall (or additional obstacles). The aim is to move from the starting
position S to the target position G. To make the problem a bit more difficult, there is a bomb
B just before the goal G. If the robot lands in the bomb or in the target, the game is over. In

S

←→
xy

B
T

Figure 2.1: Grid world of size 5. The start is marked by S, the bomb by B, and the goal by G.

the following we will formulate this example as a Markov Decision Model. For this purpose, the
individual objects from Definition 2.1.1 must be determined. The state space should contain all
relevant information about the game. The garden can be represented by a two dimensional grid
similar to a chess board. Thus, for a grid with side length Z ∈ N, Z > 2, the state space is given
by S :=

{
(i, j), i, j ∈ {0, 1, . . . , Z − 1}

}
. Since the state space S is finite, we will use as σ-algebra

the power set, i.e. S := P(S).

0,0 0,1 0,2 0,3 0,4
1,0 1,1 1,2 1,3 1,4
2,0 2,1 2,2 2,3 2,4
3,0 3,1 3,2 3,3 3,4
4,0 4,1 4,2 4,3 4,4

Figure 2.2: Representation of the state space of Example 2.1.9 for a grid of length 5.

The second component of the Markov decision model is the entire action space A and the action
spaces As for states s ∈ S. In many cases it is easier to first define the set of all possible actions
A and then exclude actions that are not possible for a certain state s ∈ S to determine As. In
this example we want to use this method to define the action spaces of the individual states as
well as the whole action space. An action describes the movement of the robot down, up, right or
left. Often actions in a Markov decision problem are simply ‘counted through‘. For our example,
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the action space could be given by the set {0, 1, 2, 3}, where action 0 describes the movement of
the robot to the right, action 1 describes the movement of the robot downwards and so on:

{right, up, left, down} = A =
{

(1, 0), (0, 1), (−1, 0), (0,−1)
}
⊆ R2

The advantage of this definition is that by simply adding states and actions we get the new state
of the robot. In the following we want determine the action space for a state s using what is
called masking (excluding actions from the set A of all possible actions). Let s = (i, j) ∈ S then
the valid actions for the state are given by

As = A(i,j) = A \


{(−1, 0)} : if i = 0
{(1, 0)} : if i = Z − 1
∅ : otherwise

\


{(0,−1)} : if j = 0
{(0, 1)} : if j = Z − 1
∅ : otherwise

The agent may play all actions, except the agent is on the edge of the playing field. The third
components of the Markov decision model are the rewards. We introduce the rewards and
motivate them afterwards. Let R be given by {−10,−1, 0, 10} and R := P(R). If the agent lands
in the target, the reward is 10. If the agent runs into the bomb, the reward is −10. We want
to determine the rewards in such a way that desirable scenarios are rewarded and undesirable
scenarios are punished. If the agent lands on another field, the agent should receive the reward
−1. In this way we want to avoid that the agent is not penalized for not choosing the fastest
possible way to the destination. This will become clear when we deal with the optimization
problem in Markov decision problems in the following chapters. Next, we define the fourth and
most complicated component of the Markov decision process, the transition/reward-function p.
To define this function, we will first define an auxiliary function g : S → R which should return
the associated reward for a state s ∈ S. The function is given by

g : S → R, s 7→


10 : s = T

−10 : s = B

−1 : otherwise
.

In addition, we still need to define the set of terminal states ∆. In our example, the set of
terminal states consists of the target and the bomb, ∆ = {(Z − 2, Z − 2), (Z − 1, Z − 1)}. The
transition function is defined by

p(s′, r ; s, a) = 1s∈∆ · 1s′=s · 1r=0 + 1s/∈∆ · 1s′=s+a · 1r=g(s+a)

for (s, a) ∈ S ×As. The transition function looks a bit confusing and complicated at first sight,
it is a compact way to write down all possible cases. Thus all components of a Markov decision
model are defined. Since those will be used in algorithms discussed in future chapters let us
compute the functions from Definition 2.1.7. For all state-action pairs the transition probability
are either 0 or 1, the next states and the rewards are deterministic for a chosen action:

p(s′; s, a) = 1s∈∆ · 1s′=s + 1s/∈∆ · 1s′=s+a.

Furthermore, the expected reward when playing action a ∈ As in state s ∈ S is

r(s, a) = 0 if s is terminal and otherwise r(s, a) = g(s + a).

Grid world is a standard example on which tabular reinforcement algorithms of the following
chapters can be tested.

We next formulate a simple supply optimisation problem in the setting of Markov decision
processes, an ice vendor who has to dedice every day about the amount of produced/bought ice
cream. In the course of these lecture notes it will be discussed how to optimise the production
decision in order to maximise the profit.
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Example 2.1.10. (Ice vendor)
The ice vendor owns an ice cream truck that can store up to M ∈ N ice creams. Every morning
the ice vendor can produce/buy buy a discrete amount 0, 1, 2, . . . , M of ice cream. Throughout
the day, a random amount of ice cream is consumed, the demand can be higher than the stored
amount of ice cream. In this simplified model, seasonality in demand is not considered. If less
ice cream is consumed then the ice vendor has in stock, the ice cream must be stored overnight
and can then be sold the next day. There are costs for storing ice cream overnight, thus, the ice
vendor should carefully decide about the amount of ice cream produced/bought in the morning.
In addition, there are costs for the production/purchase of ice cream. For the sale of ice cream
the vendor receives a fixed price per ice cream scoop. For simplicity, we also assume that revenues
and costs do not change over time (which is realistic for ice cream, the price is typically adjusted
once per year). The trade-off in this problem is simple. How much ice should be ordered order in
the morning so that the vendor can maximize the revenue (serve demand) but keep the costs low.
The ice vendor situation can be formulated as Markov decision process. The state space is given
by the stored amount of ice: S = {0, 1, . . . , M}. An action models the amount of ice cream
produced/ordered in a morning. If there are already s ∈ S scoops in stock, the vendor can
produce/order at most M − s many scoops. Thus, As = {0, 1, . . . , M − s} and A = {0, . . . , M}.
For demand, we assume that it is independently identically distributed regardless of timing.
Thus P(Dt = d) = pd for d ∈ N holds for all time t ∈ N. For simplicity, let us assume the demand
can only take values in {0, 1, . . . , M}. In order to define the transition reward function and the
reward, auxiliary functions are used to determine the revenues and costs. The selling price of a
scoop of ice cream is given by a function f : S → R+, for instance f(s) = c · s, where c > 0 is
the selling price for a scoop of ice cream. Similarly, we define a mapping o : A → R+ for the
production/purchase cost of the products and k : S → R+ for the storage cost. Thus, for a pair
(s, a) ∈ S ×As and another state s′ ∈ S, the gain is given by the mapping R : (S ×As)×S → R
with

R(s, a, s′) := f( s + a− s′︸ ︷︷ ︸
sold ice cream

)− o(a)︸︷︷︸
production costs

− k(s + a)︸ ︷︷ ︸
storage costs

.

Moreover, let us define a mapping h : S ×A× S → [0, 1]

h(s′ ; s, a) :=
{ ps+a−s′ : 1 ≤ s′ < s + a∑

i≥s+a pi : s′ = 0
0 : otherwise

and from this the transition probabilities

p(s′, r ; s, a) := h(s′; s, a) · 1r=R(s,a,s′)

As for grid world we get the state-action-state transition probabilitites as

p(s′; s, a) = p({s′} ×R ; s, a) = h(s′; s, a)

and the reward expectations as

r(s, a) =
∑
r∈R

r p(S × {r} ; s, a)

=
∑
s′∈S

∑
r∈R

r p
(
s′, r ; s, a

)
=
∑
s′∈S

∑
r∈R

r · h(s′; s, a) · 1r=R(s,a,s′)

=
∑
s′∈S

R(s, a, s′) · h(s′; s, a).

So far the definition of Markov decision models and policies is very general. It will later turn out
that much smaller classes of policies are needed to solve optimal control problems in the MDP
setting.
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Definition 2.1.11. (Markov and stationary policies)
A policy π = (πt)t∈N0 ∈ Π is called

(i) a Markov policy if there exists a sequence of kernels (φt)t∈N0 on Ā × S such
that

πt(· ; s0, a0, ..., st) = φt(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.

The set of all Markov policies is denoted by ΠM .

(ii) a stationary policy if there exists a kernel φ on Ā × S such that

πt(· ; s0, a0, ..., st) = φ(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.

The set of all stationary policies is denoted by ΠS .

(iii) a deterministic stationary policy if there exists a kernel φ on Ā × S taking
only values in {0, 1} such that

πt(· ; s0, a0, ..., st) = φ(· ; st), ∀(s0, a0, ..., st) ∈ (S ×A)t−1 × S.

The set of all deterministic stationary policies is denoted by ΠD
S .

In the stationary cases we typically write π instead of φ.

From the definition it holds that
ΠD

S ⊆ ΠS ⊆ ΠM .

In words: A Markov policy only uses the actual state (not the past) to chose the action, a
stationary policy does not depend on time (and the past), a deterministic stationary policy
only choses one action (like an index strategy for bandits). In fact, it will turn out that only
deterministic stationary policies are needed to solve the central optimisation problem that will
be defined below. Lecture 7
As noted earlier, stochastic bandit models can be seen as special case of MDPs. If |S| = 1, then
a one-step Markov decision model is nothing but a bandit model that is played once. There
are only actions (arms) that are played once according to a one-step policy, R1 is the reward
obtained by playing the arm. In fact, there is another way of linking stochastic bandits to
MDPs. The learning process using a learning strategy can also be seen as an MDP played with
a non-Markovian policy as follows. If |S| = 1 and T = n, then a Markov decision model is a
bandit model and a policy is a learning strategy. The rewards R1, ..., Rn are the outcomes of
playing the arms chosen according to π. The way a learning strategy was defined for bandits it
is neither Markovian nor stationary policy.
There is a good reason that MDPs carry the word Markov. For Markov policies they are indeed
Markov (reward) processes. The state-action process (S, A) is Markov so that together with the
rewards the process (S, A, R) is a Markov reward process.

Proposition 2.1.12. (Markov property)
If π ∈ ΠS , then (St, At)t∈N is a time-homogeneous Markov chain on S × A with
two-step transitions

p(a,s),(a′,s′) = p(s′ ; s, a) · π(a′; s′).

Proof. The proof is a computation with the path probabilities from (2.4). Since we only care
for state-actions (St, At) we use the short-hand notation p(s′ ; s, a) instead of p({s′} ×R ; s, a).
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Plugging-in yields

P (St+1 = st+1, At+1 = at+1|St = st, At = at)

= P (St+1 = st+1, At+1 = at+1, St = st, At = at)
P(St = st, At = at)

=
∑

s0,a0
...
∑

st−1,at−1
P (S0 = s0, A0 = a0, ..., St+1 = st+1, At+1 = at+1)∑

s0,a0
...
∑

st−1,at−1
P (S0 = s0, A0 = a0, ..., St = st, At = at)

=
∑

s0,a0
...
∑

st−1,at−1
µ(s0)π0(a0 ; s0)∑

s0,a0
...
∑

st−1,at−1
µ(s0)π0(a0 ; s0)

×
∏t+1

i=1 p(si ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)∏t
i=1 p(si ; si−1, ai−1) · πi(ai ; s0, a0, . . . , ai−1, si)

π∈ΠM=
∑

s0,a0
...
∑

st−1,at−1
µ(s0)π0(a0 ; s0)

∏t+1
i=1 p(si ; si−1, ai−1) · φi(ai; si)∑

s0,a0
...
∑

st−1,at−1
µ(s0)π0(a0 ; s0)

∏t
i=1 p(si ; si−1, ai−1) · φi(ai; si)

= p(st+1 ; st, at) · φt+1(at+1; st+1)

×
∑

s0,a0
...
∑

st−1,at−1
µ(s0) · π0(a0 ; s0) ·

∏t
i=1 p(si ; si−1, ai−1) · φi(ai; si)∑

s0,a0
...
∑

st−1,at−1
µ(s0) · π0(a0 ; s0) ·

∏t
i=1 p(si ; si−1, ai−1) · φi(ai; si)

= p(st+1 ; st, at) · φt+1(at+1; st+1)

= P (S0 = s0, A0 = a0, . . . , St = st, At = at, St+1 = st+1, At+1 = at+1)
P (S0 = s0, A0 = a0, . . . , St = st, At = at)

= P
(
St+1 = st+1, At+1 = at+1|S0 = s0, A0 = a0, . . . , St = st, At = at

)
.

Finally, if φt = φ the computation (compare the third line from below) shows that P(St+1 =
s′, At+1 = s′|St = s, At = a) is independent of t.

Proposition 2.1.13. (Markov reward property)
If π ∈ ΠS then (St, At, Rt)t∈N satisfies the Markov reward process property

P
(
(St+1, At+1, Rt+1) = (st+1, at+1, rt+1)

∣∣ (St, At) = (st, at), . . . , (S0, A0) = (s0, a0)
)

= P
(
(St+1, At+1, Rt+1) = (st+1, at+1, rt+1)

∣∣ (St, At) = (st, at)
)

with time-homogeneous state/reward transition probabilities

p(s,a),(s′,a′,r′) = p(s′, r ; s, a)π(a′ ; s′).

Proof.

The computation is almost identical to that of the Markov property for (S, A), do
it!

In what follows we will use the notation Pπ
s , Pπ

s,a in different initialisations.
• Under Pπ

s,a the Markov reward process (S, A, R) is started in (s, a). In state s
we start with action a and then continue the Markov chain transitions and
reward payoffs.

• Under Pπ
s the Markov reward process (S, A, R) is started in the random

initialisation δs ⊗ π0(· ; s). That is, in state s the first action is chosen by π0
and then continue the Markov chain transitions and reward payoffs.
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The notation is a bit annoying but the only way to avoid non-justified conditioning
that one can see everywhere in the reinforcement learning literature.

2.1.3 Stochastic control theory
So far we have introduced the concept of a Markov decision processes for a given transition
function p and a policy π. But what is the actual question that we are after? The question is to
find a policy that maximise what we will call the expected discounted reward. Since a policy can
be used to control a system this problem is also known under stochastic optimal control. In order
to do so there will be two main steps. How to compute the expected discounted reward (this will
be called prediction) and then how to find the optimal policy (this will be called control). Here
is the optimization target that stochastic optimal control is about and reinforcement learning
trys to solve:

Given a Markov reward model and some terminal time T to defined later find a
policy π that maximizes the expected sum of discounted future rewards

Eπ
[ T∑

t=0
Rt

]
.

There are three typical choices for T :

• T = 0 is called contextual bandit, for |S| = 1 this is a stochastic bandit problem.

• T = min{t : St = s′} for some fixed state s′. The choice R ≡ 1 then counts the number of
steps needed to reach s′, justifying the name stochastic shortest path problems for this
choice of T . We will not discuss stochastic shortest path problems in these notes.

• T ∈ N fixed. This is called finite-time stochastic control problem, we briefly touch upon
finite-time problems in Section 2.4.

• The main focus of these notes is the case T ∼ Geo(1− γ), γ ∈ (0, 1), for some geometric
random variable T independent of (S, A, R). It turns out that this situation is much simpler
as there is additional Markovian structure (geometric random variables are memoryless).
Given a fixed time the memoryless property says that the end is as far away as it was at
the beginning. Integrating out the independent time-horizon gives

Eπ
[ T∑

t=0
Rt

]
= Eπ

[ ∞∑
k=0

(1− γ)γk
k∑

t=0
Rt

]
= (1− γ)Eπ

[ ∞∑
t=0

∞∑
k=t

γkRt

]
= (1− γ)Eπ

[ ∞∑
t=0

γt

1− γ
Rt

]
= Eπ

[ ∞∑
t=0

γtRt

]
(2.6)

Thus, from the optimisation point of view it is equivalent to optimise the expected
accumulated rewards up to a finite independent geometric time or to optimise the expected
accumulated discounted rewards. Since it is more standard we will maily focus on the
second point of view but keep in mind that the geometric interpretation might be more
reasonable from a sampling perspective.
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Before going into the details let us fix some conditions that we want to assume, mostly to make
our lives easier:
Assumption: The state space S, the action space A, and the set of rewards R are assumed to
be finite. All appearing σ-algebras are chosen to be the power sets.

The assumption of bounded rewards is not necessary but makes our lives much easier for the
presentation as everything will be finite and exchanging expectations and sums will always follow
from dominated convergence.

Definition 2.1.14. (Value functions)
For π ∈ Π and γ ∈ (0, 1), the function Qπ : S ×A → R defined by

Qπ(s, a) = Eπ
s,a

[ ∞∑
t=0

γtRt

]
is called state-action value function; or Q-function. The value function is defined by

V π(s) = Eπ
s

[ ∞∑
t=0

γtRt

]
=
∑

a∈As

π0(a ; s)Qπ(s, a).

In words: The state value functions is the expected discounted total reward when S0 = s is
fixed and A0 is played according to π0. In contrast, Q also fixes the first action a0 = a. Think
about chess. The state-value function shall desribe the expected success following a policy while
state-action-value function is the expected success when fixing the first move.
For stationary policies the value function and state-value functions satisfy simple systems of
equations. That will help us later to get our hands on V π and Qπ.

Proposition 2.1.15. (Bellman equations for Qπ and V π)
Suppose π is a stationary policy, then Qπ and V π satisfy the following systems of
linear equations:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)π(a′ ; s′)Qπ(s′, a′), s ∈ S, a ∈ A,

and

V π(s) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V π(s′)
)

, s ∈ S.

Proof. Recall from Proposition 2.1.13 that (S, A, R) is a Markov reward process so that by (2.2)

Eπ
s,a

[
R1 + γR2 + γ2R3 + ...

∣∣∣S1 = s′, A1 = a′
]

= Eπ
s′,a′

[
R0 + γR1 + γ2R2 + ...

]
= Qπ(s′, a′).

Thus, using the formula of total probability,

Qπ(s, a)

= Eπ
s,a

[ ∞∑
t=0

γtRt

]
= Eπ

s,a

[
R0
]

+ Eπ
s,a

[
γR1 + γ2R2 + γ3R3 + ...

]
= r(s, a) + γ

∑
s′∈S,a′∈As

Eπ
s,a

[
R1 + γR2 + γ2R3 + ...

∣∣∣S1 = s′, A1 = a′
]
Pπ

s,a(S1 = s′, A1 = a′)
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= r(s, a) + γ
∑

s′∈S,a′∈As

Pπ
s,a

(
S1 = s′, A1 = a′)Qπ(s′, a′)

= r(s, a) + γ
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)π(a′ ; s′)Qπ(s′, a′).

The equation for V follows directly by plugging-in V π(s) =
∑

a∈As
π(a ; s)Qπ(s, a) twice:

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a)

=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)π(a′ ; s′)Qπ(s′, a′)
)

=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V π(s′)
)

.

The definition of V π immediately allows to compute V π from Qπ. For stationary policies the
opposite also holds true:

Corollary 2.1.16. Given a stationary policy π ∈ ΠS , the following relations
between the state- and action-value functions hold:

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V π(s′), s ∈ S, a ∈ A.

Proof. This follows directly from the Bellman equation for Q plugging-in the definition V π(s) =∑
a∈As

π(a ; s)Qπ(s, a) for V .

We will later see that linking Q and V is crucial, in particular computing Q from V via Corollary
(2.1.16).
The classical theory of optimising Markov decision processes is very much about functional
analysis. One of the most important theorem from basic functional analysis is Banach’s fixed
point theorem:

Theorem 2.1.17. (Banach fixed-point theorem)
Let (U, ||·||) be a Banach space, i.e. a complete normed vector space, and T : U → U
a contraction, i.e. there exists λ ∈ [0, 1) such that

∥Tu1 − Tu2∥ ≤ λ ∥u1 − u2∥

for all u1, u2 ∈ U . Then

(i) there exists a unique fixed point, i.e. u∗ ∈ U such that Tu∗ = u∗; and

(ii) for arbitrary u0 ∈ U , the sequence (un)n∈N defined by

un+1 = Tun = T n+1u0

converges in U to u∗.

The Banach fixed point theorem is useful because the condition can be checked in many cases and
also the algorithm yields a fast converging algorithm. One of the major insights of optimal control
theory is the observation that contractions appear very naturally and lead to solution algorithms.
For that sake we will always use the Banach space (X, || · ||∞) consisting of X := {v : S → R}
equipped with the maximum-norm. Since we assume that S is finite, X is nothing but R|S|
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where a vector is written as a function (mapping index to coordinate value). Similarly, we define
Y := {q : S ×A → R} equipped with the supremum norm which is then nothing but the Banach
space R|S|·|A|.

Definition 2.1.18. (Bellman expectation operator)
Given a Markov decision model and a stationary policy π the operators

(T πv)(s) :=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)v(s′)
)

mapping X into X and

(T πq)(s, a) := r(s, a) + γ
∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π(a′ ; s)qπ(s′, a′)

mapping Y into Y are called Bellmann expectation operators.

There is a bit of ambiguity by denoting both operators by T . Since the number of arguments
differs it will always be clear from the context which operator is meant. The operators might
look familiar. We have actually already proved in Proposition 2.1.15 that value functions are
fixed points for Bellman expectation operators. Combined with the simple contractivity property
with respect to the maximums norm the first major theorem follows:

Theorem 2.1.19. Both Bellman expectation operators are contractions with
contraction constant γ. Their unique fixed points are the value functions V π and
Qπ, i.e. T πV π = V π and T πQπ = Qπ.

Proof. We already proved the fixed point claims. Let us check the contraction property. Plugging-
in yields

||T πv1 − T πv2||∞ = γ max
s

∣∣∣ ∑
a∈As

∑
s′∈S

π(a ; s)p(s′; s, a)
(
v1(s′)− v2(s′)

)∣∣∣
≤ γ||v1 − v2||∞

∑
a∈As

π(a ; s)
∑
s′∈S

p(s′; s, a)︸ ︷︷ ︸
=1︸ ︷︷ ︸

=1

= γ||v1 − v2||∞.

Please check yourself the same computation for the second Bellman operator.

Since Bellman’s expectation equations are linear systems they can in principle be solved by linear
algebra methods. Since the linear operators are also contractions the linear systems T πv = v
(resp. T πq = q) have unique solutions. Still, it might be more reasonable to solve using Banach’s
fixed point iteration by iterating vn+1 = T πvn for some starting vector v0 (resp. qn+1 = T πqn

for some starting matrix q).

With the value functions we can define the concept of an optimal policies. The search for optimal
policies in MDPs will be the main content of the subsequent chapters.

Definition 2.1.20. (Optimal policy & optimal value function)
For a given Markov decision model the following quantities will be of central
importance:
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(i) The function V ∗ : S → R that takes values

V ∗(s) := sup
π∈Π

V π(s), s ∈ S,

is called optimal (state) value function.

(ii) The function Q∗ : S ×A → R that takes values

Q∗(s, a) := sup
π∈Π

Qπ(s, a), s ∈ S, a ∈ A,

is called optimal state-action value function.

(iii) A policy π∗ ∈ Π that satisfies

V π∗
(s) = V ∗(s), s ∈ S,

is called optimal policy.

It should be emphasised that we make our lives much simpler by assuming a finite Markov
decision model. In that case the maximum is always attained and plenty of technical problems
do not appear. In fact, the results that we are going to prove next do no necessarily hold for
infinite Markov decision models. We will see later that optimality of policies could have been
defined alternatively by Qπ∗(s, a) = Q∗(s, a) for all state-action pairs. We stick to the notion in
terms of V as this is more common in the literature.

It is important to keep in mind that a priori V ∗ and Q∗ are not the value functions
for the best policy but instead pointwise the best possible expected rewards. A
priori it is absolutely not clear if there is one policy that is optimal for all starting
states. It is also not clear if there is any way of characterising such a policy that
leads to an algorithm. It is also not clear if that policy is very complicated. In fact,
Bellman’s results show that there is actually a stationary, even deterministic, policy
that can be characterised by solving (non-linear) equations.

Lecture 8

A B

We now turn towards the second operator of Bellman, the optimality operator. As for the
expectation operator we work on X = {v : S → R} and Y := {q : S × A → R}. As long as we
assume the Markov decision model to be finite X is nothing but R|S| and Y is R|S|×|A|. To make
X and Y Banach spaces we will fix the respective maximum-norms.

Definition 2.1.21. (Bellman optimality operators)
For a given Markov decision model we define the following operators:

(i) The non-linear system of equations

v(s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)v(s′)
}

, s ∈ S,

is called Bellman optimality equation. The operator T ∗ : U → U defined by

(T ∗v)(s) := max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)v(s′)
}

, s ∈ S,

is called the Bellman optimality operator (for state-value functions).
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(ii) The non-linear system of equations

q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

q(s′, a′), (s, a) ∈ S ×A,

is called Bellman state-action optimality equation. The state-action Bellman
optimality operator T ∗ : V → V is defined as

(T ∗q)(s, a) := r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

q(s′, a′), (s, a) ∈ S ×A.

Warning: both optimality operators are denoted by T ∗ but are safely distinguised
by the number of arguments.

It will turn out that the Bellman optimality operators are directly linked to optimal value
functions and solving the corresponding fixed point equations (i.e. the Bellman optimality
equations) is equivalent to finding optimal policies. Unfortunately, the equations are non-linear
and as such not easy to solve. To get a first little hand on the operator please do the following
exercise.

All Bellman operators are monotone, i.e. if u1 ≤ u2 it also holds that T πu1 ≤ T πu2
and T ∗u1 ≤ T ∗u2. The same holds for the matrix-valued operators T π and T ∗.

Similarly to the expectation operators also the optimality operators are contractions:

Theorem 2.1.22. Bellman’s optimality operators are contractions and, thus, have
unique fixedpoints.

Proof. To deal with the operators a simple inequality from analysis will be used:

|max
a∈A

f(a)−max
a∈A

g(a)| ≤ max
a∈A
|f(a)− g(a)|.

If the number in the absolute value of the left hand side is positive, then

|max
a∈A

f(a)−max
a∈A

g(a)| ≤ max
a∈A

(f(a)− g(a)) ≤ max
a∈A
|f(a)− g(a)|.

Otherwise, the role of f and g is reversed. With v1, v2 ∈ X, the Bellman optimality operator
and the triangle inequality yield

∥T ∗v1 − T ∗v1∥∞ = max
s∈S
|T ∗v1(s)− T ∗v2(s)|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a)|v1(s′)− v2(s′|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a)||v1 − v2||∞

= γ ∥v1 − v2∥∞ .

Hence, T ∗ is a contraction on X = {v : S → R} equipped with the maximum norm and thus has
a unique fixed point. Next, we show the same for T ∗ on Y = {q : S ×A → R}: With q1, q2 ∈ Y ,
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the second Bellman operator and the triangle inequality yield

∥T ∗q1 − T ∗q2∥∞ = max
s∈S

max
a∈As

|T ∗q1(s, a)− T ∗q2(s, a)|

≤ max
s∈S

max
a∈A
|γ
∑
s′∈S

p(s′ ; s, a)
(

max
a′∈As

q1(s′, a′)− max
a′∈As

q2(s′, a′)
)
|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

|q1(s′, a′)− q2(s′, a′)|

≤ max
s∈S

max
a∈A

γ
∑
s′∈S

p(s′ ; s, a) max
s′∈S

max
a′∈As

|q1(s′, a′)− q2(s′, a′)|

= γ ∥q1 − q2∥∞ .

We now come to the most important result of this section. The optimal value functions are
uniquely characterised as fixed points of Bellman’s optimality operators.

Theorem 2.1.23. The optimal value functions are the unique fixed points of
Bellman’s optimality operators, i.e. T ∗V ∗ = V ∗ and T ∗Q∗ = Q∗. Furthermore, it
holds that V ∗(s) = maxa∈As Q∗(s, a).

Proof. It was shown previously that the operators are contractions on a Banach space, thus,
have unique fixed points by Banach’s fixed point theorem. Thus, the proof is complete if it can
be shown that Q∗ and V ∗ solve the optimal Bellman equations.
For didactic reasons we proceed in two steps. We first prove the theorem for simplified value
functions that only take into account stationary policies, i.e. Q̄∗(s, a) = supπ∈ΠS

Qπ(s, a) and
V̄ ∗(s) = supπ∈ΠS

V π(s), as the proof is simpler. In a second part we prove the claim for all
policies. There is an important consequence: There is no need to study non-stationary policies,
the best expected reward can already obtained using only stationary policies!
Part 1 (stationary policies): We first prove that Q̄∗ solves the optimal Bellman equation and
next deduce the equation for V̄ ∗.
Bellman equation for Q̄∗: We proceed similarly to the proof of Bellman’s expectation equation
(see the proof of Lemma 2.1.16). For didactic reasons let us first suppose that π is stationary.
Then we get from Proposition 2.1.15

sup
π∈ΠS

Qπ(s, a) 2.1.15= sup
π∈ΠS

(
r(s, a) + γ

∑
s′∈S

∑
a∈As′

p(s′; s, a)π(a′; s′)Qπ(s′, a′)
)

= r(s, a) + γ sup
π∈ΠS

∑
s′∈S

∑
a′∈As′

p(s′; s, a)π(a′, s′)Qπ(s′, a′)

= r(s, a) + γ
∑
s′∈S

p(s′; s, a) max
a′∈As′

sup
π∈ΠS

Qπ(s′, a′).

The last equality needs a bit of explanation. The inequality „≤“ is easily:∑
a′∈As′

π(a′, s′)Qπ(s′, a′) ≤
∑

a′∈As′

π(a′, s′) sup
π

Qπ(s′, a′) ≤ max
a′∈As′

sup
π

Qπ(s′, a′)
∑

a∈As′

π0(a′, s′)

︸ ︷︷ ︸
=1

.

For „≥“ we argue as follows. Taking the supremum over all deterministic stationary policies only
gives a lower bound. The advantag is that now there is a finite sum and a supremum over a
finite set. We show that in that case supremum and sum can be exchanged. The claim follows.
To justify let us check that

sup
π∈ΠD

S

∑
s∈S

h(s, π(s)) =
∑
s∈S

sup
π∈ΠD

S

h(s, π(s))
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holds. Since „≤ “ always holds we show the contrary by contradiction. Let us suppose that

sup
π∈ΠD

S

∑
s∈S

h(s, π(s)) <
∑
s∈S

sup
π∈ΠD

S

h(s, π(s)),

and chose δ > 0 such that
∑

s∈S supπ∈ΠD
S

h(s, π(s))− δ > supπ∈ΠD
S

∑
s∈S h(s, π(s)). Next chose

some π∗(s) and some ε > 0 such that h(s, π∗(s)) > supπ h(s, π(s))− ε
|S| holds for all s ∈ S. But

then ∑
s∈S

sup
π∈ΠD

S

h(s, π(s)) ≤
∑
s∈S

h(s, π∗(s)) + ε

< sup
π∈ΠD

S

∑
s∈S

h(s, π(s)) + ε

≤
∑
s∈S

sup
π∈ΠD

S

h(s, π(s)) + ε− δ.

Chosing ε < δ this gives a contradiction.

Bellman equation for V̄ ∗: Let us first prove maxa∈As
Q̄∗(s, a) = V̄ ∗(s):

max
a∈As

Q̄∗(s, a) = max
a∈As

sup
π∈ΠS

Qπ(s, a)

= sup
π∈ΠS

max
a∈As

Qπ(s, a)

(∗)= sup
(πt)t≥1

sup
π0

V π(s)

= sup
π∈ΠS

V π(s)

= V̄ ∗(s).

Checking (∗) is not hard: „≤“ is trivial, since the deterministic policy only charging a is smaller
or equal to the supremum over all policies. „≥“ follows from the inequality

V π(s) =
∑

a∈As

π0(a ; s)Qπ(s, a) ≤ max
a∈As

Qπ(s, a)
∑

a∈As

π0(a ; s)︸ ︷︷ ︸
≤1

= max
a∈As

Qπ(s, a).

Plugging-in twice into the equation for Q̄∗ yields the claim for V̄ ∗:

T ∗V̄ ∗(s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V̄ ∗(s′)
}

= max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a) max
a′∈As′

Q̄∗(s′, a′)
}

= max
a∈As

Q̄∗(a, s)

= V̄ ∗(s)

Part 2 (non-stationary policies): Back to the non-stationary policies, the argument is similar
only requires an additional computation to avoid the Markov reward property. First recall that
the formular of total probability yields

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈As′

p(s′; s, a)π0(a′ ; s′)Eπ
s,a

[ ∞∑
t=1

γtRt

∣∣∣S1 = s′, A1 = a′
]

for arbitrary policy. The expectation does not simplify as for stationary policies (Markov reward
property), but it simplifies similarly well. If π̃ denotes the policy that is shifted by one index (we
only forget the first step), i.e.

π̃t(a ; s0, a0, ..., st) = πt+1(a ; s, a, s0, a0, ..., st), t ≥ 0,
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than we still get

Eπ
s,a

[ ∞∑
t=1

γtRt

∣∣∣S1 = s′, A1 = a′
]

= γQπ̃(s′, a′). (2.7)

Before checking (2.7) let us see how to finish the proof almost in the same way as above.

sup
π∈Π

Qπ(s, a) = r(s, a) + γ sup
π̃

sup
π0

∑
s′∈S

∑
a′∈As′

p(s′; s, a)π0(a′, s′)Qπ̃(s′, a′)

= r(s, a) + γ
∑
s′∈S

p(s′; s, a) max
a′∈As′

sup
π∈Π

Qπ(s′, a′).

Again, the argument is that the stationary policy π∗(a; s) = argmaxa∈As
supπ Qπ(s, a) dominates

all other policies because for all other policies π̃ it holds that∑
a′∈As′

π0(a′, s′)Qπ̃(s′, a′) ≤
∑

a′∈As′

π0(a′, s′) sup
π̃

Qπ̃(s′, a′) ≤ max
a′∈As′

sup
π̃

Qπ̃(s′, a′)
∑

a∈As′

π0(a′, s′)

︸ ︷︷ ︸
=1

.

The argument for V ∗ is exactly the same that we have seen for stationary policies above. To
finish the proof we still need to check (2.7). As in the proof of the Markov reward property for
stationary policies define the shifted process

R̃t := Rt+1, S̃t := St+1, Ãt := At+1, t ≥ 0,

and the new probability measure P̃ := Pπ
s,a(· |S1 = s′, A1 = a′). On the probability space

(Ω,F , P̃π), the process (S̃t, Ãt)t≥0 is an MDP started in (s′, a′), transition function p, and policy
(π̃t)t∈N0 . To see why, one only needs to compute the path probabilities:

P̃(S̃0 = s0, Ã0 = a0, R̃0 = r0, ..., S̃t = st, Ãt = at, R̃t = rt)

=
Pπ

s,a(S1 = s0, A1 = a0, R1 = r0, ..., St+1 = st, At+1 = at, Rt+1 = rt, S1 = s′, A1 = a′)
Pπ

s,a(S1 = s′, A1 = a′)

=
δ(s′,a′)(s0, a0) · p(s0 ; s, a) · π1(a0; s, a, s0) ·

∏t
i=0 p(si+1, ri ; si, ai) · πi({ai} ; s, a, s0, a0, ..., si−1, ai−1, si)

p(s0 ; s, a) · π1(a0; s, a, s0)

= δ(s′,a′)((s0, a0)) ·
t+1∏
i=2

p(si+1, ri+1 ; si, ai)πi(ai ; s, a, s0, a0, ..., si−1, ai−1, si)

= δ(s0,a0)((s′, a′)) ·
t∏

i=1
p(si, ri−1 ; si−1, ai−1)π̃i(ai ; s0, a0, ..., si−1, ai−1, si)

Hence, Ẽπ̃
[∑∞

t=0 γtR̃t

]
= V π̃(s′).

The proof showed that in order to find an optimal policy it is not needed to look at all policies,
only stationary policies are needed. This is much more convenient, as the set of stationary
policies is much smaller compared to all policies. Even more, there is a deterministic stationary
optimal policy, a policy that assigns only one optimal action to every state. Yet, the situation
is even better! The existence is not just theoretical but there is a way to get hands on such a
policy by solving a system of equations, the Bellman optimality equation.

Definition 2.1.24. (Greedy policy)
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Given a function q : S ×A → R the deterministic stationary policy defined by

πq(a ; s) :=
{

1 : a = a∗(s)
0 : otherwise

with a∗(s) ∈ arg max
a∈As

q(s, a)

is called a greedy policy with respect to q. Sometimes we also write greedy(q)
instead of πq. If π is greedy with respect to a qv obtained from the V -Q-transfer
operator

qv(s, a) := r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)v(s′), s ∈ S, a ∈ As, (2.8)

then we also write πv.

Keep in mind that the greedy policy is very special, only one action is proposed that maximises
the given q-function. In case several actions yield the same state-action value a fixed one of them
is chosen. Here is a lemma that shows how to deal with greedy policies in the context of Bellman
operators.

Lemma 2.1.25. Suppose πq is a greedy policy obtained from a q, then T ∗q = T πq q.
If q is obtained from a vector v through (2.8) then it also holds that T ∗v = T πv v.

Proof. Both claims readily follow from the definition of the Bellman operators:

T πq q(s, a) = r(s, a) +
∑

s′∈As

∑
a′∈As′

p(s′ ; s, a)πq(s′ ; a′)q(s′, a′)

= r(s, a) +
∑

s′∈As

p(s′ ; s, a) max
a′∈As′

q(s′, a′) = T ∗q(s, a),

where for the second equality we used the definition of the greedy policy. The same holds if q is
obtained from a vector v:

T πv v(s) =
∑

a∈As

πv(a ; s)
(

r(s, a) +
∑

s′∈As

p(s′ ; s, a)v(s′)
)

= max
a∈As

(
r(s, a) +

∑
s′∈S

p(s′ ; s, a)v(s′)
)

= T ∗v(s),

where we used the definition of the Bellman operators and the definition of the greedy policy in
the second equality.

As a consequence we learn how solving the Bellman state-action optimality equation yields an
optimal policy.

Theorem 2.1.26. (Dynamic programming algorithm)
An optimal policy π∗ always exist and can always be chosen to be stationary and
deterministic! Such a policy is given by solving the Bellman state-action optimality
equation and using the greedy policy with respect to the solution.

Alternatively, a solution v to the Bellman optimality equation plugged-into the V -Q-transfer
operator

qv(s, a) := r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)v(s′), s ∈ S, a ∈ As,
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yields Q∗ and, hence, the greedy optimal policy. Since v is only a vector while q is a matrix
it sounds first plausible (up to now) to solve T ∗v = v and then transfer to qv. Solving the
non-linear equation is the expensive step, transfering to q not. We will later see that typically
we try to avoid transferring from V to Q but in this chapter on stochastic control that sounds
like a good idea.

Proof. Suppose we have a solution q of Bellmann’s state-action optimality equation. By unique-
ness q equals Q∗. It remains to show V ∗ = V πq , then πq is optimal by definition. But this follows
from the previous lemma and the fact that q = Q∗:

Q∗ = T ∗Q∗ = T πQ∗ Q∗ = T πq Q∗.

Uniqueness of Bellman’s expectation operator gives Q∗ = Qπq . Finally, using the definition of the
greedy policy and the relations V ∗(s) = maxa∈As Q∗(s, a) and V π(s) =

∑
a∈As

π(a ; s)Qπ(s, a)
between V and Q gives

V ∗(s) = max
a∈As

Q∗(s, a) = max
a∈As

Qπq (s, a) =
∑

a∈As

πq(a ; s)Qπq (s, a) = V πq (s)

We have thus proved that V ∗ = V πq which shows that πq is optimal.

Let us summarise the findings made so far, the core of everything that will later be called
valued-based algorithms.

Solving Bellman’s optimality equation (or state-value optimality equation) yields a
stationary deterministic policy π∗ as the greedy policy obtained from the solution.
All algorithms that approximatively solve the Bellman optimality equation give rise
to approximation algorithms that find a stationary optimal policy of the stochastic
optimal control problem supπ∈Π V π.

From now on we will only focus on finding stationary optimal policies!

As the remark indicates we will be interested in learning the optimal policies by approximation.
Recalling the setting of stochastic bandits (interpreted as one-step MDP) this sounds familiar.
In that setting an optimal policy is nothing but a dirac measure on optimal arms, a learning
strategy a sequence of policies that learns (approximates) the optimal policy. To make the
connection to stochastic bandits let us define the notation of a learning strategy:

Definition 2.1.27. A sequence (πn)n∈N of policies for a Markov decision model
is called a learning strategy, if πn+1 only depends on everything seen for the first n
rounds of learning.

We keep the definition extremely vague as it will not play any further role in what follows. The
aim is to find algorithms that produce learning strategies that converge quickly and efficiently
to the optimal strategy π∗. What we mean by convergence will depend on the context, the
minimal requirement is convergence of the value function to the optimal value function, i.e.
||V πn−V ∗||∞ → 0. In contrast to stochastic bandit theory the regret plays no role in reinforcement
learning, the situation is too complex.
There are two typical approaches that we will encounter in different setups:

• value function based learning,

• policy based learning.

For value function the idea is to learn the optimal value function V ∗ (or optimal state-value
function Q∗) and then infer the optimal policy π∗ by taking argmax (the greedy policy from
Theorem 2.1.26). In contrast, policy learning tries to approximate directly the optimal policy π∗.
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The algorithms presented below are called dynamic programming algorithms,
they belong to a large class of algorithms that break down a problem into (hopefully
simpler) subproblems. Here, this means for instance to compute V π(s) from all other
V π(s′) or Qπ(s, a) from all other Qπ(s′, a′). Since for discounted MDP problems
the subproblems do not immediately simplify we do not go further into the ideas of
dynamic programming but still refer to all algorithms based on Bellman’s equations
as dynamic programming algorithms.

Lecture 9

2.2 Basic tabular value iteration algorithm

We have understood the problem and its ingredients and have learnt that in order to act optimally,
that is to know the optimal policy, one only needs to know the optimal value function (or the
optimal state-action value function). The approach of this section is to develop methods that
approximate the optimal value functions. As seen in the previous section, the Banach fixed point
theorem gives not only the existence of an unique fixed point of a contraction mapping T but
also the convergence of the sequence (T n+1v0)n∈N0 to that fixed point for arbitrary v0. We learnt
that for T ∗ the unique fixed point corresponded to V ∗. The idea of value iteration is to use this
convergence property and turn the Bellman optimality equation into an update procedure. The
algorithm is called a tabular algorithm as a table (here the vector V ) is updated repeatadly.

Algorithm 6: Value iteration
Data: Accuracy ε > 0
Result: Approximation V ≈ V∗, policy π ≈ π∗

Initialize V ≡ 0, Vnew ≡ 0
∆ := 1
while ∆ > ε do

set V := Vnew

for s ∈ S do
Vnew(s) = max

a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V (s′)
}

︸ ︷︷ ︸
(T ∗V )(s)

end
∆ := maxs∈S(|Vnew(s)− V (s)|)

end
return V := Vnew and the greedy policy with respect to V

Theorem 2.2.1. The value iteration Algorithm 6 terminates and the terminal
vector satisfies ∥V − V ∗∥∞ ≤

γ ε
1−γ .

Proof. Suppose the sequence of vectors vn+1 = T ∗vn is obtained by iteratively applying Bellman’s
optimality operator and v∗ is the limit. The finite-time termination of the algorithm follows
immediately from Banach’s fixed point theorem as

||vn − vn+1||∞
∆
≤ ||vn − v∗||∞ + ||v∗ − vn+1||∞ → 0

for n→∞. Now suppose the algorithm terminated after n steps, i.e. V = vn and ||vn−vn−1||∞ <
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ε. Using the contraction property of T ∗ yields, for m ∈ N,

∥vn − vn+m∥∞
∆
≤

m−1∑
k=0
∥vn+k − vn+k+1∥∞

=
m−1∑
k=0

∥∥(T ∗)kvn − (T ∗)kvn+1
∥∥

∞

≤
m−1∑
k=0

γk ∥vn − vn+1∥∞ .

Using continuity of the norm yields

∥V − V ∗∥∞ = lim
m→∞

∥vn − vn+m∥∞

≤ lim
m→∞

m−1∑
k=0

γk ∥vn+1 − vn∥∞

= 1
1− γ

∥vn+1 − vn∥∞ ≤
γ

1− γ
∥vn − vn−1∥∞ .

Now the termination condition ||vn − vn−1||∞ < ε implies the claim.

The approximate value function from Algorithm 6 is clearly not equal to the optimal value
function V ∗. Hence, the effect on transferring to a policy needs to be analysed.

Definition 2.2.2. For ε > 0 a policy π ∈ Π is called ε-optimal if

V ∗(s) ≤ V π(s) + ε

for all s ∈ S.

Now recall how transfer value-functions into state-value functions. For both the optimal value
functions and the value functions for a given policy the vector V is transferred into the Q-matrix
as

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)V (s′). (2.9)

We now do the same and use (2.9) to define from the approximation V of V ∗ an approximate
Q-function. Then the corresponding greedy policy is ε-optimal:

Theorem 2.2.3. Suppose V is the output of Algorithm 6 and Q is obtained from
V using the transfer operator (2.9). Then the greedy policy πQ is 2εγ

1−γ -optimal.

Proof. The main point of the argument is a relation of optimality and expectation operator in
the case of greedy policies. To emphasise the importance, let us highlight the trick once more:

Bellman’s optimality and expectation operators are closely connected for greedy
policies!

The crucial computation links the optimality operator with the expectation operator of the
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greedy policy:

T ∗V (s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V (s′)
}

= max
a∈As

{Q(s, a)}

=
∑

a∈As

πQ(a ; s)Q(a, s)

=
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V (s′)
)

= T πV (s)

The rest of the proof is straight forward using fixed points and the contraction property. Suppose
the algorithm terminated after n steps, i.e. V = vn and ||vn − vn−1|| < ε (1−γ)

2γ . The identity
above yields

∥V π − V ∥∞ = ∥T πV π − V ∥∞

≤ ∥T πV π − T ∗V ∥∞ + ∥T ∗V − V ∥∞

= ∥T πV π − T πV ∥∞ + ∥T ∗V − T ∗vn−1∥∞

≤ γ ∥V π − V ∥∞ + γ ∥V − vn−1∥∞ .

Rearranging this equation yields

∥V π − V ∥∞ ≤
γ

1− γ
∥vn − vn−1∥∞ .

In the proof of the previous theorem we have already shown that ∥V − V ∗∥∞ ≤
γ

1−γ ∥vn − vn−1∥∞.
Finally, using the terminal condition of Algorithm 6 yields

∥V π − V ∗∥∞ ≤ ∥V
π − V ∥∞ + ∥V − V ∗∥∞ ≤ 2 γ

1− γ
∥V − vn∥∞ ≤ 2ε

γ

1− γ
.

This proves the claim.

We next analyse the convergenc rates of the value iteration algorithm.

Definition 2.2.4. Suppose (V, || · ||) is a normed space. For a sequence (yn) in V
with limit v∗ we say the convergence is of order α > 0 if there exists a constant
K < 1 for which

∥yn+1 − y∗∥ ≤ K ∥yn − y∗∥α
, n ∈ N. (2.10)

Linear convergence corresponds to α = 1.

Since the algorithm is based on Banach’s fixed point theorem it is clear that the convergence is
at least linear. A simple initialisation shows that the convergence generally cannot be improved.

Theorem 2.2.5. For all initialisations the convergence in Algorithm 6 (without
termination) is linear with constant K = γ. There is an initialisation for which the
speed of convergence is exactly linear.

Proof. Let us denote again vn for the nth update of the iteration vn = T ∗vn−1. The linear
convergence rate follows directly from the fixed point property of T ∗:

∥vn+1 − V ∗∥∞ = ∥T ∗vn − T ∗V ∗∥∞ ≤ γ ∥vn − V ∗∥∞ , n ∈ N. (2.11)
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In fact, the rate cannot be better as the following example shows. If Algorithm 6 is initialised
with v0 := V ∗ + k1, it holds that

∥v1 − V ∗∥∞ = ∥T ∗v0 − V ∗∥∞ = ∥T ∗(V ∗ + k1)− V ∗∥∞
Def. T ∗

= ∥V ∗ + γk1− V ∗∥∞

= γ ∥(V ∗ + k1)− V ∗∥∞ = γ ∥v0 − V ∗∥∞ .

An induction shows that for this example ∥vn+1 − V ∗∥∞ = γ ∥vn − V ∗∥∞ for all n ∈ N.

Of course we could equally use iterations obtained from Banach’s fixed point theorem
to directly approximate Q∗ instead of approximating V ∗ and then transferring to
Q∗. This will be done later for approximate dynamic programming (Q-learning and
SARSA) in which we do not assume explicit knowledge on the transition function,
thus, cannot transfer from V to Q. In the explicit case it is more reasonable to work
with vector iterations than matrix iterations and only transfer from V to Q once.

2.3 Basic policy iteration (actor-critic) algorithm
In this section we want to explore another method of reaching an optimal value function and
hence an optimal policy. The method is not part of the classical methodology of stochastic
control but much more common in the reinforcement learning community as it motivates some
of the most powerful approximation algorithms. The idea goes as follows. Iterate between the
following two steps:

• Policy evaluation: Compute or estimate Qπ (or V π) for the currently best known policy π.

• Policy improvement: Improve the best known policy by taking π′ = greedy(Qπ).

In contrast to value iteration the approach is more clever, it uses much more understanding of
the optimal control problem. While value iteration is called a value-based method (only the
value function is used, the policy is only obtained in the end) policy iteration is a policy-based
method, the approach works directly uses the policy.

The approach is called an actor-critic method as it alternates between two steps.
The critic evaluates the policy (computes the value function) which then the actor
uses to improve the quality of the policy.

In the following both steps will be discussed separately and then alternated for the policy iteration
algorithm.

2.3.1 Policy evaluation
We are now going to address the question on how to compute V π(s) for a given policy π. There
are essentially three direct ideas that one might come up with:

• approximate the expectation by Monte Carlo,

• solve the (linear) Bellman expectation equation by matrix using linear algebra (e.g. matrix
inversion),

• find the fixed point of the Bellman expectation operator using Banach’s fixed point iteration.

The first idea and subtle variants will be topic of the next chapter, the latter two approaches
will be address now.
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Recall the Bellman expectation operator for a stationary policy π ∈ Πs:

T πv(s) =
∑

a∈As

π(a ; s)
(

r(s, a) +
∑
s′∈S

p(s′ ; s, a)v(s′)
)

.

and that the value function V π is a fixed point of the Bellman operator T π.

The one-step reward r(s, a) is a shortcut for r(s, a) =
∑

s′∈S
∑

r∈R r p(s′, r ; s, a),
sometimes we prefer to write the detailed form in order to emphasise more explicitly
the dependence on the Markov decision model. The Belman operator than takes
the form

(T πv)(s) =
∑

a∈As

π(a ; s)
∑
s′∈S

∑
r∈R

p(s′, r ; s, a)[r + γv(s′)], s ∈ S.

The equation looks complicated but (S is assumed finite) is just a system of linear equatinos
that can be solved by means of linear algebra techniques. This becomes directly evident when
we rewrite the fixed point equation in vector notation

V π = rπ + γP πV π,

where

P π =
( ∑

a∈As

π(a ; s)p(s′ ; s, a)
)

(s,s′)∈S×S

rπ =
( ∑

a∈As

π(a ; s)r(s, a)
)

s∈S

with P π ∈ R|S|·|S| and rπ, V π ∈ R|S|.

Please check that indeed T π = rπ + γP π.

Given different use cases, each of these notations may be favorable. The reader may forgive our
shifty notation in favor of uncluttered statements.

Proposition 2.3.1. The (affine) linear equation V = rπ + γP πV has a unique
solution. Hence, V π can be computed explicitly as

V π = (I − γP π)−1rπ. (2.12)

Proof. This follows immediately as the Bellman expectation operator is a contraction (compare
the exercise after Theorem 2.1.22). To compute the solution is straightforward linear algebra
operation:

V π = rπ + γP πV π ⇔ (I − γP π)V π = rπ

⇔ V π = (I − γP π)−1rπ

The existence of the inverse is guaranteed as the linear equation has a unique solution.

As a consequence we see that the evaluation of a policy simply corresponds to the inversion of a
matrix. However, although this computation is straightforward, it is a tedious and expensive
computation. The complexity of matrix inversion (using Gauss-Jordan elimination) is O(n3) and
n = |S| can be huge. Thus we will also explore iterative solution methods.
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As seen with value iteration we can use the convergence properties of the iterates of a contraction
mapping. We want to do the same for the operator T π for a stationary policy. Using Banach’s
fixed point theorem convergence (T π)nv0 → V π holds for any initialisation v0. Implemented as
an algorithm we obtain Algorithm 7.

Algorithm 7: Iterative policy evaluation (Naive)
Data: Policy π ∈ ΠS , ε > 0
Result: Approximation V ≈ V π

Initialize V ≡ 0, Vnew ≡ 0
∆ := 1
while ∆ > ε do

Set V = Vnew
for s ∈ S do

Vnew(s) =
∑

a∈As
π(a ; s)

∑
s′∈S

∑
r∈R p(s′, r ; s, a) [r + γV (s′)]

end
∆ := maxs∈S |Vnew(s)− V (s)|

end
V := Vnew

Theorem 2.3.2. Algorithm 7 terminates and ∥V − V π∥∞ < γ ε
1−γ .

Proof. The proof is identical to the proof of Theorem 2.2.1 which is only based on the fact that
T ∗ is a contraction with constant γ. Since T π is equally a contraction with constant γ the same
result holds.

Algorithm 7 can be improved in terms of memory. The simple fixed point iteration algorithm
requires to occupy memory for 2|S| values since V has to be fully stored in order to compute every
value Vnew(s). This can be done more efficient by directly using available data, see Algorithm 8.
The algorithm does not perform the matrix computation with T π directly but row by row, it
updates coordinate by coordinate instead of all coordinates at once.

Algorithm 8: Iterative policy evaluation (totally asynchroneous updates)
Data: Policy π ∈ ΠS , ε > 0
Result: Approximation V ≈ V π

Initialize V (s) = 0 for all s ∈ S
∆ := 2ε
while ∆ > ε do

∆ := 0
for s ∈ S do

v := V (s)
V (s) :=

∑
a∈As

π(a ; s)
∑
s′∈S

∑
r∈R

p(s′, r ; s, a) [r + γV (s′)]︸ ︷︷ ︸
T πV (s)=(rπ+Pπ)V (s)

∆ := max(∆, |v − V (s)|)
end

end

Try to prove convergence of the totally asynchroneous policy evaluation algorithm
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(without termination) to V π. To do so enumerate S as s1, ..., sK and define

T π
s V (s′) =

{
T πV (s) : s = s′

V (s) : s ̸= s′ ,

i.e. T π is only applied to coordinate s while leaving all other coordinates unchanged.
Then the inner loop of the algorithm performs nothing but the composition T̄ π :=
(T π

sK
◦ ... ◦ T π

s1
)(V ), which is not the same as applying T π! Show that V π is a fixed

point of the composition and the composition is a contraction on (U, || · ||∞), proceed
step by step using the estimates to show that Bellman operators are contractions.
Without the termination the outer loop is nothing but an iteration of T̄ π, hence,
without termination the algorithm converges to V π.

Algorithms in which coordinates s are treated differently are called asynchroneous algorithms.
In fact, there are other versions of the algorithm where coordinates are not sweeped in order
but randomly. We will come back to such asynchroneous algorithms in the next chapter (e.g.
Q-learning is of exactly that kind replacing Bellman’s expectation operator by the state-action
optimality operator). Lecture 10

2.3.2 Policy improvement
We now aim to improve a given policy, that is to slightly change it such that its value function
takes larger values. Mathematically speaking, for a policy π ∈ Π and value function V π we aim
to find a policy π′ ∈ Π such that

V π(s) ≤ V π′
(s), ∀s ∈ S.

The improvement is called strict if

V π(s) < V π′
(s) for at least one s ∈ S.

If π is not optimal, there always exists a strict improvement, e.g. the optimal policy. We now
want do define a procedure to update a non-optimal policy to an improved policy. The key idea
is to change the policy at a single state s ∈ S to a particular action. For this we look at the
action-value function of a stationary policy π ∈ ΠS . Recalling that

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a)

it becomes apparent that

max
a∈As

Qπ(s, a) ≥ V π(s). (2.13)

In other words, the inequality above implies that choosing an action a ∈ A that maximizes the
expected reward in state s and the expected future value of following a policy π is at least as
good as following the policy π. Recalling Definition 2.1.24 this suggests to use the greedy policy
πQπ induced by the Q-function of the current policy π which then leads to the simple policy
improvement algorithm. The improvement of the greedy policy improvement is a special case of
the policy improvement theorem.

Theorem 2.3.3. (Policy improvement theorem)
Let π, π′ ∈ ΠS be two stationary policies, then the following hold:

(i) If

V π(s) ≤
∑

a∈As

π′(a ; s)Qπ(s, a), ∀s ∈ S, (2.14)
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Algorithm 9: Greedy policy improvement
Data: policy π ∈ ΠS , Q-function Qπ

Result: improved policy π′ = greedy(Qπ)
π′ := π
for s ∈ S do

Choose a∗(s) ∈ arg maxa∈As
Qπ(s, a)

π′(a∗(s) ; s) := 1
for a ∈ As \ {a∗(s)} do

π′(a ; s) = 0
end

end

then π′ is an improvement of π.

(ii) If there is a strict inequality in (2.14) for some state s then the improvement
is strict.

(iii) For every policy π ∈ ΠS the greedy policy obtained from Qπ improves π.

On a heuristic level the theorem is trivial. If a stationary policy π′ is better for one step (in all
states) then (by the Markov property) the policy will also lead to a larger reward if it is used in
all time-steps. But then the value function for π′ is bigger than that for π.

Proof. (i) Using definitions assumptions and the definition of Bellman expectation operators we
get

V π(s) ≤
∑

a∈As

π′(a ; s)Qπ(s, a)

=
∑

a∈As

π′(a ; s)
(

r(s, a) +
∑
s′∈S

p(s′ ; s, a)V π(s′)
)

= T π′
V π(s).

Monotonicity of Bellman operators allows us to iterate the equation to obtain

V π(s) ≤ T π′
V π(s) ≤ T π′

T π′
V π(s) ≤ ... ≤ lim

k→∞
(T π′

)kV π(s).

By Banach’s fixed point theorem the iterations of T π′ converge uniformly (thus pointwise) to
the unique fixed point of T π′ , which is V π′ . Thus, V π(s) ≤ V π′(s) for all s ∈ S.
(ii) For strict inequalities the above steps imply strict inequalities.
(iii) Checking the greedy policy update satisfies the one-step improvement property is easy. With
a∗(s) ∈ arg maxa∈As Qπ(s, a), the greedy policy π′ satisfies the improvement condition:

V π(s) =
∑

a∈As

π(a ; s)Qπ(s, a) ≤ max
a∈As

Qπ(s, a)
∑

a∈As

π(a ; s)︸ ︷︷ ︸
=1

=
∑

a∈As

π′(a ; s)Qπ(s, a)

Hence, (i) implies the claim.

For the following section we also want to prove the following lemma that links greedy policy
improvement to optimal policies. After all, this is still what we are on the look for.

Lemma 2.3.4. Let π ∈ ΠS and π′ the greedy policy obtained from Qπ, then

V π = V π′
(or Qπ = Qπ′

) =⇒ π and π′ are optimal.
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Proof. It follows from Lemma 2.1.16 that equality of the value functions implies equality of the
state-action value functions, hence, we work with Q. As in the previous proof we compute, using
a∗(s) ∈ arg maxa∈As

Qπ(s, a),

Qπ′
(s, a) = r(s, a) + γ

∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π′(a′ ; s)Qπ′
(s′, a′)

= r(s, a) + γ
∑
s′∈S

p(s′ ; s, a)Qπ′
(s′, a∗(s′)).

Now suppose that Qπ = Qπ′ , then the equation becomes

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

Qπ(s′, a′).

Hence, Qπ and Qπ′ both solve Belman’s state-action optimality equation. Since this has a unique
solution we deduce Qπ′ = Q∗ = Qπ (and both are optimal).

Corollary 2.3.5. For a non-optimal policy π ∈ ΠS and the greedy policy π′ =
greedy(Qπ) obtained from Qπ is a strict policy improvement.

Proof. The claim follows directly by Lemma 2.3.4.

Apart from the greedy policies there is a second interesting application of the policy improvement
theorem. For that sake we need a bit of extra notation.

Definition 2.3.6. A policy π ∈ ΠS is called

• soft, if it fulfils
π(a ; s) > 0 ∀s ∈ S, a ∈ As,

• ε-soft for some 1 ≥ ε > 0, if it fulfils

π(a ; s) >
ε

|As|
∀s ∈ S, a ∈ As,

• ε-greedy with regard to Q, if it selects the greedy action with respect to Q
with probability (1− ε) and a (uniform) random action with probability ε,
i.e.

π(a ; s) =
{

(1− ε) + ε
|As| : a = a∗(s)

ε
|As| : a otherwise

,

where a∗(s) ∈ arg maxa Q(s, a).

Let us recall the discussion of the ε-greedy learning strategies for stochastic bandits. Such
policies are considered suboptimal as they lead to linear regret, they play suboptimal arms with
probability ε. Similarly, ε-soft policies cannot be optimal as suboptimal actions must be played in
contrast to greedy policies that only play optimal actions. Hence, ε-greedy policies will typically
not improve policies, but they do improve all other ε-soft policies:

Proposition 2.3.7. If π ∈ ΠS is ε-soft, then the ε-greedy policy π′ obtained from
Qπ improves π.
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Proof. This follows by checking the condition from the policy improvement theorem:

V π(s) = ε

|As|
∑

a∈As

Qπ(s, a)− ε

|As|
∑

a∈As

Qπ(s, a) +
∑

a

π(a ; s)Qπ(s, a)

= ε

|As|
∑

a∈As

Qπ(s, a) + (1− ε)
∑

a

π(a ; s)− ε
|As|

1− ε
Qπ(s, a)

≤ ε

|As|
∑

a∈As

Qπ(s, a) + (1− ε) max
a

Qπ(s, a)

=
∑

a∈As

π′(a ; s)Qπ(s, a).

2.3.3 Policy iteration algorithms (tabular actor-critic)
The ingredients developed above can now be combined to obtain the policy iteration algorithm.
The idea is simple: alternate policy evaluation and improvement, compute V π and then improve
to π′ using the greedy strategy obtained from Qπ. The above results show that every improvement
step improves the policy and the limit of the procedure ist π∗. Here is an illustration of the
procedure:

π0 ↗ V π0 ↘ π1 ↗ V π1 ↘ π2 ↗ · · · ↘ π∗

The algorithm obtained this way is called policy iteration algorithm. Since there are many
variations how to perform the policy evaluation (exact or approximatedly) we will meet several
variants in the chapters below. We will first restrict ourselves to exact evaluations of V π using

Algorithm 10: Greedy exact policy iteration (actor-critic)
Data: initial policy π ∈ ΠS , initial value function V
Result: optimal policy π∗ ∈ ΠD

S

initialise arbitrarily Vnew, πnew
stop = False
while stop = False do

Policy evaluation (critic): Obtain V π by computing (2.12).
set Qπ(s, a) =

∑
s′∈S

∑
r∈R p(s′, r ; s, a) [r + γV π(s′)] for all a, s

Policy improvement (actor): Obtain the improved greedy policy πnew from Qπ

if Qπnew = Qπ then
stop = True

end
end
return π∗ = π

the matrix inversion (2.12).

Theorem 2.3.8. (Greedy exact policy iteration)
Started in any policy the policy iteration Algorithm 16 with exact policy evaluation
and greedy policy update for finite MDPs terminates in a finite number of iterations
(at most |A| · |S|) with a solution of the optimality equation and an optimal policy
π∗.

Proof. By Corollary 2.3.5 in each iteration there is a strict improvement of the next policy π′ (i.e.
there exists at least one s ∈ S such that V π(s) < V π′(s)) and the set of deterministic stationary
strategies is finite (|ΠD

S | = |S||A| <∞) the algorithm has to terminate in finitely many steps. By
Lemma 2.3.4 the termination of the algorithm, thus V π = V π′ , implies that π′ is optimal.
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Also for infinite state and action space the exact policy iteration algorithm converges monotonically
and in norm to the optimal policy. Since the exact policy evaluation is hardly possible if S
and/or A are huge we do not go further into the analysis

Typically the value functions V πn will not be computed explicitly but the policy
iteration algorithm will be used in an approximate manner where V π is estimated.
One example is to replace the explicite evaluation of V π by a few steps of the
Banach fixed point iteration corresponding to T π, compare Algorithms 7 or 8.
Other examples will be discussed in Chapter 3. All algorithms alternating between
value function estimation a policy improvement (not necessarily greedy)

π0 ↗ V̂ π0︸︷︷︸
≈V π0

↘ π1 ↗ V̂ π1︸︷︷︸
≈V π1

↘ π2 ↗ · · · ↘ π

will be called generalised policy iteration algorithm. The aim will be to
generate algorithms that converge as quickly as possible to a policy π which is as
close to π∗ as possible.

Algorithm 11: Generalised policy iteration (actor-critic) paradigm
Data: initial policy π
Result: optimal policy π∗ (or approximation of π∗)
while not converged do

Policy evaluation (critic): Obtain estimates for V̂ π and/or Q̂π from some algorithm.
Policy improvement (actor): Obtain (hopefully improved) policy πnew by some
algorithm.

Set π = πnew.
end
return π

It is not clear at all if a generalised policy iteration algorithm converges to an optimal policy and
when to stop the algorithm! The errors made by policy evaluation and improvement might easily
build up. It is a very non-trivial task to find and tune approximate algorithms that converge. In
Section 3.2.1 will come back to generalised policy iteration with ε-greedy policies.

The notion „while not converged“ in algorithm pseudo code will always refer to a
non-specified termination condition. In many algorithms we will specify a concrete
termination condition.

An interesting version of generalised policy iteration comes in combination with ε-greedy policies
that will be useful later to introduce exploitation into some algorithms. Let us extend the notion
of optimality to the class of soft policies.

Definition 2.3.9. An ε-soft policy π∗ is called ε-soft optimal if

V π∗
(s) = sup

π ε-soft
V π(s) =: Ṽ ∗(s), ∀s ∈ S.

There is a nice trick how to show convergence of ε-greedy policy iteration. Since ε-greedy policies
play some action with probability ε they will never be optimal (except in trivial cases) so they
won’t converge to an optimal policy. Nonetheless, they do converge to a policy which is optimal
among the ε-soft policies.

Theorem 2.3.10. (ε-greedy exact policy iteration)
Started in any ε-soft policy the generalised policy iteration algorithm with exact
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policy evaluation and ε-greedy policy update converges to an ε-soft optimal policy.

Proof. To prove convergence of exact policy iteration with greedy policy update (Theorem 2.3.8)
used the Bellman equation to guarantee that no further improvement means that the current
policy is already optimal. This does not work for the ε-greedy policy iteration algorithm. To
circumvent this problem we use a trick and “move the ε-softness into the environment”. For that
sake let us define a new MDP with transition function

p̃(s′, r ; s, a) := (1− ε)p(s′, r ; s, a) + ε

|As|
∑

b∈As

p(s′, r ; s, b).

This means, that with probability ε, the transition kernel will ignore the selected action and
behave as if a uniformly random action was chosen. We can transform stationary ε-soft policies
π from the old MDP to stationary policies π̃ of the new MDP via

π̃(a ; s) :=
π(a ; s)− ε

|As|

1− ε
≥ 0.

Let us denote the mapping by f : π 7→ π̃. Conversely, for every stationary policy π̃ of the
transformed MDP we can define the ε-soft policy π by

π(a ; s) := (1− ε)π̃(a ; s) + ε

|As|
,

which is the inverse mapping. Therefore f is a bijection between the ε-soft policies in the old
MDP and all stationary policies in the new MDP. We now show, that the value functions V π

stay invariant with regard to this mapping. For that sake note that

p̃(s′ ; s, a) = (1− ε)p(s′ ; s, a) + ε

|As|
∑

b∈As

p(s′ ; s, b)

and

r̃(s, a) = (1− ε)r(s, a) + ε

|As|
∑

b∈As

r(s, b),

hence,

∑
a∈As

π̃(a ; s)r̃(s, a) =
∑

a∈As

(π(a ; s)− ε
|As|

1− ε

)(
(1− ε)r(s, a) + ε

|As|
∑

b∈As

r(s, b)
)

=
∑

a∈As

(
π(a ; s)− ε

|As|

)
r(s, a) + ε

|As|
∑

b∈As

r(s, b)
∑

a∈As

π(a ; s)− ε
|As|

1− ε︸ ︷︷ ︸
=1

=
∑

a∈As

π(a ; s)r(s, a).

Similarly:

∑
a∈As

π̃(a ; s)p̃(y ; s, a) =
∑

a∈As

(π(a ; s)− ε
|As|

1− ε

)(
(1− ε)p(y ; s, a) + ε

|As|
∑

b∈As

p(y ; s, b)
)

=
∑

a∈As

π(a ; s)p(y ; s, a)
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Combining the above yields

T̃ π̃V π(s) =
∑

a∈As

π̃(a ; s)
[
r̃(s, a) + γ

∑
y∈S

p̃(y ; s, a)V π(y)
]

=
∑

a∈As

π(a ; s)
[
r(s, a) + γ

∑
y∈S

p(y ; s, a)V π(y)
]

= T πV π(s) = V π(s).

Since the fixed point is unique it follows that Ṽ π̃ = V π and, as f is bijective,

sup
π̃∈Π̃S

Ṽ π̃(s) = sup
π ε-soft

V π(s), (2.15)

For the Q-functions we obtain

Q̃π̃(s, a) = r̃(s, a) + γ
∑
y∈S

p̃(y ; s, a)V π(y)

= (1− ε)
(

r(s, a) + γ
∑
y∈S

p(y ; s, a)V π(y)
)

+ ε

|As|
∑

b∈As

(
r(s, b) + γ

∑
y∈S

p(y ; s, b)
)

= (1− ε)Qπ(s, a) + ε

|As|
∑

b∈As

(
r(s, b) + γ

∑
y∈S

p(y ; s, b)
)

,

which implies that
arg max

a∈As

Q̃π̃(s, a) = arg max
a∈As

Qπ(s, a).

Therefore greedy with respect to Qπ and Q̃π̃ is the same. Let πn be an ε-soft policy, and let
πn+1 be ε-greedy with regard to Qπn . Then π̃n+1 := f(πn+1) is greedy with respect to Q̃π̃n :

π̃n+1(a ; s) =
π(a ; s)− ε

|As|

1− ε
=


(

(1−ε)+ ε
|As|

)
− ε

|As|
1−ε = 1 : a = a∗(s)

ε
|As| − ε

|As|
1−ε = 0 : a otherwise

.

Since we proved in Theorem 2.3.8 convergence of exact policy iteration with greedy policy updates
the proof can be finished:

sup
π ε-soft

V π(s) (2.15)= sup
π̃∈Π̃S

Ṽ π̃(s) = Ṽ π̃∗
(s) = lim

n→∞
Ṽ π̃n(s) = lim

n→∞
V πn(s)

On first view it is completely unclear why there might be any interest in ε-greedy policy iteration
if we already have greedy policy iteration that converges to an optimal policy. The reason, as we
will discuss in the next chapter, comes from the policy evaluation step. Greedy policies can be
very unfavorable to estimate Q-values or the value function if those cannot be computed explicitly.
In contrast, ε-greedy policies have pleasant exploration properties, they force the algorithm to
look at all actions and not only the ones that are already known to be good. The reader might
compare with the exploration-exploitation trade-off for stochastic bandits in Chapter 1.

2.3.4 Relation of policy iteration and value iteration
There is an important simple observation that we should always keep in mind as it reappears
later in the discussion of SARSA and Q-learning. Value iteration is a short-cut of policy iteration,
it combines the two phases of policy iteration in one. Why is that?



2.4. STOCHASTIC CONTROL IN FINITE TIME 77

Recall that

(T ∗v)(s) = max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)v(s′)
}

and

(T πv)(s) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)v(s′)
)

.

Thus, T ∗v is nothing but T greedy(v)v. But that means that iterating T ∗ is nothing
but starting in some vector v and repeatadly chosing the greedy policy and computing
its Bellman expectation operator once.

2.4 Stochastic control in finite time
So far we discussed stochastic control problems with geometrically distributed random time
horizon (equivalently, infinite time horizon with discounted rewards). In this section the time
horizon will be a fixed deterministic time T . The geometric time horizon is a simpler problem as
the forgettfullness of geometric random variables leads to stationary optimal policies. This is
different for deterministic time horizon, optimal policies (π∗

t )t≤T will be non-stationary! 3

2.4.1 Setting and dynamic programming
As in the previous section we will consider (St, At, Rt)t≤T with the only difference that time is
restricterd to D = {0, . . . , T} for some T ∈ N fixed. Action and state spaces as well as transition
probabilities p remain unchanged, policies π = (πt : t ∈ D) are defined as before. The finite-time
stochastic contol problem consists in optimising the state value function Eπ

s [
∑T −1

t=0 Rt] over all
policies.

Example 2.4.1. An example to keep in mind is the ice vendor who has a three month summer
season (Germans also love ice cream during winter, most others don’t). The optimal production
strategy of the vendor will depend upon the distance to the terminal day, there is no need in
having ice cream left after the last day of the season. An optimal policy of time-dependent
problems will henceforth never be stationary!

Compared to infinite time-horizon MDPs crucial differences appear. Most importantly, the idea
of dynamic programming (reduce the problem to simpler sub-problems) becomes much clearer.
The general idea of dynamic programming is to reduce a problem to a smaller problem and then
build a solution to a larger problem from solutions of smaller problems. For infinite horizon
control the idea did not become very explicit as the reduced problem (starting one time-step
later) is identical to the original problem (multiplied by γ). Thus, the reduction attempt only
led to a set of equations. Here, the finite time horizon forces the reduced problem (starting one
time-step later) to be simpler. The resulting set of equations will turn out to be a backwards
recursion instead of a closed system of equations.
Let us write π ∈ ΠT

t to denote that π = (πi)T −1
i=t is a policy that runs from time t to T , i.e. π

consists of T − t Markov kernels. The definition of the state value function for T -step MDPs is
as follows.

Definition 2.4.2. For any policy π ∈ ΠT
t the functions (vectors) defined by

3at some point also include a terminal payout (which now is 0)
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V π
T,T ≡ 0 and

V π
t,T : S → R, s 7→ Eπ̃

s

[ T −t−1∑
i=0

Ri

]
=: Eπ

St=s

[ T −1∑
i=t

Ri

]
,

for t < T are called time-state value functions, where π̃ is the policy π shifted by
t, i.e. π̃i = πt+i for i = 0, ..., T − t − 1. The function V π

0,T is called state value
function.

Typically the time-state value function is defined as V π
t,T (s) = E[

∑T −1
i=t Ri |St = s]. To avoid

discussions of conditioning on zero-sets we shift the starting time to 0 and force the start in s.
This is rigorous (not pretty) and we keep in mind that V π

t,T is the total reward gained after time
t. We also have to redefine the state-action value function

Definition 2.4.3. For any policy π ∈ ΠT
t the functions (matrices) defined by

Qπ
T,T ≡ 0 and

Qπ
t,T : S ×A → R, (s, a) 7→ Eπ̃

s,a

[ T −t−1∑
i=0

Ri

]
=: Eπ

St=s,At=a

[ T −1∑
i=t

Ri

]
,

for t < T are called time-state-action value functions. The shifted policy π̃ is
defined as in the previous definition. The function Qπ

0,T is called state-action value
function.

From now on we will drop the subscript T . We will just write V π
t and Qπ

t , except in situation
in which the emphasise lies on T . As for discounted MDPs the difference between V and Q is
that the first action is fixed to be a for Q. Similarly to Lemma 2.1.16, we also get a lemma that
discribes the relation between the state value function and the state-action value function for a
fixed policy:

Proposition 2.4.4. Given a Markovian policy π = (πt)t∈≤T and a T -step Markov
decision problem. Then the following relation between the state and state-action
value function hold

V π
t (s) =

∑
a∈As

πt(a ; s)Qπ
t (s, a),

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

for all t < T . In particular, the Bellman expectation equations (backwards recur-
sions)

V π
t (s) =

∑
a∈A

πt(a ; s)
[
r(s, a) +

∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

]
,

Qπ
t (s, a) = r(s, a) +

∑
s′∈S

∑
a′∈As

p(s′ ; s, a)πt+1(a′ ; s′)Qπ
t+1(s′, a′)

hold for t < T .

Proof. Expressing Vt in terms of Qt is a matter of definition of Es, just as in the infinite horizon
case. For t < T we can use the Markov reward property of (S, A, R) and the formular of total
probability to derive the recursions. This is exactly the same as in the proof of Proposition
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2.1.15. Let’s add the proof for completeness. Recall from Proposition 2.1.13 4 that (S, A, R) is a
Markov reward process so that by (2.2)

Eπ
s,a

[
R1 + R2 + ... + RT −t−1

∣∣∣S1 = s′, A1 = a′
]

= Eπ̃
s′,a′

[
R0 + R1 + ... + RT −t−2

]
= Qπ

t+1(s′, a′).

Thus, using the formula of total probability,

Qπ
t (s, a)

= Eπ̃
s,a

[ T −t−1∑
i=0

Ri

]
= Eπ̃

s,a

[
R0
]

+ Eπ̃
s,a

[
R1 + R2... + RT −t−1

]
= r(s, a) +

∑
s′∈S,a′∈As

Eπ̃
s,a

[
R1 + R2 + ... + RT −t−1

∣∣∣S1 = s′, A1 = a′
]
Pπ̃

s,a(S1 = s′, A1 = a′)

= r(s, a) +
∑

s′∈S,a′∈As

Pπ̃
s,a

(
S1 = s′, A1 = a′)Qπ

t+1(s′, a′)

= r(s, a) +
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)π̃1(a′ ; s′)Qπ
t+1(s′, a′)

= r(s, a) +
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)πt+1(a′ ; s′)Qπ
t+1(s′, a′).

The equation for V follows directly by plugging-in V π
t (s) =

∑
a∈As

πt(a ; s)Qπ
t (s, a) twice:

V π
t (s) =

∑
a∈As

πt(a ; s)Qπ
t (s, a)

=
∑

a∈As

πt(a ; s)
(

r(s, a) +
∑
s′∈S

∑
a′∈As′

p(s′ ; s, a)πt+1(a′ ; s′)Qπ
t+1(s′, a′)

)
=
∑

a∈As

πt(a ; s)
(

r(s, a) +
∑
s′∈S

p(s′; s, a)V π
t+1(s′)

)
.

It is important to note that the system of equations is different from discounted MDP problems.
First, the discounting factor dissapears as γ = 1 and, secondly, the linear systems are actually
recursions that gradually simplify the system towards the terminal conditions Qπ

T ≡ 0, V π
T ≡ 0.

Or, reversed, starting with the zero-vector (resp. zero-matrix) a backward induction allows to
compute Vt and Qt recursively. There is no system of equations that needs to be solved!
Similarly to the discounted setting the optimal value functions are defined, now depending on
the remaining time-horizon:

Definition 2.4.5. For any t ≤ T and a given Markov decision problem

• the function V ∗
t : S → R that takes values

V ∗
t (s) := sup

π∈ΠT
t

V π
t (s), s ∈ S,

is called optimal time-state value function.

• the function Q∗
t : S ×A → R that takes values

Q∗
t (s, a) = sup

π∈ΠT
t

Qπ
t (s, a), s ∈ S, a ∈ A,

4at some point rewrite proposiiton for Markov policies, works equally
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is called optimal time-state-action value function.

• a policy π∗ that satisfies

V π
t (s) = V ∗

t (s), s ∈ S, t ≤ T,

is called optimal.

As for discounted MDPs the optimal value functions are the best value functions that are
theoretically achievable by a policy. It is far from obvious that there is an optimal policy. As in
the discounted setting we get the following relations

Lemma 2.4.6. The following holds for the optimal time-state value function and
the optimal time-state-action value function for any s ∈ S:

(i) V ∗
t (s) = maxa∈As

Q∗
t (s, a) for all t < T ,

(ii) Q∗
t (s, a) = r(s, a) +

∑
s′∈S p(s′ ; s, a)V ∗

t+1(s′) for all t < T

In particular, V ∗ and Q∗ satisfy the following Bellman optimality equations (back-
wards recursions):

V ∗
t (s) = max

a∈As

{
r(s, a) +

∑
s′∈S

p(s′; s, a)V ∗
t+1(s′)

}
, s ∈ S,

and

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s′, a′), s ∈ S, a ∈ As,

for all t < T .

Proof. The proof is the same as in the infinite setting. First write

V ∗
t (s) = sup

π
V π

t = sup
π

∑
a∈As

πt(a ; s)Qπ
t (s, a)

and then try to maximise the righthand side by playing greedy with respect to Q∗
t .

For discounted infinite time horizion problems we could now show that it is suifficent to consider
stationary greedy policies. The stationarity is in general not true for finite time horizon
MDPs. Consider for example the ice-vendor MDP and assume that we close our store in the
winter. Then the amount of ice cream we want to order dependents stronly on the time horizion
up to the closing date. It is clear that we would like to order with a different stategy if we can
sell the ice cream for 6 weeks rather than just for 1 week. Given this observation it is clear that
we can no longer restrict the set of policies to stationary policies and it follows also that we have
no fixpoint relation in the value function. We can formulate the following theorem:

Theorem 2.4.7. (Dynamic programming algorithm)
Suppose vt : S → R, t = 0, ..., T , is a sequence of vectors that fulfill the Bellman
optimality equations (backwards recursions)

vt(s) =
{

0 : t = T

maxa∈As

{
r(s, a) +

∑
s′∈S p(s′; s, a)vt+1(s′)

}
: t < T

,

then vt = V ∗
t for all t = 0, ..., T . Similarly, if qt : S × A → R, t = 0, ..., T , is

a sequence of vectors that fulfill the Bellman state-action optimality equations
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(backwards recursions)

qt(s, a) =
{

0 : t = T

r(s, a) +
∑

s′∈S p(s′; s, a) maxa′∈As′ qt+1(s′, a′) : t < t
,

then qt = Q∗
t for all t = 0, ..., T . Most importantly, an optimal (non-stationary)

policy is given by the greedy policy

πq
t (a ; s) =

{
1 : a = a∗

t (s)
0 : otherwise

, where aq
t (s) = arg max

a∈As

qt(s, a).

Proof. Suppose q solves the optimality recursion and πq is the greedy policy. By uniqueness q
equals Q∗. It remains to show V ∗ = V πq , then πq is optimal by definition. But this follows from
the previous lemma and the fact that q = Q∗. First for Q:

Q∗
t (s, a) = r(s, a) +

∑
s′∈S

p(s′; s, a) max
a′∈As′

Q∗
t+1(s′, a′)

= r(s, a) +
∑
s′∈S

p(s′; s, a)
∑

a′∈As

πq
t+1(a′ ; s′)Q∗

t+1(s′, a′).

This means that also the sequence of matrices Q∗ solves the Bellman expectation equation
for πq. Since the recursions have a unique solution it follows that Q∗

t = Qπq

t for all t ≤ T .
Finally, using the definition of the greedy policy and the relations V ∗

t (s) = maxa∈As Q∗
t (s, a)

and V π
t (s) =

∑
a∈As

πt(a ; s)Qπ
t (s, a) between V and Q gives

V ∗(s) = max
a∈As

Q∗(s, a) = max
a∈As

Qπq (s, a) =
∑

a∈As

πq(a ; s)Qπq (s, a) = V πq (s).

We have thus proved that V ∗
t = V

πq

t for all t ≤ T which shows that πq is optimal.

The key tool to solve finite time horizion MDPs follows from Theorem 2.4.7 and is called
backward induction. If the state-action space is not too large and we have access to the transition
probabilities, then the optimal control problem can be solved backwards iteration. Let us recall
the ice vendor example on finite time-horizon to get an idea why this is intuitive. In the last
timestep, there is no opportunity to sell any more ice cream, the summer season is over. In the
optimal situation we obviously have no more stock which corresponds to V ∗

T ≡ 0. Then we go
backwards in time step-by-step and consider what is optimal in every possible state. Suppose
one day is left. The recursion gives

Q∗
T −1(s, a) = r(s, a)︸ ︷︷ ︸

last days profit

+
∑
s′∈S

p(s′ ; s, a)V ∗
T (s′)︸ ︷︷ ︸

=0, no future to be considered

= r(s, a)

and the optimal policy becomes

π∗
T −1(s) = arg max

a∈As

r(s, a).

What does this mean? For the last step we need to chose the action that maximises the expected
reward without any thought about the future. No surprise! If the expectations are know, nothing
needs to be done. If not, this is nothing but the bandit problem! For the next time-step T − 2
the recursion gives

Q∗
T −2(s, a) = r(s, a)︸ ︷︷ ︸

todays profit

+
∑
s′∈S

p(s′ ; s, a) max
a′∈As′

Q∗
T −1(s′, a′)︸ ︷︷ ︸

next days profit if next day is played optimally
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and optimally the ice vendor orders/produces ice cream according to

π∗
T −2(s) = arg max

a∈As

Q∗
T −2(s, a).

If one could carry out explicitly the recursion till t = 0 the sequence (π∗
t )t=1,...,T is an optimal

time-dependent policy.

Finite-time control problems are similar to the stochastic bandits. If all quantities
are known explicitly the problem is essentially trivial, the optimal policy is obtained
by chosing largest Q-values and those can be computed without any effort. For
discounted infinite-time problems at least the non-linear equation T ∗Q = Q must
be solved which is not a trivial task. As for stochastic bandits the situation becomes
interesting once the Q-values cannot be computed explicitly but must be estimated
by interacting with the environment. This will be the subject of the next chapter.

5

2.4.2 Dynamic programming algorithms
In the context of fully available dynamics the dynamic programming algorithms are very simple
for finite MDPs. No equations must be solved, only recursion followed backwards must be
computed from the terminal condition. Theorem 2.4.7 immediately translates into a simple

Algorithm 12: Policy evaluation for finite-time MDPs
Data: MDP with finite time-horizon T , policy π ∈ ΠT

0
Result: V π

t and Qπ
t for all t = 0, . . . , T − 1

Set backward induction start V π
T ≡ 0

for t = T − 1, . . . , 0 do
for s ∈ S do

for a ∈ As do
Qπ

t (s, a) := r(s, a) +
∑
s′∈S

p(s′ ; s, a)V π
t+1(s′)

end

V π
t (s) :=

∑
a∈As

πt(a ; s)Qπ
t (s, a)

end
end

optimal control algorithm.

5Sara: Wuerfelbeispiel
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Algorithm 13: Optimal control for finite-time MDPs
Data: MDP with finite time-horizon T
Result: V ∗

t and Q∗
t for all t = 0, . . . , T and optimal policy π∗

Set induction beginning V ∗
T ≡ 0

for t = T − 1, . . . , 0 do
for s ∈ S do

for a ∈ As do
Q∗

t (s, a) := r(s, a) +
∑
s′∈S

p(s′ ; s, a)V ∗
t+1(s′)

end

V ∗
t (s) :=

∑
a∈A

π∗
t (a ; s)Q∗

t (s, a)

π∗
t := greedy(Q∗

t )

end
end



Chapter 3

Simulation based dynamic
programming methods

In this chapter we turn from stochastic control theory to reinforcement learning, sample based
algorithms to solve stochastic control problems without assuming explicit knowledge on the
environment dynamic described by p. To understand what this means let us discuss major
drawbacks of using Bellman equations that we try to overcome in this chapter:

• Dynamic programming algorithms are based on iterating Bellman operators the operators
must be known andaccessible. Most importantly, the transition function p must be known
explicity. In many situations this is not the case. This sounds weird, on first glance one
might think that there is no way to formulate Markov decision problems without knowing
the decision problem. Indeed, this is not the case. There might be a model (this is p)
underlying a decision problem but the learning agent has no access to the physical model.
For example one can play a computer game without knowing the transitions, one can drive
a car without knowing the outcome of a steering decision.

• There is theoretical access to all ingredients of the decision problem but state (and/or
action) space might be too big to be repeatadly usable, or even worse, too big to be stored
at all. The state space might also be too big to learn about all possible decisions, but
perhaps most states and actions are irrelevant.

In both cases there is no way to use standard dynamic programming algorithms such as value
or policy iteration, both algorithms need explicit knowledge of the transitions p and treat all
states/actions simultaneously. In this chapter we discuss approximation ideas that mostly deal
with the first problem, the second problem is attacked later in non-tabular RL by approximating
the decision problem by smaller decision problems.

Definition 3.0.1. An algorithm to learn optimal policies is called model-based
if the algorithm requires explicit knowledge on the Markov decision model. A
solution algorithm is called model-free if the algorithm only requires the ability
to sample all appearing random variables.

In the situation of stochastic bandits (MDPs with one time-step) all algorithms were model-free.
In fact, knowing all probabilities explicitliy allows to compute the action values Qa. Then one
only needs to compare the action values to find the best action.
In this chapter we develop simulation based dynamic programming algorithms for the tasks we
addressed with the dynamic programming algorithms based on Bellman’s equations:

• policy evaluation, i.e. estimate V π(s) for a given policy π,

• optimal control, solve the stochastic control problem (i.e. find the optimal V ∗, Q∗, π∗).

84
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The chapter is organised as follows. We start with a quick naive discussion on how to evaluate
policies using Monte Carlo. The approach is very inefficient but helps us to sort some ideas.
What turns out to be more efficient are stochastic versions of the Banach fixedpoint theorem,
so-called stochastic approximation algorithms.

3.1 A guiding example
We start the discussion with a guiding example that should provide some intuition why the
mathematical concepts introduced below are completely intuitive1. Suppose we have two high-way
navigation systems that are supposed to bring us back to Mannheim, say to Kreuz Mannheim.
Which one is better?

Temporal differences of 1, 2, and 3 steps

To formulate the problems the state space consists of autobahn drive-ups. The actions are
the possible decisions of the navigation systems. The MDP has a terminating state, Kreuz
Mannheim. The rewards are the times it takes to reach the next state. Since the terminal state
is reached sufficiently fast, a discounting faction 0.99 has not much effect (.9920 ≈ .82) so the
total discounted reward is a good approximation of the time it takes from state s (e.g. Berlin
Dreick Funkturm) to Kreuz Mannheim. To compare two navigation systems π and π′ we should
compute V π(s) and V π′(s) for all cities. There are two approaches that are natural.

• Drive the car repeatedly from every drive-up towards Mannheim and take the average
time of arrival as estimator for V (s). Well, only a Mathematician would suggest such a
stupid approach. The simple Monte Carlo approach does not reuse estimates that were
computed before. Looking at the visualisation this is clearly not clever, many trajectories
have common sections. Ideas that try to reuse samples for different estimates are called

1For a real-world example with Taxis on the streets of Pittsburgh (in a different context) see Ziebart, Maas,
Bagnell, Dey: "Maximum Entropy Inverse Reinforcement Learning", AAAI Conference on Artificial Intelligence,
2008
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bootstrapping. The simplest thought is to use the strong Markov property of an MDP
and also reuse the remaining time from all cities s′ on the way to estimate V (s′).

• Intuitively, as a human being we would proceed much smarter. Typically we have a good
feeling of the time it takes between two cities because we bootstrap a lot more information.
Whenever we drive any segment we remember times and intuitively use new information to
update all other information. Imagine we take the autobahn from Wolfsburg to Frankfurt
and observe a new construction site then we will automatically use the estimate for the time
from Wolfsburg to Frankfurt (this is called a temporal difference) to update the current
estimate of the time it takes from Berlin to Mannheim. In the Mathematics below we will
use temporal differences of different length, 1, n, but also infinitely many. Now think about
the idea, that’s what we do! Thinking practical, it’s easy to imagine how much information
can be extract from all trucks that constantly move around on the autobahn and yield
estimates for all kind of temporal differences.

This chapter consists of different approaches to turn such ideas into algorithms. Monte Carlo is
rather obvious, while temporal difference methods require a bit of Mathematics. In fact, it turns
out that temporal difference methods are random versions of the Bellman equation, justifying
their name simulation based (or sample based) dynamic programming methods.

There is a simple thougth from learning. If there are two unbiased estimates X̂ and
X̄, then αX̂ + (1−α)X̄ is also an unbiased estimate for all α ∈ (0, 1). That mixture
is hopefully better, e.g. it might have smaller variance. In reinforcement learing we
will see the same again and again. With α = n−1

n this already appeared in (1.3)
when updating the old estimate 1

n−1
∑n−1

k=1 Xi of E[X1] with a further sample Xn.
Now suppose you already have an estimate for the optimal Q-matrix Q∗ based on
a number of observations (si, ai, ri, s′

i). Assume there is an additional observation
(s, a, r, s′). Do you have an idea how you would improve your estimate of Q∗(s, a)?
If you have an idea that might likely be what we will later get to know under the
name Q-learning. Think about the example of the German highway system (or how
you would walk through Mannheim). You already have an idea of how to optimally
navigate and get a new observation (s, a, r, s′), you walk from one block to another
and record the time. Of course, you will not completely ignore your old knowledge
(if for instance there is a big traffic jam) but you want to keep that new information
(there can be a big traffic jam) into your estimate.

To be honest, this navigation system example is not very realistic. A navigation system developed
this way won’t be competitive as it does not incorporate live-data which we all know is crucial
and why google maps is as strong as it is. Nonetheless, the example captures the main ideas of
this chapter.

3.2 Monte Carlo policy evaluation and control
The aim of this short section is to get a glimps on what it means to use Monte Carlo for
policy evaluation without any further thoughts. Recall that policy evaluation is important to
know the value of a policy but also to perform generalised policy iteration (alternate between
policy evaluation and policy improvement). The value function are expectations by definition
expectations, thus, the most obvious model-free variant for policy evaluation is Monte Carlo
estimate with N indepent trajectories of the MDP.

Definition 3.2.1. A trajectory (St, At, Rt) of a Markov decision process is called
a rollout. If several rollouts are used they are indexed with a superscript.
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Here is the natural Monte carlo estimator of V π(s). If (Si
t , Ai

t, Ri
t) are independent rollouts of

the MDP started in s under policy π, then define

V̂ π(s) = 1
N

N∑
i=1

T∑
t=0

γtRi
t︸ ︷︷ ︸

=V̂ π
i

(s)

(3.1)

for some large T and N . This naive approach is extremely inefficient as rollouts (Si, Ai, Ri) of
the MDP are needed for all starting point s and initial action a. Nonetheless, the usual advantage
of Monte Carlo methods still holds, Monte Carlo methods are very robust. In the following we
discuss more clever ways to improve the sample efficiency of the Monte Carlo method.

Sample efficiency means that algorithms are supposed to use as few random
samples as possible. In the context of Monte Carlo this means to extract as much
information as possible from any rollout (S, A, R) of the Markov decision process.

3.2.1 First visit Monte Carlo policy evaluation
Before we proceed note that the time-truncation in the estimate of V π by (3.1) automatically
induces a bias (i.e. the expectation of the estimator V̂ π(s) is different from V π(s)). While there
might be no way around such a truncation in practice (we cannot simulate an infinite length
MDP) the problem does not occur in many situations. For examples most games do not run
forever but stop in a terminating state. In that case one might replace T by ∞ which in the case
of termination is equal to a finite sum up to the termination time.

Recall from (2.6) that for discounted MDPs it holds that V π(s) = Es[
∑T

t=0 Rt]
for an independent geometrically distributed random time-horizon. An unbiased
estimator is then given by

V̂ π(s) = 1
N

N∑
i=1

T i∑
t=0

Ri
t︸ ︷︷ ︸

=V̂ π
i

(s)

where the rollouts are independent and additionally the T i ∼ Geo(1 − γ) are
independent samples of the independent random time-horizon.

For some reason the unbiased estimator is not very common in computer science literature. People
prefer to truncate at some fixed time T (introducing bias) or assume the MDP is terminating.
Terminating MDP is also not a very reasonable assumption as termination depends strongly on
the policy and not only on the environment. For most non-trivial MDP one can chose a policy
that only alternates between states and will not terminate.
Here is the first simple boostrapping idea, relying on the strong Markov property of Markov
chains.

The strong Markov property of an MDP (every (reward) Markov chain is strong
Markov!) implies that restarted when first hitting a state s′ the process (S′

t, A′
t) :=

(STs′ +t, ATs′ +t) is an MDP with the same transitions but initial condition S′
0 = s′.

Hence, we can extract from only one rollout correlated estimates of V π for many
different starting points. Similarly, restarting at first visits of a given state-action
pair (s, a) it is possible to extract from one rollout correlated estimates of Qπ for
several different state-action pairs.
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The idea is easy to implement. Simulate a number of rollouts and for every rollout store the
future discounted reward if a state is visited for the first time. Next, for every state take the
average future discounted reward. For the latter recall from (1.3) a memory efficient way to
avoid storing all past rewards.

Algorithm 14: First visit Monte Carlo policy evaluation of V π

Data: Policy π ∈ ΠS , initial condition µ
Result: Approximation V ≈ V π

Initialize vectors V0 ≡ 0 and N ≡ 1
n = 0
while not converged do

n = n + 1
Sample T ∼ Geo(1− γ).
Sample s0 from µ.
Generate trajectory (s0, a0, r0, s1, ...) started in µ until time-horizon 2T using policy
π.

for t = 0, 1, 2, ..., T do
if st /∈ {s0, s1, ...st−1} then

v =
∑T +t

k=t rk

Vn(st) = 1
N(st) v + N(st)−1

N(st) Vn−1(st)
N(st) = N(st) + 1

end
else

Vn(st) = Vn−1(st)
end

end
return Vn

end

By the law of large numbers the first visit Monte Carlo algorithm converges almost surely to
the true value function (resp. state-action value function) if infinitely many updates can be
guaranteed. For every visit of a state s (resp. state-action pair (s, a)) the algorithm produces
a sample of the discounted total reward, thus, the law of large number implies convergence.
Of course we need to impose some stopping condition for the algorithm, but without stopping
condition almost sure convergence is satisfied as long as all states (resp. state-action pairs) are
visited infinitely often which is the case if all states (resp. state-action pairs) can be reached by
the state-action Markov chain.

Theorem 3.2.2. The first visit Monte Carlo algorithms satisfy the following
convergence properties for s ∈ S and a ∈ A:

• If N(s)→∞ almost surely, then Vn(s)→ V π(s) almost surely.

• If M(s, a)→∞ almost surely, then Qn(s, a)→ Qπ(s, a) almost surely.

Proof. Strong Markov property, law of large numbers.

How can we achieve the condition of the theorem? There is not much we can manipulate, only
the initial condition µ and the policy π:

• Chose an initial distribution µ (such as uniform) that puts mass on all states, this is called
exploring start.

• Chose a policy π′ that distributes mass more evenly on all possible actions than the target
policy π, this is called policy exploration.
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Algorithm 15: First visit Monte Carlo policy evaluation of Qπ

Data: Policy π ∈ ΠS , initial condition µ
Result: Approximation Q ≈ Qπ

Initialize matrices Q0 ≡ 0 and M ≡ 1
n = 0
while not converged do

n = n + 1
Sample T ∼ Geo(1− γ).
Sample s0 from µ
Generate trajectory (s0, a0, r0, s1, ...) started in µ until time-horizon 2T using policy
π.

for t = 0, 1, 2, ..., T do
if (st, at) /∈ {(s0, a0), (s1, a1), ...(st−1, at−1)} then

q =
∑T +t

k=t rk

Qn(st, at) = 1
M(st,at) q + M(st,at)−1

M(st,at) Qn−1(st, at)
M(st, at) = M(st, at) + 1

end
else

Qn(st, at) = Qn−1(st, at)
end

end
end

Comparing with stochastic bandits there is a similar exploration vs. exploitation trade-off for
first visit Monte Carlo, playing with µ and π has different advantages and disadvantages: Forcing
more exploration through µ and/or π improves the Monte Carlo convergence for states that are
less favorable under µ and/or π but downgrades convergence for states that are more favorable
under µ and π. Additionally, an error occurs as the Monte Carlo procedure estimates V π′ (resp.
Qπ′) instead of V π (resp. Qπ). Nonetheless, if the evaluation is used for a generalised policy
iteration scheme it might be favorable to estimate (explore) more carefully actions that are less
likely for the policy π that is currently believed to be best. As for bandits, in practice one will
first force more exploration by π and during the learning process decrease the exploration bonus.

There is another version of Monte Carlo that is used in practice but theoretically
much more problematic. Instead of updating at first visits of states, the discounted
future reward is taken as a sample of the discounted total reward for every visit of
every state. For samples obtained from the same rollout the sampled discounted
rewards are clearly strongly dependent, thus, not allowing the use of the law of
large numbers. If for instance one reward has an unreasonably large deviation from
the mean then the estimates of the total reward will be large for several estimates.
The corresponding (biased) algorithm is called every visit Monte Carlo.

3.2.2 Generalised policy iteration with first visit Monte Carlo estima-
tion

We have introduced an algorithm that can estimate the Q-values of a given policy only by
simulations. Thus, there is a natural model-free procedure to approximate an optimal policy π∗

by interacting with the environment (i.e. running the MDP for a given policy). The algorithm
would start with a policy π ∈ ΠS , estimate Q-values Q̂π by performing the first visit Monte
Carlo procedure and then improve the policy greedily by playing greedily from the matrix Q̂π.
Unfortunately, there is an exploration problem, the infinite visitation condition of the first visit
Monte Carlo theorem must not be satisfied. Suppose we start with a greedy policy with weights
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on suboptimal actions. The first visit algorithm will only estimate the suboptimal Q-values.
As in the stochastic bandit setting everything now depends on the initialisation of Q (which is
typically the zero matrix) in relation to the unknown distribution of rewards. If for instance the
rewards are all positive then the greedy update will again only play suboptimal actions. Just as
for stochastic bandits, in order to force more exploration one will exchange the greedy policy
update from policy iteration by ε-greedy policy update. Now there will be an error by replacing
the original policy but the algorithm might converge to something more reasonable. Since the

Algorithm 16: Monte Carlo generalised ε-greedy policy iteration
Data: initial policy π
Result: approximation of π∗

while not converged do
Policy evaluation: Obtain estimates Q̂π using first visit Monte Carlo.
Policy improvement: Obtain the ε-greedy policy πnew from Q̂π

Set π = πnew.
end
return π

algorithms is not very practical we leave open the question of convergence (in some sense) and
cost analysis (in some sense) for generalised policy iteration with ε-greedy policy update and
first visit Monte Carlos policy evaluation. Such a discussion should combine the advantage
in effort/precision of first visit Monte Carlo policy evaluation with exploitation with the error
committed by chosing ε-greedy policy update. As for bandits one should expect decreasing ε to
be advantegous.

Simulate generalised ε-greedy policy iteration with first visit Monte Carlo evalution
for some MDP example with different choices of ε, fixed or εn ↓ 0.

No doubt, other exploration strategies such as Boltzman exploration can be equally reasonable.
But to the best of our knowledge not much is known for theoretical results in generalised policy
iteration with with different exploration schemes2.

3.3 Stochastic fixed point iterations
In order to justify the convergence sample based dynamic programming algorithms we will use
arguments that are mostly due to John Tsitsiklis and coauthors. The idea of the following is
simple. Suppose we aim at solving the fixed point equation F (x) = x using Banachs fixed point
iteration but cannot compute F (x) exactly but only have stochastic approximations F̂ (x) (such
as Monte Carlo estimates of an expectation). Can we still perform Banachs fixed point iteration
x(n + 1) = ̂F (x(n)) and still obtain convergence to the unique fixed point of F? The answer
is generally no, the approximation errors are typically too large. Instead, the update scheme
x(n + 1) = (1− α(n))x(n) + α(n) ̂F (x(n)) can be proved to converge to x∗ if the approximation
errors are unbiased and small enough and the so-called step-sizes α decay with a certain rate.
Note that α ≡ 1 gives the Banach iteration with approximations, α ≡ 0 a constant sequence.
Both do not converge so the it its non-trivial how to chose α(n).

The theory discussed below is typically called stochastic approximation. Since we
will usually be interested in applying the theory to find fixed points we prefer to
speak of stochastic fixed point algorithms.

We will first discuss in the most simple settings the ideas of Robbins and Monro3 to find roots of
2Check here for some results: https://arxiv.org/pdf/1903.05926.pdf
3H. Robbins and S. Monro: A stochastic approximation method. The Annals of Mathematical Statistics,

22:400–407, 1951.
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functions that can only be evaluated with approximation errors and then turn towards general
stochastic fixed point iterations that we will later turn into sample based dynamic programming
algorithms to solve stochastic control problems in a model-free way.

We will now deal with simple algorithms that are able to find zeros/fixed points for given
functions. Since the theory goes back to Robbins and Monro in the 50s of the last century such
algorithms are called Robbins-Monro algorithms. The original Robbins-Monro algorithm adresses
the task to find zeros G(x) = 0 for very particular functions G. From lectures on numerical
analysis different algorithms (such as Newton’s method xn+1 = xn + G(xn)

G′(xn) ) might be known to
the reader. The situation that Robbins and Monro addressed is different in the sense that they
considered functions G for which there is no access to the true values G(x) but only to stochastic
approximations G̃(x) = G(x) + ε, where ε is a mean-zero error. The situation to keep in mind is
that of a function G that is defined as an expectation (such as V π(s) or Qπ(s, a)) that can be
approximated for instance by Monte Carlo. The most generic Robbins-Monro approximation
scheme is

xn+1 = xn − αnyn, (3.2)

where αn are so-called step-sizes specified below and yn are stochastic estimates of G(xn). In
contrast to the Newton approximation algorithm or other deterministic algorithm this algorithm
is stochastic, thus, justifying the name stochastic approximation. We start with the most basic
stochastic approximation theorem. The theorem will not be used for reinforcement learning but
it allows us to understand easily where the so-called Robbins-Monro conditions on the step-sizes
αn stem from.

Theorem 3.3.1. (Simplest Robbins-Monro algorithm)
Let (Ω,F , (Fn),P) be a filtered probability space on which all random variables
are defined. Suppose G : R→ R has a zero x∗ and satisfies G(x) ≥ κ(x− x∗) for
some κ > 0. Define recursively the stochastic process

xn+1 = xn − αn

(
G(Xn) + εn

)︸ ︷︷ ︸
=:yn

. (3.3)

Assume that there are deterministic step-sizes (αn) satisfying the so-called Robbins-
Monro conditions

∞∑
n=1

αn =∞ and
∞∑

n=1
α2

n <∞

and Fn+1-measurable errors that are conditionally unbiased, i.e. E[εn | Fn] = 0.
Furthermore suppose that E[y2

n] ≤ A + BE(xn − x∗)2. Then xn
L2

→ x∗ for n→∞,
where G(x∗) = 0.

Before proving the theorem and giving an instructive example let us discuss the assumptions.
The assumption on G implies that there can only be one zero. Every zero x̄ to the right of
x∗ forces x̄ = x∗. In a drawing the situation looks like the graph plotted in the figure. From
the drawing it is not surprising that the algorithm converges. If xn is to the right of x∗, then
(ignoring the error) the iteration will be pushed to the left as G(xn) is positive. Similarly, from
the left of a zero iteration will be pushed to the right as G(xn) is negative.
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Robbins-Monro assumption on G

There is a very natural class of examples. If G = F ′, then the assumption on G is implied by
what is called strong convexity of F . Strong convexity implies F ′(x)− F ′(y) ≥ κ(x− y) for all
x, y ∈ R. In that situation the theorem states convergence of the algorithm to a critical point
of F . The simple Robbins-Monro theorem is a first (simple) version of convergence in L2-sense
of stochastic gradient descent towards the unique critical point (global minimum) for strongly
convex functions. We will get to more refined results on stochastic gradient descent in later
chapters.
Next, let us think about the step-sizes. Please keep the following in mind, that choice is almost
always used.

The most important sequence satisfying the Robbins-Monro conditions is αn = 1
n .

Other obvious choices are αn = 1
np for all 1

2 < p ≤ 1.

The condition
∑∞

n=0 E[y2
n]α2

n <∞ is satisfied for instance if G is bounded and the errors have
bounded conditional second moments, a condition that will occur in all theorems below. If the
errors are independent of Fn, i.e. of the earlier recursion, than the error condition becomes
E[εn] = 0, the errors are unbiased.

Example 3.3.2. Here is the original setup of the Robbins-Monro paper. Suppose

G(x) = E[f(x, Y )]

for some random variable Y (and all expectations are finite). If we have access to f and samples
Ỹ of Y then we have access to stochastic approximations

yn := f(xn, Ỹ ) = G(x) + (f(xn, Ỹ )−G(xn))︸ ︷︷ ︸
εn

of G(x). Keeping in mind that reinforcement learning is about reward functions (expectations)
it might be little surprising that stochastic approximation is related to reinforcement learning.

Proof of simple Robbins-Monro. The proof is essentially the original proof of Robbins and Monro.
It mostly relies on a simple recursion result on positive sequences:

Suppose that zn is a positive sequence such that zn+1 ≤ (1 − an)zn + cn, where
an, cn are positive sequences satisfying

∞∑
n=1

an =∞ and
∞∑

n=1
cn <∞.

Then limn→∞ zn = 0.
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Define xn := zn +
∑n−1

k=0 akzk −
∑n−1

k=0 ck. Then it holds true that (xn){n∈N} is monotonically
decreasing:

xn+1 ≤ zn − anzn + cn +
n∑

k=0
akzk −

n∑
k=0

ck

= zn +
n−1∑
k=0

akzk −
n−1∑
k=0

ck

= xn

As xn ≥ −
∑n−1

k=0 ck > −∞, (xn){n∈N} converges. Moreover, since

0 ≤ zn = xn +
n−1∑
k=0

ck︸ ︷︷ ︸
converges for n→∞

−
n−1∑
k=0

akzk, (3.4)

it has to hold true that
∑∞

k=0 akzk <∞. By assumption,
∑∞

k=1 ak =∞ and hence, lim infn→∞ zn =
0. In order to obtain convergence to zero we still need to show that (zn) converges. For that
sake let us show that (zn) is Cauchy. Using the above representation of zn the Cauchy property
follows because the series of the right hand side converge:

|zn+1 − zn| ≤ |xn+1 − xn|+ |cn|+ |anzn| → 0, n→∞.

Thus, we proved lim infn→∞ zn = limn→∞ zn = 0.

A positive recursion for the L2-error.

Define zn = E[(xn − x∗)2] and dn = E[(xn − x∗)(G(xn)−G(x∗))]. Then simple algebra leads to

zn+1 = E
[
(xn+1 − xn + xn − x∗)2]

= E
[
(xn+1 − xn)2]+ 2E

[
(xn+1 − xn)(xn − x∗)

]
+ E

[
(xn − x∗)2]

= E
[
(αnyn)2]+ 2E

[
(−αnyn)(xn − x∗)

]
+ E

[
(xn − x∗)2]

= α2
nE
[
y2

n

]
− 2αn

(
E
[
G(xn)(xn − x∗)

]
+ E

[
εn(xn − x∗)

])
+ E

[
(xn − x∗)2]

≤ α2
n(A + Bzn)− 2αn

(
κE
[
(xn − x∗)2]+ E

[
E
[
εn | Fn

]
(xn − x∗)

])
+ E

[
(xn − x∗)2]

= α2
nen − 2αndn + zn.

Now the assumption on G implies that

dn ≥ κE[(xn − x∗)(xn − x∗)] = κzn,

so that in total we derived the positive recursion

zn+1 ≤ zn(1− 2αnκ) + α2
nen.

Hence, the claim follows from the first step and shows very clearly the origin of the summability
condition on the step sizes.

From the probabilistic point of view it is important to note that almost nothing (like independence,
adaptivity, etc.) was assumed on the stochastic approximations yn, the catch is the weak L2-
convergence mode. We will later see a version (with different assumptions on G) with almost
sure convergence that rely on the almost sure (super)martingale convergence theorem. In that
case much more needs to be assumed.
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Robbins-Monro type algorithms can equally be used to find roots of F (x) = a (use
G̃(x) = F (x)− a), the corresponding algorithm is

xn+1 = xn − αn(F (xn)− a + εn),

where y are again approximations of G(xn). Similarly, the algorithm can also be
used to find fixed points (use G(x) = F (x)− x), the corresponding algorithm is

xn+1 = xn − αn(F (xn)− xn + εn).

In fact, we will see below that for contractions F the assumptions on G of Robbins-
Monro are not met forcing us to switch a sign.

We finish the first discussion of the stochastic approximation algorithms with an important
example that shows that stochastic approximation can not expected to have good convergence
rate:

Example 3.3.3. The simplest example is the function G(x) = x−µ which surprisingly leads to
the law of large numbers. Suppose Z1, Z2, ... is an iid sequence with mean µ and finite variance
σ2 and G(xn) is approximated by xn − Zn+1. Chosing αn = 1

n+1 and Fn = σ(Z1, ..., Zn) the
Robbins-Monro iteration becomes

xn+1 = xn −
1

n + 1
(
G(xn) + εn

)
= xn + 1

n + 1
(
Zn+1 − xn

)
, x0 = 0,

with εn = µ − Zn+1. In fact, that recursion appeared before, compare (1.3). The solution is
simply xn = 1

n

∑n
k=1 Zk. Thus, if the conditions of Robbins-Monro hold, then the L2 convergence

to µ is nothing but the weak law of large numbers. Let us check the conditions of the theorem:

• G clearly satisfies the assumption.

• The assumed independence yields E[εn | Fn] = E[µ− Zn+1] = 0.

Keeping in mind that the convergence in the law of large numbers is very slow (order
√

n) the
example gives a first hint that stochastic approximation is a robust but slow algorithm.

We now continue with stochastic approximations of fixed points with the ultimative goal to derive
sample based approximations for the unique solution of T ∗Q = Q. This will be the celebrated
Q-learning algorithm. It was mentioned above that considering G(x) = F (x) − x one could
derive a stochastic approximation scheme

xn+1 = xn − αn(F (xn)− xn + εn) = (1− αn)xn − αn(F (xn) + εn), n ∈ N,

for the fixedpoint of F . Unfortunately, the convergence in L2-sense from the Robbins-Monro
algorithm will not be strong enough for our purposes, additionally a contraction must not
satisfy the assumptions of (a multivariate version) Robbins-Monro. Finally, we also want to
allow the step-sizes to be random. Quite a lot of work will be needed to prove a fairly general
stochastic fixed point theorem that is robust enough to be applied for several reinforcement
learning algorithms.
Before diving into the theorem let us introduce some further notation.

In order to distinguish one-dimension and multivariate approximation schemes we
write xn for one-dimensional schemes and x(n) for multivariate schemes, reserving
the superscript xi(n) for the ith coordinate of the nth iterate.

For the applications we are mostly interested in max-norm contractions (such as the Bellman
operators) but the theory can be carried out a bit more generally. For pseudo-contractions with
respect to weighted norms.
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Definition 3.3.4. For a vector ϑ ∈ Rd with strictly positive entries the weighted
maximum norm ∥ · ∥ϑ is defined as

∥x∥ϑ = max
i∈{1,...,d}

|xi|
ϑi

.

The most important special case is the constant vector ϑ = 1 which leads to the usual maximum
norm.

Definition 3.3.5. A function F : Rd → Rd is called a weighted maximum norm
pseudo-contraction if there exists a x∗ ∈ Rd, a vector ϑ with only positive entries
and a constant λ ∈ [0, 1) such that:

∥F (x)− x∗∥ϑ ≤ λ∥x− x∗∥ϑ, x ∈ Rd.

If F is a contraction with respect to ∥ · ∥ϑ than F is clearly also a pseudo-contraction with the
unique fixed point x∗ (replace x∗ = F (x∗)). In what follows we will analyse convergence of the
multivariate Robbins-Monro fixed point iteration

x1(n + 1) = (1− α1(n))x1(n) + α1(n)(F1(x(n)) + ε1(n))
. . . = · · ·

xd(n + 1) = (1− αd(n))xd(n) + αd(n)(F2(x(n)) + εd(n))

or, in short,

xi(n + 1) = (1− αi(n))xi(n) + αi(n)(Fi(x(n)) + εi(n)), (3.5)

where the subscript i refers to the dimension. In the light of the final remark of Section 3.1 the
algorithm can be interpreted as keeping the old estimate of x∗ with probaiblity (1−α) and using
a newly estimated F (xn) with probability α. For pseudo-contractions we will derive conditions
on the step-sizes and the error terms so that almost surely x(n)→ x∗ for n→∞.

Definition 3.3.6. A multivariate stochastic fixed point algorithm is called syn-
chroneous if α1(n) = ... = αd(n), i.e. all coordinates are updated equally in every
step. Otherwise the algorithm is called asynchroneous. The algorithm is called
totally asynchroneous if all except one step-size are zero, i.e. in every step only one
coordinate is updated.

The notion should be compared to the value iteration algorithms from Section 2.3.1. The
algorithms are often synchroneous but can also be run asynchroneously, compare the remark
towards the Gauss-Seidel method in the end of Section 2.3.1.
For didactic reasons we first discuss a theorem on fixed points of real-valued contractions. In a
way the theorem is an approximate version of Banachs fixedpoint iteration set up for situations
in which the contraction operator cannot be computed explictly but only with an error. The
theorem is not particularly interesting itself (do you know any interesting contraction on R?), but
it will become much more interesting when extended to Rd to prove convergence of reinforcement
learning algorithms.

Theorem 3.3.7. (Simple stochastic fixed point iteration on R)
Suppose (Ω,F ,P, (Fn)) is a filtered probability space on which all appearing random
variables are defined. Suppose that

• F : R→ R is a contraction,
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• εn are Fn+1-measurable with E[εn | Fn] = 0 and E[ε2
n | Fn] ≤ C for all n ∈ N,

• the random step-sizes αn ∈ [0, 1] are only (!) adapted with
∞∑

k=1
αk =∞ and

∞∑
k=1

α2
k <∞.

Then the stochastic process defined recursively through some F0-measurable initial
condition x(0) and the recursion

xn+1 = xn + αn

(
F (xn) + εn − xn

)
, n ∈ N,

converges almost surely to the unique fixed point x∗ of F .

Let us quickly motivate why we call the iterative scheme a stochastic fixed point iteration. For
known F a Banach’s fixed point iteration with approximated F looks like

xn+1 = F (xn) = xn + (F (xn)− xn) ≈ xn + (F (xn) + εn − xn).

Little surpisingly the scheme would not converge as the errors are not assumed to diminuish (only
unbiased) and the scheme would fluctuate around x∗ without converging. This is circumvented
by decreasing the update size using αn. Knowing other approximation schemes that find zeros
or fixed points of real-valued functions one might ask why the scheme is so simple. For instance,
there are no derivatives in the update scheme. The reason is the particulary simple class of
functions. Real-valued contractions are simple functions, the bisecting line can never be crossed
bottom-up, it must be crossed downwards (see the drawing).

contraction vs. non-contraction

Hence, if x > x∗, then F (x) is below the disecting line implying F (x) − x < 0. Similarly,
F (x)− x > 0 if x < x∗. Thus, the scheme is set up such that xn is pushed left if xn > x∗ and
pushed right if xn < x∗. This little graphic discussion shows why fixed points of contractions
(even in the approximate case) can be obtained using very simple approximation schemes that
do not involve anything but (approximate) evaluations of the function.
As mentioned earlier we will not prove Theorem 3.3.7, the assumption on the errors is too strong
for our purposes in reinforcement learning. Here is the main theorem of this section:

Theorem 3.3.8. (Stochastic fixed point iteration for contractions on Rd)
Suppose (Ω,F ,P, (Fn)) is a filtered probability space on which all appearing random
variables are defined. Let (x(n)) be the sequence generated by the recursion

xi(n + 1) = (1− αi(n))xi(n) + αi(n)((F n
i (x(n)) + εi(n) + bi(n)), n ∈ N. (3.6)

Let us pose the following assumptions:
• (F n) all map Rd into itself, are pseudo-contractions for the same || · ||ϑ norm
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with the same x∗ and λ ∈ [0, 1), i.e.

∥F n(x)− x∗∥ϑ ≤ λ∥x− x∗∥ϑ, n ∈ N.

• The non-negative stepsizes αi(n) are Fn-adapted and satisfy almost surely
∞∑

k=0
αi(k) =∞ and

∞∑
k=0

α2
i (k) <∞

for all coordinates i = 1, ..., d.

• The errors εi(n) satisfy the following conditions:

– εi(n) is Fn+1-measurable,
– E[εi(n)|Fn] = 0,
– the conditional second moments satisfy

E[ε2
i (n) | Fn] ≤ A + B∥x(n)∥2

ϑ

for all coordinates i = 1, ..., d and some constants A, B ≥ 0.

• There exists a non-negative sequence of random variables (ωn) that converges
to zero almost surely such that the following holds

|bi(n)| ≤ ωn(∥x(n)∥ϑ + 1), n ∈ N,

for all coordinates i = 1, ..., d.

Then limn→∞ x(n) = x∗ almost surely.

The theorem has plenty of assumptions. To get an overview let us check how to get back the
simpler version from Theorem 3.3.7:

• d = 1,

• b ≡ 0,

• Fn = F for all n, F is even a proper contraction,

• B = 0.

To make this section not even more horrible the proof is collected in the next section.

3.4 Proof of the general stochastic fixed point iteration
The proof is long but actually not too hard to follow if the main idea is understood. To keep it
simple suppose d = 1 and F (x) = λx for some λ ∈ (0, 1). The fixed point is x∗ = 0. Then the
recursion simplifies to

xn+1 = (1− αn)xn + αn

(
λxn + εn

)
= (1− ᾱn)xn + ᾱnε̄n

with ᾱn = (1− λ)αn and ε̄n = (1− λ)−1εn. This recursion is much simpler and we are going to
use the supermartingale convergence theorem to prove it converges almost surely to 0 (Lemma
3.4.4 as an application of the Robbins-Siegmund theorem). The main proof of the theorem
compares the multivariate recursion to this simple recursion. There are a couple of things that
make everything messy. We need to deal with the different dimensions, use the growth conditions
on F and the bias b, and then carefully compare with the simple recursions. The arguments are
given in two steps. We first prove boundedness and then the convergence to the fixed point.
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3.4.1 Proof of boundedness of the approximating sequence

Theorem 3.4.1. Suppose (Ω,F ,P, (Fn)) is a filtered probability space on which
all appearing random variables are defined. Let (x(n)) be the sequence generated
by the recursion in Theorem 3.3.8. The assumptions for b(n), α(n), and ε(n) are
as in Theorem 3.3.8, for all F n we only assume the linear growth condition

∥F n(x)∥ϑ ≤ λ∥x∥ϑ + D

for some λ ∈ (0, 1) and D ∈ R. Then the sequence (xn) is bounded almost surely.

From Analysis we know that contractions (Lipschitz continuous functions) grow at most linearly.
To recall and slightly extend to pseudo-contractions let us recall the short computation (triangle
inequality):

∥F n(x)∥ϑ = ∥F n(x))− x∗ + x∗∥ϑ

≤ ∥F n(x)− x∗∥ϑ + ∥x∗∥ϑ

≤ λ∥x− x∗∥ϑ + ∥x∗∥ϑ

≤ λ∥x∥ϑ + (1 + λ)∥x∗∥ϑ︸ ︷︷ ︸
=:D

Thus, the assumptions of Theorem 3.4.1 are more general, the theorem will imply boundedness
of the stochastic approximation scheme under the conditions of Theorem 3.3.8.
The proof of the theorem requires some foundations from stochastic recursions that we first
collect.

Theorem 3.4.2. (Robbins-Siegmund Theorem)
Let (Ω,F , (Fn),P) be a filtered probability space, (Zn), (An), (Bn) and (Cn) be
non-negative and adapted stochastic processes, such that

∞∑
k=0

Ak <∞ and
∞∑

k=0
Bk <∞

almost surely. Moreover, suppose

E[Zn+1 | Fn] ≤ Zn(1 + An) + Bn − Cn, n ∈ N.

Then

• there exists an almost surely finite random variable Z∞ such that
limn→∞ Zn = Z∞ almost surely,

• it holds that
∑∞

k=0 Ck <∞ almost surely.

Proof. The proof4 is a nice application of Doob’s almost sure martingale convergence theorem.
Therefore, we are going to construct a supermartingale based on the stated stochastic processes.

Construction of a supermartingale (Mn).

We define the auxiliary random variables

Ẑn = Zn∏n−1
k=0(1 + Ak)

, B̂n = Bn∏n
k=0(1 + Ak) , Ĉn = Cn∏n

k=0(1 + Ak)
4H. Robbins and D. Siegmund. „A convergence theorem for non-negative almost supermartingales and some

applications“, Optimizing methods in statistics, pages 233-257, Elsevier, 1971.
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and observe that

E[Ẑn+1 | Fn] =
( n−1∏

k=0
(1 + Ak)−1

)
E[Zn+1 | Fn]

=
( n−1∏

k=0
(1 + Ak)−1

)(
Zn(1 + An) + Bn − Cn

)
= Ẑn + B̂n − Ĉn.

(3.7)

Our candidate for the supermartingale is

Mn = Ẑn −
n−1∑
k=0

(B̂k − Ĉk), n ∈ N.

The supermartingale property can be checked readily:

E[Mn+1 | Fn] = E[Ẑn+1 | Fn]−
n∑

k=0

(
E[B̂k | Fn]− E[Ĉk | Fn]

)
≤ Ẑn + B̂n − Ĉn −

n∑
k=0

(B̂k − Ĉk)

= Ẑn −
n−1∑
k=0

(B̂k − Ĉk) = Mn,

where we have used (3.7) and that B̂k, Ĉk are Fn-measurable for k ≤ n. In order to apply
Doob’s martingale convergence theorem, we need to verify supn∈N E[M−

n ] <∞. Since in general,
it is not obvious that this property will hold, we introduce a localization.

Localization: We define the stopping time τε = inf{n ≥ 1 :
∑n

k=0 B̂k > ε}
for ε > 0 and show that there exists an integrable random variable Mε

∞ with
limn→∞ Mn∧τε = Mε

∞ almost surely.

Since (Bn) is adapted, τε is a stopping time with respect to the filtration. Moreover, (Mn∧τε
) is

still a supermartingale, and additionally satisfies, using the non-negativity assumptions,

Mn∧τε = Ẑn∧τε
−

n∧τε−1∑
k=0

B̂k +
n∧τε−1∑

k=0
Ĉk ≥ −

n∧τε−1∑
k=0

B̂k ≥ −ε,

since
∑n∧τε−1

k=0 B̂k ≤ ε by construction of the stopping time τε. Since (Mn∧τε
)k∈N is uniformly

bounded from below (and due to the monotonic decrease of the expectation for supermartingales)
we obtain

sup
n∈N

E[|Mn∧τε |] <∞.

We are now ready to apply Doobs Martingale convergence theorem to find an integrable random
variable Mε

∞ with limn→∞ Mn∧τε = Mε
∞ almost surely. Next, we have to remove the stopping

time.

Remove localization: Show that limn→∞ Mn <∞ almost surely.

Let (εk) an increasing sequence with limk→∞ εk =∞. First note that, for each k ∈ N, we have

lim
n→∞

Mn∧τεk
(ω) = Mεk

∞ (ω)
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for almost all ω ∈ Ω. We observe that for each ω ∈ Ω with
∑∞

k=0 B̂k(ω) <∞ there exists some
N ∈ N such that ω ∈ {τεN

=∞}, i.e. for this ω it holds that

Mn∧τεN
(ω) = Mn(ω)

for all n ∈ N, but similarly

lim
n→∞

Mn(ω) = lim
n→∞

Mn∧τεN
(ω) = MτN

∞ (ω) <∞,

where the last inequality holds since E[|MτN
∞ |] <∞.

Conclusion of the argument

Finally, we move back to the assertion regarding (Zn) and (Cn). Observe that almost surely

−∞ < −
∞∑

k=0
B̂k ≤ lim

n→∞

(
Ẑn −

n−1∑
k=0

(B̂k − Ĉk)
)

= lim
n→∞

Mn < +∞

because B̂i ≤ Bi and
∑∞

k=0 Bk <∞ almost surely by assumption. The non-negativity assumption
and convergence of

∑∞
k=0 Bk then imply almost sure existence of limn→∞ Ẑn and

∑∞
k=0 Ĉk.

Moreover, it holds true that

Zn = Ẑn ·
n−1∏
k=0

(1 + Ak),

where both Ẑn and
∏n−1

k=0(1 + Ak) converge almost surely. The latter one follows by monotonicity
and

n−1∏
k=0

(1 + Ak) ≤ exp
( n−1∑

k=0
Ak

)
,

where the upper bound converges (is bounded) by assumption. Here we used the simple estimate
1 + x ≤ exp(x). Therefore, limn→∞ Zn exists almost surely. Similarly, we have

n∑
k=0

Ck =
n∑

k=0
Ĉk ·

k∏
j=0

(1 + Aj) ≤
( ∞∏

j=0
(1 + Aj)

) n∑
k=0

Ĉk

which implies
∑∞

k=0 Ck <∞ almost surely.

Next we will show a useful extension of Robbins-Siegmund theorem.

Corollary 3.4.3. Suppose (Ω,F ,P, (Fn)) is a filtered probability space carrying
a non-negative adapted stochastic process (Zn). If

E[Zn+1 | Fn] ≤ (1− an + bn)Zn + cn, n ∈ N, (3.8)

for some non-negative adaptive stochastic processes (an), (bn), and (cn) such that
almost surely

∞∑
k=1

ak =∞,

∞∑
k=1

bk <∞, and
∞∑

k=1
ck <∞.

Then limn→∞ Zn = 0 almost surely.

Proof. Define An = bn, Bn = cn and Cn = Znan. Then,

E[Zn+1 | Fn] ≤ (1 + An)Zn + Bn − Cn, n ∈ N,
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with
∞∑

k=0
Ak <∞ and

∞∑
k=0

Bk <∞.

The Robbins-Siegmund theorem implies almost sure existence of limn→∞ Zn and that
∑∞

k=0 Zkak <
∞ almost surely. The assumed divergence

∑∞
k=0 ak = ∞ implies that limn→∞ Zn = 0 almost

surely.

Lemma 3.4.4. Suppose (Ω,F ,P, (Fn)) is a filtered probability space carrying all
appearing random variables. Suppose

• εn are Fn+1-measurable random variables with E[εn | Fn] = 0 and there is
a pathwise bounded adapted process (Dn) such that E[ε2

n | Fn] ≤ Dn for all
n ∈ N,

• αn ∈ [0, 1] are Fn-measurable random variables, called step-sizes, satisfying
∞∑

k=1
αk =∞ and

∞∑
k=1

α2
k <∞

almost surely.

Then the stochastic process W defined by some F0-measurable initial condition
W (0) and the recursion

Wn+1 =
(
1− αn

)
Wn + αnεn, n ∈ N,

converges to 0 almost surely.

To get a feeling just suppose the errors are iid standard Gaussians. If the αn are essentially 0 then
the sequence is essentially constant while the other extreme of αn essentially 1 leads to a sequence
of independent standard Gaussians. Both do not converge to 0. The right Robbins-Monro
balance for αn allows the error terms to pull the sequence towards the mean of the error which
is zero.

Proof. We are going to apply the corollary to the Robbins-Siegmund theorem to the sequence
W 2. For that sake let us derive the needed inequality:

E
[
W 2

n+1
∣∣Fn

]
= E

[
(1− αn)2W 2

n + α2
nε2

n + 2αn(1− αn)Wnεn

∣∣Fn

]
= (1− 2αn + α2

n)W 2
n + E

[
α2

nε2
n

∣∣Fn

]
+ 2αn(1− αn)WnE

[
εn

∣∣Fn

]
≤ (1− an + bn)W 2

n + cn,

with an = 2αn, bn = α2
n, and cn = α2

nD2
n. Now the claim follows from the Robbins-Siegmund

corollary.

After these foundations we can now start with the main proof. First of all, let us get rid of the
weighted norms by showing that without loss of generality equal weights can be used, i.e. ϑ = 1.
Transforming space by

x̃i := xi

ϑi
, F̃ n

i (x) := Ft(ϑix)
ϑi

, b̃i := bi

ϑi
, and ε̃i(n) := εi(n)

ϑi
.

It follows immediately that (x̃(n)) solves the same recursion as (x(n)) but now with respect to
F̃ and ε̃. Since the maximum norm of the transformed values equaly the weighted norm before
the transformation, the conditions of the theorems hold with ϑ = 1, e.g.

∥F̃n(x̃)∥∞ = ∥Fn(x(n))∥ϑ ≤ λ∥x(n)∥ϑ + D = λ∥x̃(n)∥∞ + D.
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From now on we will assume ϑ = 1, i.e. we will work with || · ||∞ instead of || · ||ϑ.

Let us now start with the proof with a tedious choice of constants Gn. Instead of them carefully
we could also choose the constants arbitrarily but would get less clean bounds for x, F, and b
which would result in a much more nasty computation in the forth step.

There is an increasing adapted process (Gn) such that ||x(n)||∞ ≤ (1 + ε)Gn for
some ε > 0 and ∥F n(x(n))∥∞ + ωn(∥x(n)∥∞ + 1) ≤ Gn.

Let λ and D be the constants from the theorem. Choose G ≥ 1 such that λG + D < G, for
example G := max{D+1

1−λ , 1}. Next, choose η ∈ [0, 1) such that λG + D = ηG. As D > 0 this
implies λ < η. Finally, let us choose ε > 0 such that (1 + ε)η = 1.
We will next define a recursive (random) sequence Gn. We set G0 = max{∥x(0)∥∞, G} and
define inductively

Gn+1 =
{

Gn : ∥x(n + 1)∥∞ ≤ (1 + ε)Gn

G0(1 + ε)κ : ∥x(n + 1)∥∞ > (1 + ε)Gn,
,

where κ is chosen such that G0(1 + ε)κ−1 < ∥x(n + 1)∥∞ ≤ G0(1 + ε)κ. As ∥ · ∥∞ is a continuous
map, ∥x(n)∥∞ is Fn-measurable. Gn is determined only by ∥x(n)∥∞ and operations that preserve
measurability such as checking order, taking the max or multiplying a constant. Thus, the
stochastic process (Gn) is adapted with respect to the given filtration. Furthermore, the sequence
is non-decreasing and satisfies by construction

∥x(n)∥∞ ≤ (1 + ε)Gn (3.9)

as well as

∥x(n)∥∞ ≤ Gn if Gn−1 < Gn. (3.10)

Next, since λ < η we also have λε + η < ηε + η = 1. Thus, we can choose ω∗ > 0 such that

λε + η + ω∗(2 + ε) ≤ 1. (3.11)

By assumption the sequence (ωn) converges to zero, hence, there is a n∗ ∈ N0 such that ωn ≤ ω∗

for all n ≥ n∗. We will now use this groundwork and prove

∥F n(x(n))∥∞ + ωn(∥x(n)∥∞ + 1) ≤ Gn, ∀n ≥ n∗. (3.12)

Using the linear growth assumption, (3.9), the definition of η, and the fact that Gn ≥ G for all
n ∈ N we obtain

∥F n(x(n))∥∞ ≤ λ∥x(n)∥∞ + D

≤ λ(1 + ε)Gn + D

= λ(1 + ε)Gn + (η − λ)G
≤ λ(1 + ε)Gn + (η − λ)Gn

= (λ(1 + ε) + (η − λ))Gn = (λε + η)Gn.

Applying this inequality, the definition of n∗, again (3.9), Gn ≥ 1, and (3.11) we get, for n ≥ n∗,

∥F n(x(n))∥∞ + ωn(∥x(n)∥∞ + 1) ≤ (λε + η)Gn + ω∗((1 + ε)Gn + 1)
≤ (λε + η)Gn + ω∗((2 + ε)Gn)
= (λε + η + ω∗(2 + ε))Gn

≤ Gn.

That’s it. It is important to note that not much happened, we only wrote down a possibly
increasing sequence of boxes in which the solutions stays. This only becomes interesting if we
can show that the Gn ultimately stop growing! This is what we do in the next steps.
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Reduction to bounded second moment errors.

As a next step, we will rescale the noise terms to control the conditional second moments. This
will later allow us to apply Lemma 3.4.4. For this purpose set

ε̃i(n) = εi(n)
Gn

, n ∈ N, i = 1, ..., d.

The assumptions on ε and the measurability of Gn yield

E[ε̃i(n) | Fn] = E[εi(n) | Fn]
Gn

= 0

and

E
[
ε̃2

i (n)
∣∣Fn

]
=

E
[
ε2

i (n)
∣∣Fn

]
G2

n

≤ A + B∥x(n)∥2
∞

G2
n

≤ A + B(1 + ε)2G2
n

G2
n

= A

G2
n

+ B(1 + ε)2

Note that, because Gn is a non-decreasing process and Gn ≥ 1 by construction, the right hand
side is almost surely bounded.
Next, a multivariate version of Lemma 3.4.4 is needed:

For a given coordinate i ∈ {1, ..., n} and n0 ∈ N, we recursively define the stochastic
process (W̃i(n : n0))n≥n0 as follows. The recursion is started in W̃i(n0 : n0) = 0
and for all n ≥ n0 as

W̃i(n + 1 : n0) = (1− αi(n))W̃i(n : n0) + αi(n)ε̃i(n).

Then, for all δ > 0, there exists some n0 ∈ N such that almost surely it holds that
|W̃i(n : n0)| ≤ δ for all n ≥ n0 and i = 1, ..., d.

The process (W̃i(n : 0)) satisfies the step-size assumption of Lemma 3.4.4, as it is the step-size
assumption of the theorem. The error term assumptions also hold, this was justified in the
previous step. Thus, Lemma 3.4.4 implies the almost sure convergence

lim
n→∞

W̃i(n : 0) = 0.

Now we use that all iterations were constructed from the same random variables (the error
terms), this is called a coupling argument in probability theory. For every s < n we can exploit
the update and the fact that W̃i(k : k) = 0 to write inductively

W̃i(n : 0)
= (1− αi(n− 1))W̃i(n− 1 : 0) + αi(n− 1)ε̃i(n− 1)

= (1− αi(n− 1))W̃i(n− 1 : 0) + (1− αi(n− 1)) ·
=0︷ ︸︸ ︷

W̃i(n− 1 : n− 1) +αi(n− 1)ε̃i(n− 1)
= (1− αi(n− 1))W̃i(n− 1 : 0) + W̃i(n : n− 1)
= (1− αi(n− 1))W̃i(n− 1 : 0) + W̃i(n : n− 1).

Plugging-in again yields equality to( n−1∏
k=n

(1− αi(k − 2))
)

W̃i(n− 2 : 0) + (1− αi(n− 1))W̃i(n− 1 : n− 2)

+

W̃i(n:n−1)︷ ︸︸ ︷
(1− αi(n− 1))W̃i(n− 1 : n− 1)︸ ︷︷ ︸

=0

+αi(n− 1)εi(n− 1)

=
( n−1∏

k=n−2
(1− αi(k))

)
W̃i(s : 0) + W̃i(n : n− 2).
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Iterating gives

W̃i(n : 0) =
( n−1∏

k=s

(1− αi(k))
)

W̃i(s : 0) + W̃i(n : s)

for all s < n. As the stepsizes are ≤ 1 by assumption the product in the equation is also bounded
by 1, hence,

|W̃i(n : s)| ≤ |W̃i(n : 0)|+ |W̃i(s : 0)|.

Due to the convergence discussed above we find for every δ > 0 some n0 ∈ N0 with |W̃i(n : 0)| ≤ δ
2

for all n ≥ n0 and all i = 1, ..., d. This and the above inequality yield the claim from this step.
We now come to the main argument, comparing the multivariate sequence (x(n)) to the multi-
variate version W̃ of the simple recursion from Lemma 3.4.4.

Suppose n0 ∈ N is such that, for some ε > 0,

• ∥x(n0)∥∞ ≤ Gn0 ,

• ||W̃ (n : n0)||∞ ≤ ε, ∀n ≥ n0,

• ωn ≤ ω∗, ∀n ≥ n0.

Then we have Gn = Gn0 for all n ≥ n0 and

−Gn0(1 + ε) ≤ −Gn0 + W̃i(n : n0)Gn0

≤ xi(n)
≤ Gn0 + W̃i(n : n0)Gn0

≤ Gn0(1 + ε).

We give a proof by induction over n:
Induction start: For n = n0 the desired equality obviously holds. Furthermore, because
∥x(n0)∥∞ ≤ Gn0 by the first assumption, W̃i(n0 : n0) = 0, and ε > 0 the desired inequalities
also hold.
Induction step: Let us assume the claims hold for fixed but arbitrary n ≥ n0. Then, using the
recursion and the induction hypothesis, the assumptions on the noise terms, (3.12) and the third
assumption yield

xi(n + 1) = (1− αi(n))xi(n) + αi(n)F n
i (x(n)) + αi(n)εi(n) + αi(n)bi(n)

≤ (1− αi(n))(Gn0 + W̃i(n : n0)Gn0) + αi(n)F n
i (x(n)) + αi(n)ε̃i(n)Gn0

+ αi(n)ωn(∥x(n)∥∞ + 1)
≤ (1− αi(n))(Gn0 + W̃i(n : n0)Gn0) + αi(n)Gn0 + αi(n)ε̃i(n)Gn0

= Gn0 + ((1− αi(n))W̃i(n : n0) + αi(n)ε̃i(n))Gn0

= Gn0 + W̃i(n + 1 : n0)Gn0 .

A symmetrical argument gives −Gn0 + W̃i(n + 1 : n0)Gn0 ≤ xi(n + 1). Now, using the second
assumption we get |xi(n + 1)| ≤ Gn0(1 + ε). As ε > 0 was chosen arbitrarily, we conclude
Gn+1 = Gn0 as desired. This finishes the inductive proof.

Last step. Proof of boundedness.

We come to the end of the proof, where we tie the different results together to show the
boundedness. The formal argument is by contradiction. For this purpose, let us assume the
sequence (x(n)) is unbounded with positive probability. Then (3.9) implies that the sequence
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(Gn) diverges to infinity. Because of this, (3.10) implies that the relation ∥x(n)∥∞ ≤ Gn holds
for infinitely many values of n. Now, we can apply one of the previous steps and get that for an
arbitrary ε > 0 there is some large enough n0 such that

• ∥x(n0)∥∞ ≤ Gn0 ,

• ||W̃ (n : n0)||∞ ≤ ε, ∀n ≥ n0.

Furthermore, as there are infinitely many n with ∥x(n)∥∞ ≤ Gn, we can choose the n0 large
enough, such that we also have

ωn ≤ ω∗, ∀n ≥ n0.

But these are exactly the assumptions of the previous step which then yields a contradiction to
the assumed unboundedness.

3.4.2 Proof of convergence
We are now in a position to prove Theorem 3.3.8. As in the previous section we may restrict
ourselfes to the maximum norm.

Without loss of generality we can assume that F n(x∗) = x∗ = 0.

This can be seen by defining F̃ n(·) = F n(· + x∗) − x∗. It follows readily that F̃ n are pseudo-
contractions again:

∥F̃ n(x)− 0∥∞ = ∥F n(x + x∗)− x∗∥∞ ≤ λ∥x + x∗ − x∗∥∞ = λ||x− 0||∞

Now suppose (x̃n) is the recursion obtained form F̃ n and it is proved that (x̃n) converges to 0.
Adding x∗ to both side of the recursion shows that (x̃n + x∗) solves the same recursion as (xn)
for F . Thus, convergence of (x̃n) to 0 shows convergence of (xn) to x∗.

Preparations

Using the almost sure boundedness we can find a (random) D0 > 0 such that ∥x(n)∥∞ ≤ D0 for
all n ∈ N. For an arbitrary ε > 0 with λ + 2ε < 1 we recursively define the sequence

Dk+1 = (λ + 2ε)Dk, k ∈ N.

This sequence clearly converges to zero. As in the previous proof (simpler here as the normalisation
by Gn is not needed) define for n ≥ n0

Wi(n + 1 : n0) = (1− αi(n))Wi(n : n0) + αi(n)εi(n), Wi(n0, n0) = 0.

Since ||xn||∞ ≤ D0 the assumption on ε imply that E[ε2
n | Fn] is path-wise bounded. Thus,

Lemma 3.4.4 implies that (W (n : n0) converges to zero almost surely for all n0 ∈ N.

Outer induction in the parameter k. There exists an increasing sequence (nk) such
that ∥x(n)∥ ≤ Dk for all n ≥ nk.

Induction start: We already know that ∥x(n)∥∞ ≤ D0 so we can choose n0 = 0.
Induction step: We assume ∥x(n)∥∞ ≤ Dk for all n ≥ nk. Recalling the assumption on b and
the induction hypothesis shows that

|bi(n)| ≤ ωn(∥x(n)∥∞ + 1) ≤ ωn(Dk + 1), n ≥ nk.

As we assumed (ωn) to converge to zero this trivially yields the convergence to zero of the bias
terms (b(n)). We can thus find for an arbitrary ε > 0 a τk ≥ nk such that ||b(n)||∞ ≤ εDk for
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all n ≥ τk. We use this costruction to define a further stochastic process (Yn)n≥τk
for n ≥ τk by

the recursion

Yi(n + 1) = (1− αi(n))Yi(n) + αi(n)(λ + ε)Dk, Yi(τk) = Dk.

This simple process converges almost surely to (λ + ε) as can be seen as follows. Define
Vi(n) = Yi(n)− (λ + ε)Dk, then

Vi(n + 1) = Yi(n + 1)− (λ + ε)Dk

= (1− α(n))Yi(n) + α(n)(λ + ε)Dk − (λ + ε)Dk

= (1− α(n))Yi(n)− (1− α(n))(λ + ε)DK

= (1− α(n))Vi(n),

which converges to zero almost surely (by direct iteration or Lemma 3.4.4). In order to verify
the outer induction the sequence (xn) will be sandwiched between (Wn) and (Yn):

Inner induction for k fixed. The following holds for all n ≥ τk:

−Yi(n) + Wi(n : τk) ≤ xi(n) ≤ Yi(n) + Wi(n : τk) (3.13)

We prove the claim by induction over n ≥ nk.
Induction start: Since Yi(τk) = Dk and Wi(τk : τk) = 0 the inequality simplifies to |xi(n)| ≤ Dk

in the case n = τk but this holds due to the outer induction assumption as τk ≥ nk.
Induction step: Suppose the inequalities hold for some n > τk. Recall that x∗ = 0 was
assumed without loss of generality. Thus, |F n

i (x(n))| ≤ λ∥x(n)∥∞ ≤ λDk. We will only show
the inequality on the righthand side in the following induction step as the one on the left can be
derived using a symmetrical argument. Using the update rule, the induction hypothesis, and the
definitions of the involved processes gives

xi(n + 1) ≤ (1− αi(n))(Yi(n) + Wi(n : τk)) + αi(n)F n
i (x(n)) + αi(n)εi(n) + αi(n)bi(n)

≤ (1− αi(n))(Yi(n) + Wi(n : τk)) + αi(n)λDk + αi(n)εi(n) + αiεDk

=
(
(1− αi(n))Yi(n) + αi(n)λDk + αi(n)εDk

)
+ ((1− αi(n))Wi(n : τk) + αi(n)εi(n))

= Yi(n + 1) + Wi(n + 1 : τk).

This completes the inductive step and the inequality (3.13) is proved for all n ≥ τk.

Using the sandwich to prove convergence.

The outer induction can now be finished by combining the convergence properties of Y and
W . Since W converges to zero and Yi to (λ + ε)Dk there is some nk+1 large enough so that
||x(n)||∞ ≤ (λ + 2ε)Dk = Dk+1 for all n ≥ nk+1.
Finally, the theorem follows directly from the outer induction. The outer induction implies
lim supn→∞ ∥x(n)||∞ ≤ Dk for arbitrary k. Since Dk vanishes it follows that limn→∞ ∥x(n)∥ = 0.

3.5 Sample based dynamic programming
We will now translate stochastic approximation into algorithms to solve problems from optimal
control in a model-free way. In this first section the simplest algorithms are provided, sample
based versions of value iteration, both for policy evaluation using T π and control using T ∗.
Please keep the following warning in mind:

We have only proved convergence of stochastic fixed point iterations, proofs did not
have quantitative flavor. Stochastic approximation schemes converge terribly slow
which is not surprising given the law of large number is a special case (Example



3.5. SAMPLE BASED DYNAMIC PROGRAMMING 107

(3.3.3)).

For reinforcement learning the setting of Example 3.3.2 will become relevant because Bellman
operators can be written as

F (x) = Ex[f(Z)] (3.14)

so that approximations of the expectations using samples Z̃(1), Z̃(2), ... yield model-free learning
algorithms of the form

xi(n + 1) = xi(n) + αi(n)
(
f(x(n), Z̃i(n))− xi(n)

)
(3.15)

that converge almost surely because they can be rewritten as

xi(n + 1) = xi(n) + αi(n)
(
Fi(x(n))− xi(n) + εi(n)

)
with the unbiased error terms εi(n) := f(x(n), Z̃i(n)) − Fi(x(n)). The algorithms will be
asynchroneous through the choice of α that determines what coordinate to update and how
strong the update effect should be. Using different fixed point equations (for V π, Qπ, V ∗,
Q∗) and different representations of F as expectation yields different algorithms with different
advantages/disadvantages. The first class of algorithms is extracted readily from writing Bellman
operators as one-step expectation. For policy evaluation both versions of T π, for V and Q, are
actually expectation operators:

T πV (s) =
∑

a∈As

π(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V (s′)
)

= Eπ
s [R0 + γV (S1)]

and

T πQ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈As

p(s′ ; s, a)π(a′ ; s)Q(s′, a′)

= Eπ
s,a[R0 + γQ(S1, A1)].

For the optimality operator the story is slightly different, only the variant for Q is an expectation:

T ∗Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ ; s, a) max
a′∈As

Q(s′, a′)

= Eπ
s,a

[
R0 + γ max

a′∈AS1

Q(S1, a′)
]
.

The policy π did not play a role in the final expectation as we only sample S1 from p. Note
that the same does not holds for the optimal Bellman operator for the state value function,
the maximum operation would be outside of the expectation. These expressions are exactly
of the form (3.14). In order to design stochastic fixed point algorithms to find fixed points of
T π (resp. T ∗) all that is needed is the possibility to run the MDP for one step from all states
(resp. state-action pairs). In this section we start with the algorithms that follow from the three
Bellman operators formulated as expectation operators. Compared to the direct Monte Carlo
methods the methods presented below are much simpler to use. While Monte Carlo required an
entire rollout, here every update step only requires one step forwards of the MDP. This is very
much like dynamic programming but in a random fashion since not every state (or state-action
pair) is used for the update. Such methods are called temporal difference methods, but this will
become clearer in the sections below where we discuss algorithms that use several steps.

3.5.1 Sample based policy evaluation algorithms
We start with a first algorithn, so-called TD(0) for policy evaluation. The name becomes clearer
once we introduce TD(n) algorithms below. For completeness we give algorithms for V π and Qπ

even though they are essential equal.
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Theorem 3.5.1. Suppose π ∈ ΠS and the reward distributions have bounded
second moments. For an initial vector V0 ∈ R|S| define the (asynchroneous) update
rule

Vs(n + 1) = Vs(n) + αs(n)
(
rn + γVs′

n
(n)− Vs(n)

)
, s ∈ S,

with a ∼ π(· ; s), (s′
n, rn) ∼ p(· ; s, a) and step-sizes αn that only depend on the

past steps and satisfy the Robbins-Monro conditions
∞∑

n=1
αs(n) =∞ a.s. and

∞∑
n=1

α2
s(n) <∞ a.s.

for every s ∈ S. Then limn→∞ V (n) = V π almost surely.

In words: in every round n and every state s one transition of the MDP must be sampled,
resulting in action an, next state s′

n and reward rn. The update rule then updates Vn(s) using
rn and s′

n. If αs(n) = 0 then there is clearly no need to run the MDP from s. Thus, and this will
be the case in the algorithms below, only one sample is required in the totally asynchroneous
setting (only one αs(n) different from zero). There is absolutely no assumption on the choice of α
apart from the Robbins-Monroe conditions and adaptivity to the rounds before. The adaptivity
is no assumption for a practical algorithm, how should an algorithm produce a sequence that
uses random variables from future rounds?

Proof of Theorem 3.5.1. The convergence follows immediately from the general convergence
theorem once the iteration is rewritten in the right way:

Vs(n + 1) = Vs(n) + αs(n)
(
Fs(V (n))− Vs(n) + εs(n)

)
with

Fs(V ) := Eπ
s [R0 + γVS1 ]

and

εs(n) := (rn + γVs′
n
(n))− Eπ

s [R0 + γVS1(n)].

We need to be a bit careful with the filtration. The σ-algebras Fn is generated by all random
variables that occur in all iterations that are needed to define V (n). These are the random-step
sizes, the reward samples, the actions, and the next states.

• In the proof of Theorem 2.1.26 it was shown that the Bellman expectation operator F = T π

is a || · ||∞-contraction (the proof was for the expectation operator for Q but exactly the
same proof works for V ).

• By definition of the filtration the errors εs(n) are Fn+1-measurable (they involve the next
state-action pair (s′, a′)) with E[εs(n) | Fn] = 0 by definition. The assumed boundedness of
the rewards also implies sups E[ε2

s(n) | Fn] ≤ A + B∥V (n)∥2
∞:

E[ε2
s(n)|Fn]

= E[(rn + γVs′
n
(n))2 | Fn]− 2Eπ

s [R0 + γVS1(n)]Eπ
s [rn + γVs′

n
(n) | Fn] + (E[R0 + γVS1(n)])2

= Eπ
s [(R0 + γVS1(n))2]− 2(Eπ

s [R0 + γVS1(n)])2 + (Eπ
s [R0 + γVS1(n)])2

≤ Eπ
s [(R0 + γVS1(n))2]

= Eπ
s [R2

0] + 2γEπ
s [R0VS1(n))2] + γ2Eπ

s [VS1(n)2]
≤ C2 + 2γC∥V (n)∥∞ + γ2∥V (n)∥2

∞

≤ C2 + 2γC(1 + ∥V (n)∥2
∞) + γ2∥V (n)∥2

∞
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• The step-sizes are adapted (they are only allowed to use the random variables from the
strict past) and satisfy almost surely the Robbins-Monroe conditions by assumption.

Hence, Theorem 3.3.8 can be applied and we get almost sure convergence to the unique fixpoint
of F which is V π.

To repeat the important argument once more here is the version to compute Qπ:

Theorem 3.5.2. Suppose π ∈ ΠS and the reward distributions have bounded
second moments. For an initial matrix Q0 ∈ R|S|×|A| define the (asynchroneous)
update rule

Qs,a(n + 1) = Qs,a(n) + αs,a(n)(rn + γQs′
n,a′

n
(n)−Qs,a(n)), s ∈ S, a ∈ As.

We assume for every n that (s′
n, rn) ∼ p(· ; s, a) and a′

n ∼ π(· ; s′
n), as well as

α(n) depend only on the past steps and almost surely satisfy the Robbins-Monro
conditions for every (s, a) ∈ S ×A. Then limn→∞ Q(n) = Qπ almost surely.

Proof. Write

Qs,a(n + 1) = Qs,a(n) + αs,a(n)
(
Fs,a(Q(n))−Qs,a(n) + εs,a(n)

)
, s ∈ S, a ∈ As,

with

Fs,a(Q) := T π(Q)(s, a) = Eπ
s,a[R0 + γQS1,A1 ]

and

εs,a(n) := (rn + γQs′
n,a′

n
(n))− Eπ

s,a[R0 + γQS1,A1(n)].

The σ-algebras Fn is generated by all random variables that occur in all iterations that are
needed to define V (n). These are the random-step sizes, the reward samples, the actions, and
the next states.

• In the proof of Theorem 2.1.26 it was shown that the Bellman expectation operator F = T π

is a || · ||∞-contraction.

• The errors εs,a(n) are Fn+1-measurable with E[εs,a(n) | Fn] = 0 by definition. The assumed
boundedness of the rewards also implies sups,a E[ε2

s,a(n) | Fn] ≤ A + B∥Q(n)∥2
∞.

• The step-sizes are adapted and almost surely satisfy the Robbins-Monro conditions by
assumption.

Hence, Theorem 3.3.8 can be applied and we get almost sure convergence to the unique fixpoint
of F which is Qπ.

In all algorithms above (and below) that depend on stochastic fixed point iterations the step-size
α needs to be set. For totally asynchroneous learning there are two things that need to be
specified for the algorithms:

• Which coordinates should be updated, i.e. which state or state-action pair is the only
coordinate for which α(n) is non-zero.

• How strongly should the coordinate be updated, i.e. what is the value α for the non-zero
coordinate?

Here is a straight forward choice:
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In theory we assumed that there are samples (r, s′, a′) for every iteration in all
state-action pairs (s, a). If αs,a(n) = 0 then there is no update at (s, a) so in
practice the corresponding random variables will not be sampled. The Robbins-
Monro summation condition implies that every state-action pair must be updated
infinitely often to guarantee convergence of the algorithm. The most obvious choice
to guarantee convergence of the algorithms is, for some 1

2 < p ≤ 1,

αs(n) = 1
(Ts(n) + 1)p

resp. αs,a(n) = 1
(Ts,a(n) + 1)p

if Ts(n) denotes the number of times the state s was updated during the first n
updates (resp. Ts,a(n) the number of times the state-action pair (s, a) was updated
during the first n updates). The choice is reasonable because if states (or state-action
pairs) are visited infinitely often, then

∞∑
n=1

αs(n) =
∞∑

n=1

1
np

=∞ and
∞∑

n=1
α2

s(n) =
∞∑

n=1

1
n2p

<∞.

We finish the section wth pseudo-code, written in a totally asynchroneous manner. In every
iteration only one item of the vector/matrix is updated. According to the theory the choice is
governed by the step-sizes to be zero/non-zero and can depened on anything the algorithm has
seen before. In case the next state (resp. state-action pair) is chosen as the previous s′ (resp.
(s′, a′)) a bit of care is needed if the MDP terminates. If s′ is a terminating state than the next
iteration needs to restart in some other non-terminating state.

Algorithm 17: Totally asynchroneous policy evaluation for V π

Data: Policy π ∈ ΠS

Result: Approximation V ≈ V π

Initialize vector V ≡ 0.
while not converged do

Determine s (for instance uniformly or s = s′).
a ∼ π(· ; s).
Sample reward R(s, a).
Sample next state s′ ∼ p(· ; s, a).
Determine stepsize α = α(s).
Update Vs = Vs + α

(
R(s, a) + γVs′ − Vs

)
.

end

Algorithm 18: Totally asynchroneous policy evaluation for Qπ

Data: Policy π ∈ ΠS

Result: Approximation Q ≈ Qπ

Initialize matrix Q ≡ 0.
while not converged do

Determine (s, a) (for instance uniformly or (s, a) = (s′, a′)).
Sample reward R(s, a).
Sample next state s′ ∼ p(· ; s, a).
Sample next action a′ ∼ π(· ; s′).
Determine step-size α = α(s, a).
Update Qs,a = Qs,a + α

(
R(s, a) + γQs′,a′ −Qs,a

)
.

end
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3.5.2 Q-learning and the SARSA trick
We continue with the most famous tabular control algorithm, Q-learning. Solving numerically
T ∗Q = Q by iterating in a sample based way Bellman’s state-action optimality operator T ∗. The
main advantage but also disadvantage of the Q-learning algorithm (and its modifications) is the
flexibility, there are plenty of choices that can be made to explore the state-action space. The
mathematical theorem behind Q-learning is the following:

Theorem 3.5.3. Suppose the reward distributions have bounded second moments.
For an initial matrix Q0 ∈ R|S|×|A| define the (asynchroneous) update rule

Qs,a(n + 1) = Qs,a(n) + αs,a(n)(rn + γ max
a′∈As′

n

Qs′
n,a′(n)−Qs,a(n)), s ∈ S, a ∈ As.

We assume for every n that (s′
n, rn) ∼ p(· ; s, a), as well as α(n) depend only on

the past steps and almost surely satisfy the Robbins-Monro conditions for every
(s, a) ∈ S ×A. Then limn→∞ Q(n) = Q∗ almost surely.

Proof. The proof is exactly the same that we have seen above, now using the optimal Bellman
operator

T ∗Q(s, a) = Es,a

[
R0 + γ max

a′∈AS1

Q(S1, a′)
]

on R|S|·|A|. Please finish the proof yourself as an excercise:

Rewrite the Q-learning algorithm as simulation-based fixed point iteration and
check the conditions of Theorem 3.3.8 to prove the almost sure convergence.

Let us think a bit how the mathematical theorem can be turned into an algorithm. What we can
do is to play the game that is made abstract in the MDP (S, A, R). Thus, we can run through
state-action pairs and observe rewards, leading to a totally asynchroneous update scheme (only
one αs,a(n) is non-zero). As for the bandit algorithms the choice of state-action pairs to be
updated is up to the algorithm design, this is again called exploration.

From the mathematics of convergence proofs the situation is relatively simple.
In totally asynchroneous approximate fixed point iterations α governs the choice
of state-action pairs. Since the sequence (αn) only needs to be adapted to the
algorithm (its filtration) there is a lot of freedom on how to explore the actions.
Essentially, we can explore in all ways that do not use future knowledge of the
algorithm (how should we?) and explores all state-action pairs (s, a) infinitely often
as otherwise

∑
k αk(s, a) would not be infinite.

There are four typical exploration examples that will remind a lot the different ways of exploring
for bandit algorithms:

• choose (s, a) randomly, this is called random walk exploration,

• run through the MDP according to some fixed policy π, this is called a behavior policy,

• act ε-greedy from the current estimates Q(n),

• act soft-ϵ-greedy from the current estimate Q(n) (Boltzmann exploration).
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Algorithm 19: Q-learning
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, greedy(Q) = π ≈ π∗

Initialize Q (e.g. Q ≡ 0).
while not converged do

Initialise s.
while s not terminal do

Sample action a. (e.g. randomly, according to a behavior policy, ε-(soft)greedy).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Update Qs,a = (1− α)Qs,a + α

(
(R(s, a) + γ maxa′∈As′ Qs′,a′)

)
.

Set s = s′.
end

end

Similar to stochastic bandits the ε might be sent to zero. In theory one must be careful to
properly choose ε to depend on (s, a) to ensure that all state-action pairs are still visited infinitely
often. The pseudo-code in Algorithm 20 is written for exploration using a behavior policy, the
convergence follows from Theorem 3.5.3 as long as π explores all state-action pairs infinitely
often. There is a major difference in different exploration mechanisms. Random walk exploration
updates even the most irrelevant actions as much as the most important. A good behavior policy
updates much better and learns quicker the relevant Q-values while a poor behavior policy might
not put much effort on the relevant Q-values, but how can we find a close to optimal behavior
policy if finding an optimal policy is what the approach is made for (think of a behavior policy of
the driving decisions of an old autonomous vehicle that is used to train a better version)? That’s
why most of the time one favors on-policy exploration using Boltzmann or greedy exploration.

Definition 3.5.4. An exploration mechanism is called off-policy if the
choice of actions is not governed by the currently estimated policy. In contrast, an
exploration mechanism is called on-policy if the exploration uses the currently
estimated policy (Q-values) to explore actions.

Before discussing the drawbacks of Q-learning let us think more intuitively why Q-learning makes
sense. The algorithm challenges current estimates Q(s, a) of Q∗(s, a) by comparing them with
new one-step estimates. If the Q-values are stored in a table, then the algorithm successifely
explores table entries and updates their values. Let us think about the example from Section 3.1
and try to find the quickest travel directions from Berlin to Mannheim. Whenever a new sample
R(s, a) is available (this is the travel time from s to s′ under driving decision a) then the old
estimate of the expected driving time to Mannheim is updated as follows. Keep the old estimate
with a factor (1− α) and update with a factor α by adding the driving time to s′ and the best
estimated time from s′.

Q(s, a)← (1− α) Q(s, a)︸ ︷︷ ︸
old estimate

+α
(

R(s, a)︸ ︷︷ ︸
time to reach s′

+γ max
a′

Q(s′, a′)︸ ︷︷ ︸
estimated best remaining travel time from s′

)

The factor α is the trust we put into the new observation. The interpretation of vanishing α is
that of increasing trust in the estimate which was built on more observations. Since Q-values
influence each other the idea of bootstrapping discussed above becomes aparant. Samples R(s, a)
do not only help to improve Q(s, a) but also in succeeding steps the Q-values that point to
Q(s, a). Think about it, that is exactly how you learn yourself to navigate!
Unfortunately, there is a couple of drawbacks to the Q-learning update rule. Let us discuss two,
overestimation bias and exploration danger.
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• Stochastic approximation algorithms are not unbiased, i.e. the estimates xn of x∗ typically
satisfy E[xn] ̸= x∗. Here is a one-dimensional illustration that roughly captures the
overestimation effect of Q-learning. Take F (x) = γ max{0, x} for some γ < 1, this is a
contraction.

An overestimating approximate fixedpoint iteration

Without error the algorithm quickly converges from the left to x∗ = 0 (even in one step if
α = 1) because the steps are αn(F (xn) − xn) = −αnxn while the convergence from the
right takes some time as αn(F (xn)− xn) ≈ 0. With errors the situation becomes worse
even with x0 = x∗. A positive error sends xn to the positives from where the algorithm
slowly comes back to 0 while after sending xn to the negatives with a negative error the
algorithm comes back to 0 much faster. The same effect happens for Q-learning. Estimated
Q-values are typically too large.

• In a way Q-learning is a dangerous learning procedure, it is an optimistic way of learning.
The learning procedure does not care a lot about dangerous actions (think about a car/robot
and the action might result into a crash). Suppose the exploration forces the learner to go
from (s, a) to (s′, a′) which is already known to be harmful, has a very small Q-value. The
update mechanism of Q-learning will completely ignore (s′, a′), it will not keep distance from
dangerous actions. This might be the optimal solution of the problem but be dangerous in
practice if the training requires to run a car or a robot in real.

There are ways around both problems that in the end are based on what is called the SARSA
trick. The trick carries its name as it was introduced to prove5 convergence of the algorithm
SARAS that we explain below but is used in other settings as well.

In essence one studies variants of Q-learning with update rules

Qs,a ← Qs,a + α
(
(R(s, a) + γ max

a′∈As′
Qs′,a′)−Qs,a + bs,a

)
for some additional (negative) bias term b that is supposed to reduce the overly
optimistic Q-values. Rewriting the update rule as in the Q-learning proof yields

Qs,a(n + 1) = Qs,a(n) + αs,a(n)
(
(T ∗Q(n))(s, a)−Qs,a(n) + εs,a(n) + bs,a(n)

)
,

which converges to Q∗ almost surely if the additional bias b decays quickly enough.

In the next section we discuss so-called double Q-learning to reduce the overestimation, in this
section let us look at SARSA to reduce the danger of playing dangerous actions. The danger
can be reduced by only using the actions the algorithm really observed but not interfering with
unobserved actions.

Definition 3.5.5. An update mechanism is called online updating mechanism
if it only involves the currently observed state-action pairs while an offline up-

5S. Singh et al.: "Convergence Results for Single-Step On-Policy Reinforcement-Learning Algorithms", Machine
Learning, 39, 287–308, 2000
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dating mechanism can also use information of state-action pairs that are not
currently observed.

The update mechanism of Q-learning is off-policy, it involves in the maximum state-action values
of all hypothetical actions, actions that the learner could have used but did not. SARSA is a
version of Q-learning with online updating mechanism, the update is as follows:

Qs,a ← Qs,a + α
(
(R(s, a) + γQs′,a′)−Qs,a

)
The name S-A-R-S′-A′ stems from the use of state-actions (s, a) reward R and next state-actions
(s′, a′).

Algorithm 20: SARSA
Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize Q, e.g. Q ≡ 0.
while not converged do

Initialise s, a, e.g. uniform.
while s not terminal do

Determine stepsize α.
Sample reward R(s, a).
Chose new policy π from Q (e.g. ε-greedy).
Sample next state s′ ∼ p(· ; s, a).
Sample next action a′ ∼ π(· ; s′).
Update Qs,a = Qs,a + α

(
(R(s, a) + γQs′,a′)−Qs,a

)
.

Set s = s′, a = a′.
end

end

Theorem 3.5.6. Suppose (Qn) is the sequence of matrices obtained from the
SARSA control algorithm. Assume the reward distributions have bounded second
moments, the step-sizes satsify the Robbins-Monroe conditions almost surely and
the update policy is GLIE, i.e.

• in the limit the policy is a.s. greedy with respect to the state-action value
function,

• each state-action pair is visited infinitely often.

Then limn→∞ Q(n) = Q∗ almost surely.

Here are two examples for GLIE policies. One is to explore εn-greedy based on Q(n) at each
timestep with state-dependent εn = 1

Ts(n) , another is a Boltzman exploration based on Q(n)

πn(a ; s) := elog(Ts(n))Qs,a(n)∑
b elog(Ts(n))Qs,b(n) ,

where Ts(n) is the number of visits in state s. If states are visited infinitely often both policies
are greedy in the limit. At the same time they allow enough exploration so that all state-action
pairs are visited infinitely often.

Proof. The SARSA trick is to write SARSA as Q-learning with an additional bias term and then
assume enough to ensure the bias term satisfies the condition of Theorem 3.3.8:

Qs,a(n + 1) = Qs,a(n) + αs,a(n)
(
T ∗Qs,a(n)−Qs,a(n) + εs,a(n) + bs,a(n)

)
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with

εs,a(n) = (rn + γ max
a′

Qs′,a′(n))− T ∗Qn(s, a)

and

bs,a(n) = (rn + γQs′
n,a′

n
(n))− (rn + γ max

a′
Qs′

n,a′(n)) = γ
(
Qs′

n,a′
n
(n)−max

a′
Qs′

n,a′(n)
)
≤ 0.

On top of the Q-learning convergence proof one needs to check the condition of Theorem 3.3.8
for the bias term. This is where the GLIE property comes into play as bs,a(n) = 0 if a′ is chosen
greedily. 6

In a way the theorem is trivial and does not make much sense. We added a particular bias to the
recursion of Q-learning and assumed it vanishes in the limit, that’s about it. The point is the
particular form of the bias. For SARSA the bias is chosen to be (strongly) negative if neighboring
state-action pairs are dangerous in the sense that the Q-value for (s′, a′) deviates (strongly)
from that for the best actions. Thus, if the exploration is based on Q (ε-greedy, Boltzmann)
transitions to dangerous neighbors are less likely. This can be seen for instance in cliff walk where
SARSA tends to prefer at the beginning trajectories that keep distance to the cliff and only
converges later (due to the reduced bias) towards the optimal path. Q-learning instead directly
learns to walk close to the cliff and has the tendency to fall down during the training process.

SARSA is actually a sample based version of policy iteration. Suppose the explo-
ration mechanism is ε-greedy. Then in every step the algorithm evaluates with
only one step the Q-function of the greedy policy of the step before. This is policy
iteration.

3.6 ALTERS ZEUGS
Proof. and ε(s, a) = 0 for (s, a) ̸= (S̃n, Ãn). The errors εn(s, a) are Fn+1-measurable. Further-
more, E[ε(s, a) | Fn] = 0 for (s, a) ̸= (S̃n, Ãn) and

E[εn(S̃n, Ãn) | Fn]

= E
[
1{πn+1(· ; S̃n+1) is greedy}(γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
+ E

[
1{πn+1(· ; S̃n+1) non-greedy}(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) greedy} | Fn]E

[
γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)

] ∣∣Fn

]
︸ ︷︷ ︸

=0

+ E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E
[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E

[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
.

Finally, recall that we assume throughout these lecture notes that rewards are bounded. Thus,
the assumed boundedness of Q0 and the iteration scheme combined with

∑∞
k=0 γk <∞ implies

that |Qn(s, a)| < C for some C and all n ∈ N. Thus,∣∣E[εn(S̃n, Ãn) | Fn]
∣∣ ≤ CP(πn+1(· ; s′) non greedy | Fn) = Cpn(s, a).

By assumption, the summation condition 3.16 is satisfied. By the boundedness of rewards, also
E[ε2

n(s, a) | Fn] ≤ C <∞. As T ∗ is a contraction and the Robbins-Monro conditions are satisfied,
the iteration converges to Q∗ almost surely.

6irgendwann mal verstehbar aufschreiben
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The most important policy to which the theorem applies is αn-greedy because
∑

α2
n(s, a) <∞

holds by assumption. Chosing αn(s, a) = 1
Ts,a(n)+1 the exploration rate in a state-action pair

(s, a) decreases with the number of updates of Q(a, s).

Proof. The proof is different from the ones before. The reason is that the updates are not directly
estimates of a contraction operator. Nonetheless, a similar argument works. Adding a zero the
algorithm can be reformulated in an approximate fixed point iteration with an error-term that is
biased but with a bias decreasing to zero. We will use a variant of Theorem ??. The convergence
also holds if

∞∑
n=1

αn(s, a)
∣∣E[εn(s, a) | Fn]

∣∣ <∞ a.s. (3.16)

for all state-action pairs. , the function F is bounded by some K, and the initial value of the
iteration is bounded by K. Hence, we check the condition (3.16) instead of E[εn(s, a) | Fn] = 0
with an appropriately chosen error-term. Let us denote by S̃0, Ã0, ... the sequence of state-action
pairs obtained from the algorithm. First, writing

Qn+1(s, a) = Qn(s, a) + αn(s, a)
(
T ∗Qn(s, a)−Qn(s, a) + εn(s, a)

)
, s ∈ S, a ∈ As,

with

εn(S̃n, Ãn) = (R(S̃n, Ãn) + γQn(S̃n+1, Ãn+1))− EπÃn

S̃n

[
R(S̃n, Ãn) + γ max

a′
Qn(S1, a′)

]
and ε(s, a) = 0 for (s, a) ̸= (S̃n, Ãn). The errors εn(s, a) are Fn+1-measurable. Furthermore,
E[ε(s, a) | Fn] = 0 for (s, a) ̸= (S̃n, Ãn) and

E[εn(S̃n, Ãn) | Fn]

= E
[
1{πn+1(· ; S̃n+1) is greedy}(γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
+ E

[
1{πn+1(· ; S̃n+1) non-greedy}(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) greedy} | Fn]E

[
γ max

a′
Qn(S̃n+1, a′)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)

] ∣∣Fn

]
︸ ︷︷ ︸

=0

+ E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E
[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
= E[1{πn+1(· ; S̃n+1) non-greedy} | Fn]E

[
(γQn(S̃n+1, Ãn+1)− EπÃn

S̃n
[γ max

a′
Qn(S1, a′)])

∣∣Fn

]
.

Finally, recall that we assume throughout these lecture notes that rewards are bounded. Thus,
the assumed boundedness of Q0 and the iteration scheme combined with

∑∞
k=0 γk <∞ implies

that |Qn(s, a)| < C for some C and all n ∈ N. Thus,∣∣E[εn(S̃n, Ãn) | Fn]
∣∣ ≤ CP(πn+1(· ; s′) non greedy | Fn) = Cpn(s, a).

By assumption, the summation condition 3.16 is satisfied. By the boundedness of rewards, also
E[ε2

n(s, a) | Fn] ≤ C <∞. As T ∗ is a contraction and the Robbins-Monro conditions are satisfied,
the iteration converges to Q∗ almost surely.

We start with the SARSA algorithm, an on-policy variant of Q-Learning. For the proof we
formulate a special case of the main stochastic approximation theorem:

Lemma 3.6.1. Suppose (Ω,F ,P, (Fn)) is a filtered probability space on which
all appearing random variables are defined. Let (∆(n)) ⊆ Rc a stochastic process
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defined by the recursion

∆i(n + 1) = (1− αi(n))∆i(n) + αi(n)Gn
i (∆(t)), ∆0 ∈ Rd.

We assume the following

• The stepsizes αi(n) are adapted and satisfy the Robbins-Monroe conditions.

• ∥E[Gn(∆(n))|Fn]∥∞ ≤ λ∥∆(n)∥∞ + cn with λ ∈ [0, 1) and a non-negative
sequence (cn) of random variables converging to 0 almost surely.

• V[Gn
i (∆(n))|Fn] ≤ K(1 + ∥∆(n)∥∞)2 with a deterministic constant K > 0.

Then ∆(n) converges to 0 almost surely.

Proof. We will show that the lemma is a consequence of Theorem 3.3.8. For this purpose, we
define the auxiliary functions

Hn
i (x) :=

{
Gn

i (x) : |E[Gn
i (x)|Fn]| ≤ λ∥x∥∞

sign(E[(Gt(x))i|Ft])λ∥x∥∞ : otherwise

and hn(x) = Gn(x) −Hn(x). We can now define our building blocks from Theorem 3.3.8 as
follows:

x(n) := ∆(n),
F n

i (x(n)) := E
[
Hn

i (x(n))
∣∣Fn

]
,

εi(n) :=
(
Hn

i (x(n))− E[Hn
i (x(n))|Fn]

)
+
(
hn

i (x(n))− E[hn
i (x(n))|Fn]

)
,

bn
i := E[hn

i (x(n))|Fn].

To apply Theorem 3.3.8 all conditions must be checked:
• Plugging-in most terms cancel so that the recursion for (x(n)) becomes

xi(n + 1) = (1− αi(n))xi(n) + αi(n)
(
Fi(xn) + εi(n) + bi(n)

)
• By construction, we have

∥F n(x(n))− 0∥∞ = ∥F n(x(n))∥∞

= ∥E[Hn(x(n)) | Fn]∥∞

≤ λ∥x(n)∥∞

= λ∥x(n)− 0∥∞

Thus, the mappings F n are pseudo-contractions with x∗ = 0.

• The conditions on the step-sizes are equal to those of the theorem.

• We have the Ft+1-measurability and E[εi(t)|Ft] = 0 by construction. Then, we also have

E[ε2
i (n) | Fn] = V[εi(n) | Fn]

= V[Hn
i (x(n))−Gn

i (x(n))−Hn
i (x(n)) | Fn]

= V[Gn
i (x(n)) | Fn]

≤ K(1 + ∥x(n)∥∞)2

= K(1 + 2∥x(n)∥∞ + ∥x(n)∥2
∞)

≤ K(1 + 2(1 + ∥x(n)∥2
∞) + ∥x(n)∥2

∞)
= 3K(1 + ∥x(n)∥2

∞)

With A := 3K and B := 3K the second moment assumtion on ε is satisfied.
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• Finally, the condition for the bias terms needs to be checked:

|bi(n)| = |E[hn
i (∆(n))|Fn]|

= |E[Gn
i (∆(n))−Hn

i (∆(n))|Fn]|
≤ (|E[Gn

i (∆(n))|Fn]| − λ∥∆(n)∥∞)I{E[Gn
i

(∆(n))|Fn]>λ∥∆(n)∥∞}

≤ cn

≤ cn(∥∆(n)∥∞ + 1)

We thus have the almost sure convergence of our sequence to x∗ = 0.

Proof. The proof is based on Lemma 3.6.1, interpreting matices R|S|×|A| as vectors in Rd with
d = |S| · |A|. We define

• ∆i(n) := Qs,a(n)−Q∗
s,a,

• Gn
i (∆(n)) := R(s, a) + γQs′,a′(n)−Q∗

s,a.

The tuples (s′, a′) are used for next state-action pair to safe additional indices. The update
schedule of SARSA can now be written as

∆i(n + 1) = (1− αi(n))∆i(n) + αi(n)Gn
i (∆(n))

We are left only with checking the assumptions of Lemma 3.6.1:

• The step-size assumptions are imposed in the theorem.

•

Gn
i (∆(t)) = R(s, a) + γQs′,a′(n)−Qs,a(n)

= R(s, a) + γ max
b∈A

Qs′,b(n)−Qs,a(n) + γ(Qs′,a′(n)−max
b∈A

Qs′,b(n))

Now we realise that if we take the conditional expectation w.r.t the first two terms we get
exactly the mapping F from the proof of theorem ??. We know, that this function is a
contraction with fixed point Q∗. Thus, we can use the above calculation and get:

∥E[Gn(∆(n))|Fn]∥∞ ≤ λ∥∆(n)∥∞ + γ max
s′∈S
|Qn(s′, a′)−max

b∈A
Qn(s′, b)|

If we take into account that a′ is chosen according to our learning policy, which is GLIE, we
conclude that the second summand is nothing but a non-negative sequence which converges to 0
a.s. Thus, assumption (II) also holds. Lastly, we realise that, similar to our proof of theorem
??, assumption (III) follows from our simplifying assumption of bounded rewards. We conclude
that (∆(t))t∈N0 converges to 0, meaning nothing else than limt→∞ Qt(s, a) = Q∗(s, a) for all
state-action pairs (s, a). Taking into account that πt becomes greedy with respect to Qt in the
limit and that Qt gets infinitely close to Q∗, we can derive that πt converges to policy which is
greedy w.r.t. Q∗, meaning exactly the optimal policy π∗.

To get a feeling of the SARSA algorithm think about stochastic bandits seen as one-step MDPs.

To get a feeling for Q-learning and SARSA try to relate the algorithms with
αn(s, a) = 1

Ts,a(n)+1 to the ε-greedy algorithm for stochastic bandits introduced in
Chapter 1.

3.6.1 Double Q-learning
The aim of this section is to introduce double variants of Q-learning that deal with overestimation
of Q-learning. For a rough understanding of what goes wrong in Q-learning recall that the
Qn(s, a) are (random) estimates of the expectations Q∗(s, a). In the updates of Q-learning we
use the estimates maxa′∈As

Qn(s, a) of maxa′∈As
Q∗(s, a) but those overestimate.
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Suppose µ̂1, ..., µ̂K are estimates for expectations µ1, ..., µK . Then the pointwise
maximum maxi=1,...,K µ̂i overestimates µ̂ = maxi=1,...,K µi because E[max µ̂i] ≥
E[µi] for all i so that E[max µ̂i] ≥ maxE[µi]. As a simple example suppose
M1, ..., MK are Ber(p)-distributed. They are all unbiased estimators of the mean
but

E[max Mi] = P({M1 = 0, ..., MK = 0}) · 0 + P({M1 = 0, ..., MK = 0}c) · 1
= 1− (1− p)K > p.

Van Hasselt7 suggested to use two-copies of Q-learning and intertwine them such that one
estimates the optimal action, the other the optimal value. This leads to the idea of double
Q-learning and modifications.

Algorithm 21: Double Q-learning (with behavior policy)
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Randomly choose update = A or update = B
if update = A then

a∗ = arg maxa′∈As′ QA(s′, a′)
Update QA(s, a) = QA(s, a) + α

(
R(s, a) + γQB(s′, a∗)−QA(s, a)

)
end
else

b∗ = arg maxa′∈As′ QB(s′, a′)
Update QB(s, a) = QB(s, a) + α

(
R(s, a) + γQA(s′, b∗)−QB(s, a)

)
end
Set s = s′.

end
end

Similarly to SARSA (see the proof of Theorem 3.6.3) double Q-learning can be interpreted as
classical Q-learning with an additional negatively biased term ε̂. We will not prove convergence
of double Q-learning. The proof requires a stronger unbiased version of approximate dynamic
programming. Instead we will introduce a truncation which allows us to follow the proof of
convergence for SARSA. Interestingly, our new version of double Q-learning performs better
than Q-learning and double Q-learning on some of the standard examples. Before stating the
truncated double Q-learning algorithm let us check an example:

Example 3.6.2. The example MDP consists of two interesting states S1, S2 and two terminal
states T1, T2. The transition probabilities are indicated in the graphical representation. If action
left/right is chosen in S1 then the MDP certainly moves to the left/right with zero reward. In
state S2 there are several possible actions that all lead to T2 and yield a Gaussian reward with
mean µ and variance σ2 (typically equal to 1). Started in S1 an optimal policy clearly choses to
terminate in T1 as the expected total reward is 0, a policy that also allows to go to S2 yields a
negative expected total reward.

7H. van Hasselt, "Double Q-learning", NIPS 2010
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red states are terminating

In the classical example Q is initialised as 0 and µ is set to −0.1. The behavior policy always
choses S1 as a starting state. Now suppose the Q-learning algorithm terminates in the first
iteration in T2 and the final reward is positive, say 1. This leads to a Q-value Q(S2, a) = α.
During the next iteration in which the Q-learning algorithm uses S2 to update Q(S1, left) the
update-rule will overestimate Q(S1, left) to some positive value. It will then take some time
the discounting factor decreases Q(S1, left) back to 0. The plots (running 300 epsidodes and
averaging over 10.000 runs) show a few different situation of the simple MAP example with
different µ and different initialisation for Q.

A few examples, truncation constants C− = 105, C+ = 105

In the upper plots a completely random behavior policy was used to select the actions during
learning, while in the lower two plots an ε-greedy policy with ε = 0.1 was used. The plots show
depending on the setup/initialisation either positve or negative bias can be benefitial.
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Let us now proceed with what we call the truncated double Q-learning algorithm that contains
other important double algorithms as special cases.

Algorithm 22: Truncated Double Q-learning
Data: Behavior policy π ∈ ΠS , positive truncation C+ > −, negative truncation C− > 0
Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
Randomly choose update = A or update = B
if update = A then

a∗ = arg maxa′∈As′ QA(s′, a′)
ε = γ max

(
− C−α, min

(
QB(s′, a∗)−QA(s′, a∗), C+α

) )
Update QA(s, a) = QA(s, a) + α

(
R(s, a) + γQA(s′, a∗)−QA(s, a) + ε

)
end
else

b∗ = arg maxa′∈As′ QB(s′, a′)
ε = γ max

(
− C−α, min

(
QA(s′, b∗)−QB(s′, b∗), C+α

) )
Update QB(s, a) = QB(s, a) + α

(
R(s, a) + γQB(s′, b∗)−QB(s, a) + ε

)
end
Set s = s′.

end
end

To understand double Q-learning and truncated double Q-learning let us proceed similarly to
SARSA and rewrite the update as a Q-learning update with additional error:

QA
n+1(s, a) = QA

n (s, a) + α
(
R(s, a) + γQB

n (s′, a∗)−QA
n (s′, a)

)
= QA

n (s, a) + α
(
R(s, a) + γQA

n (s′, a∗)−QA
n (s, a) + γ

(
QB

n (s′, a∗)−QA
n (s′, a∗)

))
which can be written as

QA
n+1(s, a) = QA

n (s, a) + α
(
T ∗(QA

n )(s, a) + εn(s, a)−Qn(s, a)
)

.

with errors

εn(s, a) :=
[
R(s, a) + γQA

n (s′, a∗)− T ∗QA(s, a)
]

︸ ︷︷ ︸
=:εQ

n (s,a)

+ γ
(
QB

n (s′, a∗)−QA
n (s′, a∗)

)︸ ︷︷ ︸
=:ε̂n(s,a)

.

Thus, from the point of view of approximate dynamic programming, double Q-learning is nothing
but Q-learning with an additional error. Since the two equations are symmetric the error is
negatively biased (the Q-function for some action should be smaller than the Q-function for
the best action). Furthermore, looking carefully at the algorithm, truncated double Q-learning
equals double Q-learning if C+ = C− = +∞ (or, in practice, just very large) as in that case

max
(
− C−α, min

(
QB

n (s′, a∗)−QA
n (s′, a∗), C+α

) )
= QB

n (s′, a∗)−QA
n (s′, a∗).

Theorem 3.6.3. Consider the updating procedure of truncated double Q-learning
in algorithm for QA and QB. Suppose that a behavior policy π is such that all
state-action pairs are visited infitely often and the step sizes are adapted and satisfy
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the Robbins-Monro conditions. Then

lim
t→∞

QA(s, a) = lim
t→∞

QB(s, a) = Q∗(s, a)

holds almost surely for all state-action pairs (s, a).

Please note that truncated Q-learning was only introduced for these lectures notes as it allows
us to prove convergence using Theorem ??. Interestingly, the algorithm performs pretty well on
examples and it might be worth improving the algorithm by adaptive (depending on the past
data) choice of C+ and C− to learn the need of over- or understimation.

Proof. Because of the symmetry of the update procedure it is sufficient to prove the convergence
of QA. As for SARSA the point is to use the reformulation as Q-learning with additional error
and show that errors are sufficiently little biased. This is why we introduced the additional
truncation in order to be able to check

∞∑
n=0

αn(s, a)|E[εn(s, a)|Fn]| <∞. (3.17)

In the following we will write a∗ = arg maxa∈As′ QA(s′, a) and b∗ = arg maxa∈As′ QB(s′, a) for
given s′ and write

QA
n+1(s, a) = QA

n (s, a) + αn(s, a)
(
T ∗(QA

n )(s, a) + εn(s, a)−QA
n (s, a)

)
.

with error

ϵt(s, a) :=
[
R(s, a) + γQA

n (s′, a∗)− T ∗QnA(s, a)
]

+ γ max
(
− C−αn(s, a), min(QB

n (s′, a∗)−QA
n (s′, a∗), C+αn(s, a))

)
=: εQ

n + ε̂n(s, a).

All that remains to show is that the error term has bounded conditional second moments and the
bias satisfies (3.17). Finite second moments follow as we assume in these lectures (for simplicity)
that the rewards are bounded so that

∑∞
k=0 γk = γ

1−γ implies boundedness. The Q-learning
error is unbiased (sample minus expectation of the sample). The truncated double Q-learning
error is also bounded:

∞∑
n=0

αn(s, a)
∣∣E[ε̂n(s, a)|Fn]

∣∣ ≤ max{C+, C−}
∞∑

n=0
α2

n(s, a) <∞. (3.18)

Since T ∗ is a contraction and the learning rates satisfy the Robbins-Monro condititions the
convergence follows from Theorem ?? with the modification.

The interesting feature of truncated double Q-learning is the interpolation effect
between Q-learning and double Q-learning. Large C makes the algorithm closer
to double Q-learning, small C to Q-learning. It would be interesting to see if an
adaptive choice of C (depending on the algorithm) could be used to combine the
overestimation of Q-learning and the understimation of double Q-learning.

We finish this section with another variant of double Q-learning, so-called clipping8:

8Fujimoto, van Hoof, Meger: "Addressing Function Approximation Error in Actor-Critic Methods", ICML 2018
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Algorithm 23: Clipped double Q-learning (with behavior policy)
Data: Behavior policy π ∈ ΠS

Result: Approximations Q ≈ Q∗, π = greedy(Q) ≈ π∗

Initialize QA, QB (e.g. 0).
while not converged do

Initialise s.
while s not terminal do

Sample a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Determine stepsize α.
if update = A then

a∗ = arg maxa′∈As′ QA(s′, a′)
QA(s, a) = QA(s, a) + α

(
R(s, a) + γ min{QA(s′, a∗), QB(s′, a∗)} −QA(s, a)

)
.

end
else

b∗ = arg maxa′∈As′ QB(s′, a′)
QB(s, a) = QA(s, a) + α

(
R(s, a) + γ min{QA(s′, b∗), QB(s′, b∗)} −QB(s, a)

)
.

end
Set s = s′.

end
end

The convergence proof of clipped double Q-learning again follows the SARSA approach.

Rewrite QA to see that QA is nothing but Q-learning with additional error term

εc(s, a) =
{

0 : QA(s′, a∗) ≤ QB(s′, a∗)
QB(s′, a∗)−QA(s′, a∗) : QA(s′, a∗) > QB(s′, a∗)

.

Clipped Q-learning is thus nothing but double Q-learning with clipping (truncation)
of positive bias terms QB(s′, a∗)−QA(s′, a∗).

Setting C+ = 0 clipping is nothing but truncated Q-learning with very large C−.

In the exercises we will compare the performance of the different algorithms. Un-
fortunately, none of them outperforms in all settings. Adding error terms that are
negatively biased helps to reduce overestimation of Q-learning but clearly has other
drawbacks. To our knowledge there is no deeper theoretical understanding of how
to deal optimally with overestimation.

3.7 Multi-step approximate dynamic programming
The one-step approximate dynamic programming algorithms were derived rather directly from
Theorem 3.3.8. We next turn towards finitely many steps forwards which is inbetween the
one-step and infinitely many steps (aka Monte Carlo) approaches.

3.7.1 n-step TD for policy evaluation and control

To understand the idea of n-step temporal differences let us recall the idea behind one-step
temporal differences for sample based policy evaluation in the setting of Qπ. The algorithm runs
the MDP according to the stationary policy π and at every new state-action pair updates the
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matrix according to

Qnew(St, At)︸ ︷︷ ︸
new estimate

= (1− α) Qold(St, At)︸ ︷︷ ︸
old estimate

+α
(

R(St, At) + γQold(St+1, At+1)︸ ︷︷ ︸
reestimate of Q(St,At)

)
.

In every step the algorithms reestimate the state(-action) values by resampling the first step and
then continuing according to dynamic programming with the current estimate. The difference
between new estimate and old estimate is called temporal-difference (TD) error. Weighting
old and new estimates then leads to an increase for positive TD error (resp. a decrease for
negative TD error). A natural generalisation for this reestimation procedure uses longer temporal
differences, i.e. resample the next n steps and then continue according to the old estimate. The
corresponding algorithms are called n-step TD algorithms. We are not going to spell-out the
details, the only difference is the update which is given below and that (compared to one-step)
updates are stopped n steps before the termination as n steps in the future are used for the
update.

Let us go through n-step SARSA value estimation for Qπ.

• Use the Markov property at time n to show that Qπ is also a fixed point of
the matrix equation

Q(s, a) = Es,a

[ n−1∑
t=0

γtRt + γnQ(Sn, An)
]
.

Compare the proof of Proposition 2.1.15. Check the operator defined by the
righthand side is a contraction.

• Use stochastic approximation to show that the sequence

Qnew(s, a)︸ ︷︷ ︸
new estimate

= (1− α) Qold(s, a)︸ ︷︷ ︸
old estimate

+α
( n−1∑

t=0
rt + γnQold(sn, an)︸ ︷︷ ︸

reestimate of Q(s,a)

)

converges to Qπ almost surely. Here r0, ..., rn−1 are the rewards of an n-step
rollout started in (s, a) and (sn, an) is the state-action pair observed after n
steps.

• For n = 1 compare with Section 3.5.1.

• Write algorithmic pseudocode for a totally asynchroneous variant. The algo-
rithm runs a rollout using π, every update requires the next n-steps ahead.

• Do the same for V π.

Analogously, a new n-step SARSA-type control algorithm can be written down, we will compare
the performance to 1-step SARSA in the implementation exercises.

Mimic the SARSA control algorithm/proof for n-step temporal difference updates
just as in the exercise above.

To understand multistep methods better let us compare the Monte Carlo estimator of Qπ from
Section 3.2.1 with the one-step approximate dynamic programming estimator of Qπ from Section
3.5.1. Looking closely at the n-step estimator a crucial observation can be made. For large n the
TD update is essentially the Monte Carlo update. For a particular problem one can thus chose
n such that the algorithm is closer to Monte Carlo (no reuse of samples) or closer to one-step
approximate dynamic programming.
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The Monte-Carlo estimator averages independent samples Q̂π
k =

∑
γtRt of the discounted total

reward to get

Q̂π(s) = 1
N

N∑
k=1

Q̂π
k (s).

The Monte Carlo estimator uses every sample R(s, a) once, whereas the dynamic programming
estimator reuses (bootstraps) samples because the iteration scheme

Qnew(s, a) = (1− α)Qold(s, a) + α
(
R(s, a) + γQold(s′, a′)

)
reuses all samples R(s, a) that were used to estimate Qold(s′, a′). From the practical point of view
the bootstrapping is desirable if the sampling is expansive. Additionally, the reuse of estimates
reduces the variance of the SARS estimator compared to the Monte Carlo estimator.

Being unbiased Monte Carlo has a clear advantage to the unbiased algorithms
obtained from stochastic approximation schemes for which we know nothing about
the bias. For every MDP there will be some integer k for which n-step TD has the
optimal performance.

Let’s turn these thoughts into a formal error decomposition that highlights the advantages and
disadvantages of increasing n.

Proposition 3.7.1. (TD bias-variance decomposition)
Suppose Q is some estimate for Qπ, then

Eπ
s,a

[( reestimation error︷ ︸︸ ︷
n−1∑
t=0

γtRt + γnQ(Sn, An)−Qπ(s, a)
)2]

≤ γ2nEπ
s,a[Qπ(Sn, An)−Q(Sn, An)]2︸ ︷︷ ︸

old estimation bias

+ Vπ
s,a

[ n−1∑
t=0

γtRt

]
︸ ︷︷ ︸

Monte Carlo variance

+ γ2nVπ
s,a

[
Q(Sn, An)

]︸ ︷︷ ︸
old estimate variance

.

Before going through the proof let us discuss what can be learnt from the proposition. Recall
that γ ∈ (0, 1) is fixed, Q given by prior iterations of the algorithm, and n could be chosen.

• The first summand involves γ2n which decreases in n and the squared error of the current
estimate at time n.

• The second summand does not depend on the current estimate Q, but is the variance of
the n-step rewards under the target policy. The Monte Carlo variance increases with n.

• The last summand again involves γ2n which decreases in n and the variance of the current
n-step prediction.

Now suppose a policy evaluation algorithm is run with adaptive choice of n, i.e. in every update
n is adapted to the situation. The estimate suggests to uses large n if Q is not a good and/or a
noisy approximation of Qπ and small n if Q can be expected to be a good approximation. It is
thus reasonable to start with larger n (less bootstrapping, more Monte Carlo) and over time
decrease n. 9

Proof of Proposition 3.7.1. We use the classical bias-variance decomposition formula E[Z2] =
E[Z]2 +E[(Z −E[Z])2], sorting the summands, and Qπ(s, a) = Es,a[

∑n−1
t=0 γtRt + γnQπ(Sn, An)]

9Bild einfuegen, breit im Baum vs. tief im Baum. Soll bootstrapping klarer machen
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to compute

Eπ
s,a

[( n−1∑
t=0

γtRt + γnQ(Sn, An)−Qπ(s, a)
)2]

= Eπ
s,a

[ n−1∑
t=0

γtRt + γnQ(Sn, An)−Qπ(s, a)
]2

+ Eπ
s,a

[( n−1∑
t=0

γtRt + γnQ(Sn, An)−Qπ(s, a)− Eπ
s,a

[ n−1∑
t=0

γtRt + γnQ(Sn, An)−Qπ(s, a)
])2]

= γn
(
Eπ

s,a[Q(Sn, An)]− Eπ
s,a[Qπ(Sn, An)]

)2

+ Eπ
s,a

[( n−1∑
t=0

γtRt − Eπ
s,a

[ n−1∑
t=0

γtRt

]
+ γn

(
Q(Sn, An)− Eπ

s,a[Q(Sn, An)]
)
− (Qπ(s, a)− Eπ

s,a[Qπ(S0, A0)])︸ ︷︷ ︸
=0

)2]

= γ2n
(
Eπ

s,a[Qπ(Sn, An)−Q(Sn, An)]
)2

+ Eπ
s,a

[( n−1∑
t=0

γt(Rt − Eπ
s,a

[ n−1∑
t=0

γtRt

])2]
+ 2Eπ

s,a

[( n−1∑
t=0

γtRt − Eπ
s,a

[ n−1∑
t=0

γtRt

])
γn
(
Q(Sn, An)− Eπ

s,a[Q(Sn, An)]
)]

+ γ2nEπ
s,a

[(
Q(Sn, An)− Eπ

s,a[Q(Sn, An)]
)2
]
.

The third summand equals 0 because (Sn, An) is independent of the rewards R0, ..., Rn−1. Thus,
the expectation factorises and Eπ

s,a[Q(Sn, An)− Eπ
s,a[Q(Sn, An)]] = 0.

3.7.2 TD(λ) algorithms
10 There is a nice-trick in temporal different learning (learning by resampling segments). Instead
of using n steps for a fixed number n one mixes different n or, alternatively, choses n random.
Since the Markov property is compatible with memoryless random variables only, it might
not be surprising that geometric distributions (the only memoryless distributions) play a role.
Recall that an integer valued random variables is called geometric with parameter λ ∈ (0, 1) if
P(X = k) = (1− λ) 1

λk for k ∈ N0. One interpretation is to decide successively with probability
λ to first stop at 0, 1, 2, and so on. The striking fact of TD(λ) schemes is that they interpolate
between the simple one-step updates (justifying the name TD(0) for one-step approximate
dynamic programming) and Monte Carlo for λ = 1. In practice there will be some λ ∈ (0, 1) for
which the bias-variance advantages/disadvantages of TD(λ) and Monte Carlo turns out to be
most effective.
In the following we present several ways of thinking that are more or less practical. The so-called
forwards approach extends n-step temporal difference updates (which use paths forwards in time)
to mixtures of infinitely many updates. Little surprisingly, the forwards approach is not very
practical and mainly used for theoretical considerations. Interestingly, for instance used in a
first visit setup the approach can be rewritten equivalently in an update scheme that can be
implemented in a backwards manner (using the past values for updates). Both update schemes
are different but such that the updates over an entire rollout are equal.

Forwards TD(λ) for policy evaluation

Let’s start a bit with the idea to mix temporal differences of different lengths into one update.
Interestingly, there are different methods than can be worked out from the mixed temporal

10mache notation Geo(λ) or Geo(1-λ) kompatibel mit Stochastik 1 Skript
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difference update

∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(St+k, At+k) + γnVold(St+n)− Vold(St)

))
.

Here is a first simple algorithm that can be seen as a rigorous version (instead of stopping at
some large time) of first visit Monte Carlo estimation of V π for MDPs with infinite horizon:

Algorithm 24: First visit Monte Carlo for non-terminating MDPs
Data: Policy π ∈ ΠS , initial condition µ, λ ∈ (0, 1)
Result: Approximation V ≈ V π

Initialize V0 (e.g. V0 ≡ 0).
n = 0
while not converged do

Sample T ∼ Geo(λ).
Determine stepsizes αn+1(s) for every s ∈ S.
Generate trajectory (s0, a0, s1, ...) until T using policy π.
for t = 0, 1, 2, ..., T do

if st /∈ {s0, s1, ...st−1} then
Vn+1(st) = Vn(st) + αn+1(st)

(∑T −1
i=0 γiR(st+i, at+i) + γT Vn(sT )− Vn(st)

)
end

end
n = n + 1

end
Return Vn.

Theorem 3.7.2. Suppose π ∈ ΠS , λ ∈ (0, 1), and α satisfies the Robbins-Monro
conditions. Then Vn(s)→ V π(s) almost surely for all s ∈ S.

Proof. As always the convergence follows from Theorem ?? once the algorithm is reformulated
with a suitable contraction and (here: unbiased) error. Let us first introduce the contraction
that we will interprete in two ways:

F (V )(s) := Eπ
s

[ ∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(St, At) + γnV (Sn)

)]
It is easy to see that F : R|S| → R|S| is a contraction:

||F (V )− F (W )||∞ = max
s∈S

∣∣∣Eπ
s

[ ∞∑
n=1

(1− λ)λn−1(γnV (Sn)− γnW (Sn))
]∣∣∣

≤
∞∑

n=1
(1− λ)λn−1 max

s∈S
γn|Eπ

s [(V (sn)−W (sn))]|

≤
∞∑

n=1
(1− λ)λn−1 max

s∈S
γn|V (s)−W (s)|

=
∞∑

n=1
(1− λ)λn−1γn||V −W ||∞

= E[γX ] ||V −W ||∞
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for X ∼ Geo(λ). Furthermore, the unique fixed point is V π:

F (V π)(s) =
∞∑

n=1
(1− λ)λn−1Eπ

s

[ n−1∑
t=0

γtR(St, At) + γnV π(Sn)
]

(??)= (1− λ)
∞∑

n=1
λn−1V π(s)

= V π(s)

To prove convergence of the two algorithms we give two interpretations on how to sample from
the expectation defining F (V ). The two ways of sampling from the expectation gives the two
first-visit algorithms. By Fubini’s theorem F (V )(s) is the expectation of a two-stage stochastic
experiment: first sample T ∼ Geo(λ) and then

∑T −1
t=0

(
γtR(St, At) + γT V (ST ) for a sample

of the MDP started in s independently of T . This is exactly what the algorithm does so the
convergence is exactly the one from one-step (or n-step) stochastic approximation writing

Vn+1(s0) = Vn(s0) + αn+1(s0)
(
F (Vn)(s0) + εn(s0)− Vn(s0)

)
with errors εn(s0) = (

∑T −1
t=1 γtR(st, at) − γT Vn(sT )) − F (Vn)(s). We only need to be careful

with the filtration and define Fn as the σ-algebra generated by all random variables of the first
n rollouts. Since we assumed the step-sizes are fixed for each rollout they are Fn-measurable.
Furthermore, εn is Fn+1-measurable (only random variables from rollout n + 1 are used) and
E[εn | Fn] = 0 because the errors take the form sample minus expectation of the sample. As
always the errors are bouned as we assume R to be bounded in these lecture notes.

Next, we come to the λ-return algorithm. The algorithm is the direct adaption of n-step
updates to the infinite mixture of n-steps. For every rollout there is only one update, no further
bootstrapping occurs. Once a state is hit the entire future trajectory is used to update Vn.
Algorithms of this kind are typically called offline because no updates are obtained during a
rollout (in contrast for instance to the one-step algorithms). 11 The algorithm We are not going

Algorithm 25: First visit λ-return algorithm
Data: Policy π ∈ ΠS , λ ∈ [0, 1)
Result: Approximation V ≈ V π

Initialize V0 (e.g. V0 ≡ 0).
Set n = 0.
while not converged do

Determine stepsizes αn+1(s) for every s ∈ S.
Generate trajectory (s0, a0, s1, ...) using policy π.
for t = 0, 1, 2, ... do

if st /∈ {s0, s1, ...st−1} then
Vn+1(st) = Vn(st) + αn+1(st)(

∑∞
n=t(1− λ)λn−1(

∑n−1
k=0 γiR(st+k, at+k) +

γnVold(st+n)− Vold(st))))
end

end
n = n + 1

end
Return Vn.

to prove the convergence. Instead, we prove the convergence for an equivalent algorithm, the
so-called first visit TD(λ) backwards algorithm.

11schreiben mit termination, oder diskutieren, dass nach termination alles 0 ist
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There is no way of turning a forwards algorithm into an online algorithm, an
algorithm where the current trajectory gradually updates the values of V because
all future values are in use.

The suprising fact is that the first visit λ-return algorithm can actually transformed into an
equivalent forwards algorithm. This is the main beautiful idea of TD(λ).

TD(λ) backwards algorithms

To turn the λ-return algorithm into a backwards algorithm (e.g. only states from the past are
used for every future update) a little neet lemma is needed.

Lemma 3.7.3. Suppose s0, a0, s1, a1, ... is a state-action sequence, λ ∈ (0, 1), and
V : S → R, then

∞∑
n=1

(1− λ)λn−1
( n−1∑

t=0
γtR(st+k, at+k) + γnV (st+n)− V (st)

))
=

∞∑
t=0

(γλ)t
(
R(st, at) + γV (st+1)− V (st)

)
.

There are two interesting point of this representation of the TD(λ) update. First, the formula is
more pleasant as one infinite sum dissapeared. Secondly, the new formula also works for λ = 0
and λ = 1. Plugging-in yields exactly the formulas for one-step (use 00 = 1) and Monte Carlo
value (use a telescopic sum argument) updates.

Proof. For the proof we use that
∑∞

n=t λn = λt
∑∞

n=0 λn = λt

1−λ so that

(1− λ)
( ∞∑

n=1
λn−1

( n−1∑
t=0

γtR(st, at) + γnV (sn)− V (s0)
))

= (1− λ)
∞∑

t=0
γtR(st, at)

∞∑
n=t+1

λn−1
)

+ (1− λ)
∞∑

n=1
λn−1γnV (sn)− V (s0)

=
∞∑

t=0

(
γλ)t(R(st, at) + (1− λ)γV (st+1)

)
− V (s0)

=
∞∑

t=0
(γλ)t

(
R(st, at) + γV (st+1)− V (st)

)
The last equation can be checked by using a telescoping sum (write out the sums):

∞∑
t=0

(γλ)tγ(1− λ)V (st+1)− Vold(s0) =
∞∑

t=1
(γλ)t−1γV (st)−

∞∑
t=1

(γλ)tV (st)− Vold(s0)

=
∞∑

t=0
(γλ)t(γV (st+1)− V (st))

What do we learn from the lemma? Instead of updating once the λ-return we can equally update
sequentially because a sum

∑∞
t=0 at can be computed sequentially by bt+1 = bt + at. Turning this

into an algorithm is simple. Wait for the first visit of a state s0 and then add in every subsequent
round the corresponding summand, this gives, with some inconvenient notation, Algorithm 26.
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Algorithm 26: Offline TD(λ) policy evaluation with first-visit updates
Data: Policy π ∈ ΠS , λ ≥ 0
Result: Approximation V ≈ V π

Initialize V0 (e.g V0 ≡ 0)
while not converged do

Initialize s, n = 1, N ≡ 0, k ≡ 0, t = 0.
Determine step-sizes α(s), s ∈ S, for next rollout.
while s not terminal do

Sample a ∼ π(· ; s)
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
N(s) = N(s) + 1
if N(s) = 1 then

k(s) = t
end
for s̃ ∈ S do

if N(s̃) ≥ 1 then
Vn+1(s̃) = Vn(s̃) + α(s̃)(γλ)t−k(s̃)(R(s, a) + γVn(s′)− Vn(s)

)
end

end
s = s′, t = t + 1

end
n = n + 1

end
Return Vn.

Theorem 3.7.4. Suppose π ∈ ΠS , λ ∈ (0, 1), and α satisfies the Robbins-Monro
conditions. Then Vn(s)→ V π(s) almost surely for all s ∈ S in Algorithms 25 and
26.

Proof. By Lemma 3.7.3 the updates of Vn per rollout are equal for both algorithms, thus, the
convergence only needs to be proved for one of them. We prove convergence for the forwards
algorithm. We use the same F from the proof of Theorem 3.7.2. F is a contraction with unique
fixed point V π. As always the algorithm is rewriten into a asynchronous stochastic approximation
update. Without loss of generality, we assume k(s) = 0 if state s has been visited. Else, we can
shift the sum again. From Proposition 3.7.3 we get

Vn+1(s0) = Vn(s0) + αn+1(s0)
∞∑

t=0
(γλ)t

(
R(st, at) + γVn(st+1)− Vn(st)

)
= Vn(s0) + αn(s0)

∞∑
i=1

(1− λ)λi−1
i−1∑
t=0

(
γtR(st, at) + γiVn(si))− Vn(st)

)
= Vn(s0) + αn(s0)

(
F (Vn)(s0)− Vn(s0) + εn(st)

)
,

with F (V ) from above and error-term

εn(s0) :=
∞∑

i=1
(1− λ)λi−1

i−1∑
t=0

(γtR(st, at) + γiVn(si))− F (Vn)(s0)

for every s ∈ S. Moreover, the error-term εn(s) fulfills

Eπ
s [εn(s) | Fn] = (F (Vn))(s)− (F (Vn))(s) = 0.
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Again, the errors are bouned as we assume R to be bounded. Hence, we got all assumptions for
Theorem ?? and convergence towards the fixpoint V π. 12

We can now derive another algorithm that is much more common in practice. Essentially, we use
the same algorithm as before but instead use every-visit updates instead of first visit updates.
Another nice simplfication turns this into the famous TD(λ) algorithm with elicability traces.

Lemma 3.7.5. Suppose s0, a0, s1, a1, ... is a state-action sequence, λ ∈ (0, 1), and
V : S → R, then

∞∑
t=0

1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
=

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) k∑
t=0

(γλ)k−t1St=s︸ ︷︷ ︸
=:ek(S0)

.

Proof. The proof follows from a Fubini flip using the indicator 1k≥t = 1t≤k:

∞∑
t=0

1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
=

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) ∞∑
t=0

1st=s0(γλ)k−t.

Let us go back to the first visit algorithm (26) that implements first visit updates. Replacing
first vistig updates

Vn+1(s0) = Vn(s0) + 1{first visit of s0 at t}αn+1(s0)
∞∑

k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
by the every visit update yields

Vn+1(s0) = Vn(s0) + αn+1(s0)
∞∑

t=0
1st=s0

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γV (sk+1)− V (sk)

)
Lemma 3.7.5= Vn(s0) + αn+1(s0)

∞∑
k=0

(
R(sk, ak) + γV (sk+1)− V (sk)

) k∑
t=0

(γλ)k−t1St=s0︸ ︷︷ ︸
=:ek(s0)

.

Implemented as an Algorithm the update immediately yields Algorithm 27, backwards TD(λ)
with eligibility traces.
Before proving convergence of offline TD(λ) with eligibility traces let us quickly discuss what
the algorithm does. In fact, the simple mechanism is certainly a main reason for its success.
The term ek(s) is called the eligibility trace at time k in state s. It determines the effect of the
previous visits in state s on the current value. If s was visited at times t1, t2, ..., the reward after
the current visit in state sk needs to be considered in the value function in state s. The first
visit in s still has an effect on the current visit in sk of (γλ)k−t1 , the second visit has a larger
effect of (γλ)k−t2 and so on. The first effects will vanish in the limit k →∞. In this algorithm it

12both proofs are incomplete. since a state might not be visited in a rollout it might not be sampled in a run,
thus, εn is not unbiased. Solution: Restart in unvisited states as long as all states have been visited. Maths ok,
run-time nightmare.
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Algorithm 27: Offline TD(λ) with eligibility traces
Data: Policy π ∈ ΠS , λ ∈ [0, 1)
Result: Approximation V ≈ V π

Initialize Vn (e.g. Vn ≡ 0) for all n ∈ N.
N = 0
while not converged do

Initialize e(s) = 0 for all s ∈ S
Initialize s.
Determine step-sizes α(s), s ∈ S, for next rollout.
while s not terminal do

a ∼ π(· ; s).
Sample reward R(s, a).
Sample s′ ∼ p(· ; s, a).
Set ∆ = R(s, a) + γVN (s′)− VN (s).
Set e(s) = e(s) + 1.
for s̃ ∈ S do

Update VN+1(s̃) = VN (s̃) + α(s̃)∆e(s̃).
Set e(s̃) = γλe(s̃).

end
s = s′

end
N = N + 1

end

is important to note that we still use VN until we are in a terminal state for the update with ∆.
Thus, the algorithm also does not bootstrap information of the beginning of a trajectory to later
times.

There is an online version, see Algorithm 28, of TD(λ) with eligibility traces in
which V is updated during the rollout (online) via

V (s̃) = V (s̃) + α(s̃)∆e(s̃)

For λ = 0 this is nothing but TD(0) whereas for λ = 1 and suitable choice of α
(which?) this is the every visit Monte Carlo estimator.

This is because we can see in equation ?? that the value function is updated only when the
trajectory ends and not in between. Note that for a functioning algorithm terminating MDPs are
required then. For a similar convergence proof as ??, we necessarily require terminating MDPs.
We need finite expected visits in each non-terminating state such that the update in ?? stays finite:

For every s ∈ S, let 0 < m(s) := Eπ
s

[∑∞
t=0 1St=s

]
<∞ and α̃n(s) := αn(s)m(s). Then we can

rewrite the every visit update scheme in the mathematical form

VN+1(s)

= VN (s) + α̃n(s)
[ 1

m(s)

∞∑
t=0

1st=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))− VN (s))
]
.

In this way backwards TD(λ) can be interpreted as stochastic approximation algorithm with
step-sizes α̃n(s) that satisfy the Robbins-Monro condition if and only if αn(s) do.

Theorem 3.7.6. (Convergence of TD(λ) with every-visit updates)



3.7. MULTI-STEP APPROXIMATE DYNAMIC PROGRAMMING 133

Let for all s ∈ S with the first visit in k(s) the update of V be

VN+1(s) = VN (s) + αN (s)
∞∑

t=0
1st=s

∞∑
k=t

(
(γλ)k−tR(sk, ak) + γVN (sk+1)− VN (sk)

)
.

with λ < 1 and the trajectory (s0, a0, s1, ...) sampled according to the policy π and
m(s) <∞ for every s ∈ S.

Suppose that all states are visited infinitely often in the algorithm such that the
step-sizes are adapted and satisfy the Robbins-Monro conditions are satisfied:

∞∑
n=1

αn(s) =∞ a.s. and
∞∑

n=1
α2

n(s) <∞ a.s.

for every s ∈ S. Moreover, let the rewards be bounded and 0 < γ < 1. Then
limn→∞ VN (s) = V π(s) almost surely, for every state s ∈ S.

Proof. The filtration FN is defined to be generated by all random variables needed to for the Nst
rollout. As always we rewrite the update scheme into an asynchronous stochastic approximation
scheme:

VN+1(s0)

= VN (s0) + α̃n(s0)
( 1

m(s0)

∞∑
t=0

1st=s0(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))− VN (s0))
)

= VN (s0) + α̃n(s0)
(
F (VN )(s0)− VN (s0) + εN (s0)

)
with

F (V )(s) := 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(Sk, Ak) + γnVN (St+n))
]

and

εN (s0) := 1
m(s0)

∞∑
t=0

1st=s0(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(γk−tR(sk, ak) + γnVN (st+n))

− F (VN )(s0) + VN (s0)− 1
m(s0)

∞∑
t=0

1st=s0VN (s0)

Similarly to the previous proof, V π is a fixed point of F because

F (V π)(s) = 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1

t+n−1∑
k=t

(
γk−tR(Sk, Ak) + γnV π(St+n)

)]
= 1

m(s)E
π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1Eπ

s

[ t+n−1∑
k=t

(
γk−tR(Sk, Ak) + γnV π(St+n)

) ∣∣∣ (St, At)
]]

= 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1V π(St)

]
= 1

m(s)E
π
s

[ ∞∑
t=0

1St=s

]
(1− λ)

∞∑
n=1

λn−1V π(s)

= m(s)
m(s)V π(s) = V π(s)
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for every s ∈ S. Similarly to the previous proof we also obtain that F is a contraction:

||F (V )− F (W )||∞ = max
s∈S

∣∣∣ 1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1(γnV (St+n)− γnW (St+n))

]∣∣∣
≤ max

s∈S

1
m(s)E

π
s

[ ∞∑
t=0

1St=s(1− λ)
∞∑

n=1
λn−1γn||V −W ||∞

]
≤ max

s∈S

1
m(s)E

[
γX
]
Eπ

s

[ ∞∑
t=0

1St=s

]
||V −W ||∞ = E

[
γX
]
||V −W ||∞

for X ∼ Geo(λ). The error term εN (s) fulfills

Eπ
s [εN (s) | FN ] = (F (VN ))(s)− (F (VN ))(s)− 1

m(s)m(s)VN (s) + VN (s) = 0.

As the rewards are bounded, we also get

Eπ
s [ε2

N (s) | FN ] ≤ C ∀N ∈ N, s ∈ S.

So, we got all assumptions for Theorem ?? and convergence towards the fixpoint V π.

The algorithm can also be modified by not waiting until termination before updating. Then,
VN is directly updated after each step.This is called online updating: We do not wait until the
trajectory is terminated, but use a new version of V every time it has been updated. Using this
update scheme, we can not use the forward and the backward view equivalently anymore: Instead
to wait for the future rewards and update afterwards (forward view), we update the effect of
previous states directly with a new version of the value function. The algorithm according to
this scheme is now given by:

Algorithm 28: Online backwards TD(λ) with eligibility traces
Data: Policy π ∈ ΠS , λ ≥ 0
Result: Approximation V ≈ V π

Initialize V (e.g. V ≡ 0.
while not converged do

Initialize e(s) = 0 for all s ∈ S
Initialize s.
Determine step-sizes α(s), s ∈ S, for next rollout.
while s not terminal do

a ∼ π(· ; s)
Sample a ∼ π(· ; s).
Sample R(s, a).
Sample s′ ∼ p(· ; s, a).
Set ∆ = R(s, a) + γV (s′)− V (s).
Set e(s) = e(s) + 1.
for s̃ ∈ S do

Update V (s̃) = V (s̃) + α(s̃)∆e(s̃).
Update e(s̃) = γλe(s̃).

end
Set s = s′.

end
end

The convergence of the both versions of TD(λ) can be proven by proving the offline version
first and then showing that the online version and the offline version will converge to the same
function.
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To summarise the discussion of temporal difference with eligibility traces the story
of the chapter kind of reversed. Earlier we suggested different contractions F with
fixed point V π (or Qπ or Q∗) and immediately got an algorithm as approximate
fixed point interation. Here the approach got reversed. A very simple algorithm is
written down and then proved to converge by rewriting into a very tricky contraction
operator.

TD(λ) for Control

To be written... We will only adapt the ideas of the last section to control algorithms now. No
proofs - just algorithms!

SARSA(λ)

Q(λ)

Q-learning can be played offline. Therefore, we can not estimate returns along the sampled
trajectory if the selection policy is not the greedy policy. But we noticed that it might be a
good idea to choose actions which are close to the greedy policy, e.g. ε-greedy. So, if we play the
greedy action in many cases, we can derive Q(λ) as well.

3.8 Tabular simulation based actor-critic
So far we discussed several methods on how to turn value-iteration into sample based model-free
algorithms. But how about policy iteration? Can policy iteration also be turned into a sample
based model-free algorithm? The answer is yes, and this is called actor-critic.



Part II

Non-Tabular Reinforcement
Learning
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Up to now we studied so-called tabular algorithms under the basic assumption a table for all
state-action pairs can be safed. We then developed algorithms that explicitly dealt with all
state-action pairs for instance by computing or estimating the matrices Qπ or Q∗. This approach
is only feasibilty if the number of state-action pairs is small enough to at least safe such a
table (not to think about operating with the tables, i.e. multiplications, inversions, ect.). This
assumption is widely unrealistic. It makes sense for gridworld examples but immediately fails for
interesting control problems such as playing a computer game. The number of actions is often
not the problem but the number of states might be huge (or even infinite). In such situations
tabular algorithms are not feasible and further approximations are indispensible. In this part we
will discuss a few of the classical approaches:

• Policy approximation. The set of all policies is replaced by a parametric family for
which the best policy is approximated using (stochastic) gradient descent,

• Value function approximation. for which the Q-matrix (or value function) is replaced
by an approximate family (Qθ)θ∈Θ and instead of learning all entries Q(s, a) separately we
try to find the best approximating matrix (in some sense) Qθ∗ by optimising a suitable
errorfunction using (stochast) gradient descent.

• Actor-critic. Mixtures of policy approximation and value function approximation.

All these methods have in common that they somehow involve a (stochastic) gradient algorithm.
We thus start with in introductory chapter introducing some of the most classical results.



Chapter 4

A quick dive into gradient descent
methods

We will focus during this section1 on gradient descent methods for functions f : Rd → R, i.e. we
aim to find (local) minima of f . Note that all results hold similar for gradient ascent methods by
considering −f instead of f , then all maxima are minima.
Before we get started recall from basic analysis that the negative gradient is the direction of the
steepest descent, i.e.

min
||d||=1

f ′(x)d︸ ︷︷ ︸
slope in direction d

= ∇f(x).

This motivates the minimisation scheme that goes step-by-step in the direction of the gradient
multiplied with the length of each step determined by a step-size:

xn+1 = xn − α∇f(xn), x0 ∈ Rd.

Since only derivatives of first order are involved such a numerical scheme is called a first order
scheme. How to chose the step-size (length of step into gradient direction) is non-trivial. Going
too far might also lead to an increase of the function, not going far enough might lead to very slow
convergence. To get a first feeling have a look at the illustration of two extreme scenarios. For a
quadratic function f(x) = ||x||2 gradient descent can converge in one step, for functions with
narrow valleys the convergence is very slow. The problem in the second example the mixture of
flat direction (in the valley) and steep direction (down the ridge) that is reflected in a large ratio
of largest and smallest Eigenvalue of the Hessian ∇2f(x). Thus, it is not surprising that good
convergence properties hold for functions not too big Eigenvalues (so-called L-smooth functions)
and not too small Eigenvalues (so-called strongly convex). We will not talk about Eigenvalues
but uses equivalent definitions that are more straightforward to be used in the proofs.

1For much more please check the lecture notes https://www.wim.uni-mannheim.de/media/Lehrstuehle/wim/
doering/OptiML/Sheets/lecture_notes_01.pdf of Simon Weißmann and, of course, the standard text book
"Nonlinear programming" of Dimitri P. Bertsekas from which most proofs are taken.
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To get a first impression in what follows we will go through the most basic theory, for L-smooth
(not too step) and strongly convex (not too flat) functions. What is more relavant for policy
gradient in reinforcement learning is the continuation for functions that satisfy the so-called PL
inequality (gradient dominates the function differences).9
Let us start with L-smoothness.

Definition 4.0.1. We call a function f : Rd → R L-smooth if f is differentiable
and the gradient ∇f is L-Lipschitz continuous, i.e.

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd. (4.1)

L-smoothness is a property in which gradient descent algorithms have a good chance to converge
and, luckily, gradients of value functions of MDPs are L-smooth for some choices of policies. To
get an idea of what L-smoothness means note that for twice-differentiable f the L-smoothness is
equivalent to all eigenvalues of the Hessian ∇2f(x) to be in [−L, L]. Thus, L-smooth function
do not have very strong curvature.

4.1 Gradient descent for L-smooth functions
In this first section we consider gradient descent with the only assumption of f being L-smooth.
In that case gradient descent does not necessarily converge to a (local) minimum but we can
show it converges (if it converges) to a stationary point, i.e. a point with vanishing gradient.
Stationary points are not necessarily (local) extreme points, saddle points are also stationary.

Lemma 4.1.1. (Descent lemma)
Let f : Rd → R be L-smooth for some L > 0. Then it holds that

f(x + y) ≤ f(x) + yT∇f(x) + L

2 ∥y∥
2︸ ︷︷ ︸

tangent at x plus quadratic

(4.2)

for all x, z ∈ Rd.

Note that small L makes the deviation of ∇f smaller, thus, the function smoother. It will later
turn out that convergence of gradient descent is faster for smoother functions.

Proof. We define ϕ(t) = f(x + ty) and apply the chain rule in order to derive

ϕ′(t) = yT∇f(x + ty), t ∈ [0, 1].

By the fundamental theorem of calculus it follows

f(x + y)− f(x) = ϕ(1)− ϕ(0) =
∫ 1

0
ϕ′(t)dt

=
∫ 1

0
yT∇f(x + ty)dt

=
∫ 1

0
yT∇f(x)dt +

∫ 1

0
yT (∇f(x + ty)−∇f(x))dt

≤ yT∇f(x) +
∫ 1

0
∥y∥ ∥∇f(x + ty)−∇f(x)∥dt

≤ yT∇f(x) + ||y||
∫ 1

0
Lt · ∥y∥dt

≤ yT∇f(x) + L

2 ∥y∥
2,
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where we have applied Cauchy-Schwarz followed by L-smoothness.

The aim is to show that the gradient descent algorithm converges to a (local) minimum. This is
not always the case, the algorithm can for instance also converge to saddle points. What is true
without any assumptions, except the minimal differentiability, is the convergence to a stationary
point, i.e. a point with vanishing gradient.

Theorem 4.1.2. Let f : Rd → R be L-smooth and (xk)k∈N be defined as

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with non-negative step-size ᾱ ∈ [ε, 2−ε
L ] for some ε < 2

L+1 . Then every accumulation
point x̄ of (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.

Proof. Since f is assumed to be L-smooth we can apply the descent Lemma 4.1.1 (with the
choice y ≡ −ᾱ∇f(xk) and x ≡ xk),

f(xk − ᾱ∇f(xk))− f(xk) ≤ (−ᾱ∇f(xk))⊤∇f(xk) + L

2 ∥ᾱ∇f(xk)∥2

= ᾱ∥∇f(xk)∥2( ᾱL

2 − 1).
(4.3)

In fact, this inequality justifies the name descent lemma. Due to our choice of ᾱ ≤ 2−ε
L we can

bound
ᾱL

2 − 1 ≤ −ε

2 < 0.

We reformulate the inequality (4.3) and obtain

f(xk)− f(xk+1) = f(xk)− f(xk − ᾱ∇f(xk)) ≥ ε

2 ᾱ∥∇f(xk)∥2 ≥ ε2

2 ∥∇f(xk)∥2. (4.4)

Assume that (xnk
)k∈N is a sub-sequence with limit point x̄ ∈ Rd so that also limk→∞ f(xnk

) =
f(x̄) by the continuity of f . By the Cauchy criterion for converging sequence s we also obtain

lim
k→∞

(f(xnk+1)− f(xnk
)) = 0.

Then, using the (4.4), it then follows that

∥∇f(x̄)∥ = lim
k→∞

∥∇f(xk)∥2 = 0.

The proof was simple and the result is very weak. There is no statement about convergence and
no way to know if the limit points are minima. For this more assumptions on f are needed.

4.2 Gradient descent for L-smooth, convex functions
We will now study the convergence of gradient descent under the additional assumption of
convexity.

Definition 4.2.1. A function f : Rd → R is called convex if

f(y) ≥ f(x) + (y − x)T∇f(x)

for all x, y ∈ Rd.
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Recall from basic analysis that the definition has a geometric interpretation. The prime example
is a quadratic function f(x) = xT Ax for a positive definite matrix A but also linear functions are
convex. At every point the tangent plane lies below the graph of f . For convex and L-smooth f
convergence of the gradient descent recursion to a global minimum can be proved if a global
minimum exists (linear functions are convex but do not posess minima). In theorems we will
always assume a global minimum exists.

All local minima of convex functions must be global minima, in particular, all global
minima have same height.

In what follows we will always denote by f∗ the height at a (all) global minimum. In order
to talk about convergence rates one typically considers an error function e : Rd → R with the
property e(x) ≥ 0 for all x ∈ Rd and e(x∗) = 0. A typical choice is e(x) = f(x) − f∗. Recall
that convergence is called linear (it is actually exponentially fast) if e(xk+1) ≤ ce(xk) for some
c ∈ (0, 1) and sublinear if convergence is slower. For a first order methode (only first derivatives
are used) convergence will not be linear. For convex and smooth function we can at least prove
the following sublinear convergence rate in case a global minimum exists.

Theorem 4.2.2. Let f : Rd → R be convex and L-smooth, and let (xk)k∈N be
generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ ≤ 1
L . Moreover, we assume that the set of all global minimums of f is

non-empty. Then the sequence (xk)k∈N converges in the sense that

e(xk) := f(xk)− f∗ ≤
c

k + 1 , k ∈ N

for some constant c > 0 and f∗ = minx∈Rd f(x).

Note again that since there are no unique mimima we do not aim to prove convergence of xn to
x∗ but instead convergence of f(xn) to f∗.

Proof. We again apply the descent lemma 4.1.1 to the recursive scheme (y = xk+1 − xk, x = xk)
to obtain

f(xk+1) ≤ f(xk)− ᾱ∥∇f(xk)∥2 + Lᾱ2

2 ∥∇f(xk)∥2

= f(xk) + ᾱ
(Lᾱ

2 − 1
)
∥∇f(xk)∥2.

Since ᾱ ≤ 1
L , we have ( Lᾱ

2 − 1) < 0 and therefore, the sequence (f(xk))k∈N is decreasing. Now,
let x∗ ∈ Rd be a global minimum of f such that due to convexity it holds true that

f(xk) + (x∗ − xk)T∇f(xk)︸ ︷︷ ︸
tangent at x∗

≤ f(x∗).

In the one-dimensional case this is nothing but saying that the tangents at the minimum lie
above the graph. We plug this into the above inequality and obtain

f(xk+1) ≤ f(xk) + ᾱ
(Lᾱ

2 − 1
)
∥∇f(xk)∥2

≤ f(x∗)− ᾱ

ᾱ
(x∗ − xk)T∇f(xk) + ᾱ

(Lᾱ

2 − 1
)
∥∇f(xk)∥2

= f(x∗) + 1
ᾱ

[1
2∥x∗ − xk∥2 + ᾱ2

2 ∥∇f(xk)∥2 − 1
2∥(x∗ − xk) + ᾱ∇f(xk)∥2

]
+ ᾱ

(Lᾱ

2 − 1
)
∥∇f(xk)∥2,
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where we have used the polarisation formula −⟨a, b⟩ = 1
2∥a∥

2 + 1
2∥b∥

2 − 1
2∥a + b∥2 for a, b ∈ Rd.

Rearanging the righthand side yields

f(xk+1) ≤ f(x∗) + 1
2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2)+ ᾱ

(Lᾱ

2 −
1
2

)
∥∇f(xk)∥2

≤ f(x∗) + 1
2ᾱ

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2),

where we have used again that ᾱ ≤ 1
L . Taking the sum over all iterations gives

N∑
k=0

(
f(xk+1)− f(x∗)

)
≤ 1

2ᾱ

N∑
k=0

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2)

= 1
2ᾱ

(
∥x∗ − x0∥2 − ∥x∗ − xN+1∥2)

≤ 1
2ᾱ
∥x∗ − x0∥2,

where we have applied a telescoping sum. With the decrease of (f(xk))k∈N it follows that

N∑
k=0

f(xk+1) ≥ (N + 1)f(xN+1),

and therefore, the assertion follows with

f(xN+1)− f(x∗) ≤ 1
N + 1

N∑
k=0

(
f(xk+1)− f(x∗)

)
≤ 1

N + 1
1

2ᾱ
∥x∗ − x0∥2 =: c

N + 1 .

Definition 4.2.3. A function f : Rd → R is called µ-strongly convex if

f(y) ≥ f(x) + (y − x)T∇f(x) + µ

2 ∥y − x∥2︸ ︷︷ ︸
tangent at x plus quadratic

for all x, y ∈ Rd.

Linear functions are not strongly convex, f(x, y) = x2 is not strongly convex as it only bends in
the x direction. While f is an example of a convex function with infinitely many global minima
(the y-axis) all strongly convex functions have a unique global maxima and no further local
minima.

Show that a strongly convex function has a unique global minimum.

If we tighten the assumption on convexity and assume µ-strong convexity instead, we can improve
the convergence rate from sublinear to linear convergence as follows.

Theorem 4.2.4. Let f : Rd → R be µ-strongly convex for some µ > 0 and
L-smooth, as let (xk)k∈N be generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ < 1
L . Then the sequence (xk)k∈N converges linearly in the sense that there

exists c ∈ (0, 1) such that

e(xk) := ∥xk − x∗∥ ≤ ck∥x0 − x∗∥, k ∈ N
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where x∗ ∈ Rd is the unique global minimum of f . The constant can be chosen as
c = (1 + µᾱ)−1/2.

An example for such a function is f(x) = x2 − cos(x). Note that for strongly convex L-smooth
functions the convergence also implies linear convergence of f(xn) to f(x∗) because (Nesterov,
page 64)

f(xn)− f(x∗) ≤ 1
2µ
||∇f(xn)−∇f(x∗)||2 ≤ L

2µ
||xn − x∗||2 ≤ (c2)n L

2µ
||x0 − x∗||

so that the theorem significantly strengthens the previous theorem on only convex functions.

Proof. Let x∗ ∈ Rd be the unique global minimum of f with ∇f(x∗) = 0. Since f is assumed to
be µ-strongly convex, by Definition 4.2.3 it holds true that

µ

2 ∥xk+1 − x∗∥2 = ∇f(x∗)T (xk+1 − x∗) + µ

2 ∥xk+1 − x∗∥2 ≤ f(xk+1)− f(x∗).

Because µ-stronly convex implies convexity we can use the calculations from the previous proof
of Theorem 4.2.2, where we have derived that

f(xk+1)− f(x∗) ≤ 1
2ᾱ

(
||xk − x∗||2 − ||xk+1 − x∗||2

)
and together we obtain (µ

2 + 1
2ᾱ

)
∥xk+1 − x∗∥2 ≤ 1

2ᾱ
∥xk − x∗∥2.

The assertion follows via induction using the inequality with c =
√

1
1+µᾱ ∈ (0, 1).

For a choice ᾱ close to 1
L the rate is essentially

∥xk − x∗∥ ≤
(√ 1

1 + µ
L

)k

∥x0 − x∗∥.

This means that the speed of convergence (small c is better) is determined by the ratio of
smoothness L and strong convexity µ:

c =
√

1
1 + µ

L

Thus, small L (very smooth function) and large µ (very convex function) yield fast convergence.

Suppose f(x) = xT Ax is a quadratic function. Show that L and µ can be described
by the spectrum of A. L is the two times the largest singular value and µ two times
the smallest singular value. Thus, convergence is fast if the Eigenvalues are similar
while convergence can be slow if the Eigenvalues differ a lot. The latter corresponds
to the situation of narrow vallays, the curvatures is big in some direction and small
in another direction.

4.3 Gradient descent for L-smooth functions with PL in-
equality

In the applications for policy gradient methods the assumption of convexity (actually concavitiy
as functions are maximised) is not fulfilled already for simple examples. There is one way to
relax this assumption to so called Polyak-Łojasiewicz (PL) conditions.
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Definition 4.3.1. A function f : Rd → R satisfies the (strong) PL inequality if
for some constant C > 0

∥∇f(x)∥2 ≥ C(f(x)− f∗), x ∈ Rd, (4.5)

holds for all x ∈ Rd, where f∗ = minx∈Rd f(x) > −∞.

In fact, the PL inequality is exactly what gradient descent needs for convergence to a global
minimum.

Theorem 4.3.2. Let f : Rd → R be L-smooth and satisfied the PL condition
holds for some C = 2r with r ∈ (0, L). Then the sequence (xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ = 1
L converges linearly in the sense that

e(xk) := f(xk)− f∗ ≤ ck(f(x0)− f∗),

where c = 1− r
L ∈ (0, 1).

Note again that since there are no unique mimima we do not aim to prove convergence of xn to
x∗ but instead convergence of f(xn) to f(x∗).

Proof. Using the descent Lemma 4.1.1 as in the proofs above (this only uses L-smooth) yields

f(xk+1) ≤ f(xk)− ᾱ(1− Lᾱ

2 )∥∇f(xk)∥2

= f(xk)− 1
2L
∥∇f(xk)∥2.

Using the PL-inequality yields

f(xk+1)
(4.6)
≤ f(xk)− r

L (f(xk)− f∗).

Subtracting f∗ from both sides, we get

f(xk+1)− f∗ ≤ (1− r
L )(f(xk)− f∗)

and the claim follows by induction.

The idea behind inequality (4.6), also known as PL or Polyak-Lojasiewicz inequality (also called
gradient domination) is very simple. The inequality ensures that the gradient does not vanish
as long as the gradient descent algorithm has not reached x∗. Since the algorithm is based on
the gradient the algorithm does not stop moving as long f(xk) has not reached f∗. Here is
another view. For every x ∈ Rd the PL inequality lower bounds the norm of the gradient by the
difference of f(x) to some global minimum of f . This implies, that a small gradient at x implies
a small difference between the function value f(x) and the global optimum. Given that gradient
descent for L-smooth functions implies convergence to a stationary point by Theorem 4.4.1 it is
not surprising that the PL condition is exactly what is needed for convergence. Estimates of the
PL type are called gradient domination inequalities.

Prove that µ-strong convexity and L-smoothness imply the PL condition (4.6).
What is C?

Condition (4.6) can be relaxed a little bit to remain convergence of gradient descent but just
with a sublinear convergence rate.
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Definition 4.3.3. A function f : Rd → R satisfies the weak PL inequality if for
some constant C > 0

∥∇f(x)∥ ≥ C(f(x)− f∗), x ∈ Rd, (4.6)

holds for all x ∈ Rd, where f∗ = minx∈Rd f(x) > −∞.

We will see below that for very special parametrisations of policies the weak PL inequalities
holds for the parametrised value function in reinforcement learning. The convergence can still be
proved but unfortunately is much slower, weak PL is not similar to strong convexity.

Theorem 4.3.4. Let f : Rd → R be L-smooth and satisfied the PL condition
holds for some C = 2r with r ∈ (0, L). Then the sequence (xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk), x0 ∈ Rd,

with ᾱ = 1
L converges sublinearly in the sense that

e(xk) := f(xk)− f∗ ≤
L

2r2(k + 1) .

Proof. As in the previous proof we first start with the estimate

f(xk+1) ≤ f(xk)− 1
2L
∥∇f(xk)∥2.

that uses the L-smoothness. Applying the weak PL-inequality gives

f(xk+1) ≤ f(xk)− 1
2L

4r2(f(xk)− f∗)2.

Substracting f∗ on both sides of the inequality yields the recursion

e(xk+1) ≤ e(xk)− 2r2

L
e(xk)2. (4.7)

We will show, that for any positive sequence (an)n∈N with an ∈ [0, 1
q ] for some q > 0, which

satisfies the diminishing contraction

0 ≤ an+1 ≤ (1− qan)an, n ≥ 0,

converges to zero with convergence rate

an ≤
1

nq + 1
a0

≤ 1
(n + 1)q .

To see this, we divide the reordered contraction

an ≥ an+1 + qa2
n

by anan+1 to obtain
1

an+1
≥ 1

an
+ q

an

an+1︸ ︷︷ ︸
≥1

≥ 1
an

+ q

which leads to
1

an
− 1

a0
=

n−1∑
k=0

( 1
ak+1

− 1
ak

)
≥ nq.
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Reordering we get our claim

an ≤
1

nq + 1
a0

a0≤ 1
q

≤ 1
(n + 1)q .

If we can show that e(xk) ≤ L
2r2 for all k, then the claim follows by applying this to (4.7). As in

the previous proof the descent lemma and ᾱ = 1
L give

f∗ ≤ f(xk+1) ≤ f(xk)− 1
2L
∥∇f(xk)∥2,

which implies

f∗ − f(xk) ≤ − 1
2L
∥∇f(xk)∥2.

Therefore by the weak PL-condition

e(xk) ≥ 1
2L
∥∇f(xk)∥2 ≥ 2r2

L
e(xk)2.

Dividing both sides by e(x) and rearranging the terms results in e(xk) ≤ L
2r2 .

One can ask the justified question whether there exists functions which are L-smooth and not
convex but satisfy the PL condition. Indeed there are some:

Show that f(x) = x2 + 3 sin2(x) satisfies the PL condition (4.6) and prove that f is
not convex. Plot the function to see why gradient descent converges. Hint: The
plot can also help to find the parameter r of the PL condition.

4.4 Gradient descent with diminishing step-sizes
Typically, the smoothness parameter L is unknown, especially in a model-free optimization
procedure as policy gradient where we only want to assume that we can sample from the MDP.
Thus, how could one choose a step-size that satisfies ᾱ < 2

L or ᾱ < 1
L ? There are plenty of work

arounds. Here we show that convergence also works if quickly diminishing step-sizes are used. If
step-sizes decay too strongly (being summable) the algorithm might produce a sequence that
stops moving away from a stationary point/optimum. We cover the case of convergence to a
stationary point by only assuming L-smoothness in the context on diminishing step-sizes. All
other results can be transferred to diminishing step-sizes as well.

Theorem 4.4.1. Let f : Rd → R be L-smooth and (xk)k∈N be defined as

xk+1 = xk − αk∇f(xk), x0 ∈ Rd,

with non-negative step-size sequence (αk)k∈N that fulfills

lim
k→∞

αk = 0 and
∞∑

k=0
αk =∞.

Then for the sequence (f(xk))k∈N it holds true that either

lim
k→∞

f(xk) = −∞ or lim
k→∞

∇f(xk) = 0.

Moreover, every accumulation point x̄ of (xk)k∈N is a stationary point of f , i.e.
∇f(x̄) = 0.

Note that the step-sizes can also be constant but the convergence also holds for decreasing
step-sizes that do not decrease too fast.



4.4. GRADIENT DESCENT WITH DIMINISHING STEP-SIZES 147

Proof. As in all proofs above we use the descent lemma to obtain

f(xk+1) ≤ f(xk)− αk

(
1− Lαk

2

)
∥∇f(xk)∥2.

Since we have assumed that limk→∞ αk = 0, there exists a k0 ∈ N such that

f(xk+1) ≤ f(xk)− αk

2 ∥∇f(xk)∥2

for all k ≥ k0. Hence, the sequence (f(xk))k≥k0 is decreasing and it either holds that
limk→∞ f(xk) = −∞ or limk→∞ f(xk) = M for some M ∈ R. Suppose that we are in the
case where limk→∞ f(xk) = M . It follows

K∑
k=k0

αk

2 ∥∇f(xk)∥2 ≤
K∑

k=k0

(
f(xk)− f(xk+1)

)
= f(xk0)− f(xK)

for ever K > k0. For K →∞ this implies
∞∑

k=k0

αk

2 ∥∇f(xk)∥2 ≤ f(xk0)−M <∞. (4.8)

Since
∑∞

k=k0
αk =∞ it follows that

lim inf
k→∞

∥∇f(xk)∥ = 0.

In order to prove limk→∞ ∥∇f(xk)∥ = 0 we will now prove that lim supk→∞ ∥∇f(xk)∥ = 0.
Suppose that lim supk→∞ ∥∇f(xk)∥ ≥ ε for some ε > 0 and consider two sub-sequences (mj)j∈N
and (nj)j∈N with mj < nj < mj+1 such that

ε

3 < ∥∇f(xk)∥, for mj ≤ k < nj

and
∥∇f(xk)∥ ≤ ε

3 , for nj ≤ k < mj+1.

These sequences exists because lim infk→∞ ∥∇f(xk)∥ = 0. Moreover, let j̄ ∈ N be sufficiently
large such that

∞∑
k=mj̄

αk∥∇f(xk)∥2 ≤ ε2

9L
.

Using L-smoothness for j ≥ j̄ and mj ≤ m ≤ nj − 1 it holds true that

∥∇f(xnj
)−∇f(xm)∥ ≤

nj−1∑
k=m

∥∇f(xk+1)−∇f(xk)∥

≤ L

nj−1∑
k=m

∥xk+1 − xk∥

= 3ε

3ε
L

nj−1∑
k=m

αk∥∇f(xk)∥

≤ L
3
ε

nj−1∑
k=m

αk∥∇f(xk)∥2

≤ L
3
ε

ε2

9L
= ε

3 ,
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where we have used that ∥∇f(xk)∥ > ε
3 for mj ≤ k ≤ nj − 1. This implies that

∥∇f(xm)∥ ≤ ∥∇f(xnj
)∥+ ∥∇f(xnj

)−∇f(xm)∥ ≤ ∥∇f(xnj
)∥+ ε

3 ≤
2ε

3

and therefore ∥∇f(xm)∥ ≤ 2ε
3 for all m ≥ mj̄ . This is in contradiction to lim supk→∞ ∥∇f(xk)∥ ≥

ε and we have proved that

lim sup
k→∞

∥∇f(xk)∥ = lim inf
k→∞

∥∇f(xk)∥ = lim
k→∞

∥∇f(xk)∥ = 0.

Finally, let x̄ ∈ Rd be an accumulating point of (xk)k∈N. Since (f(xk))k≥k0 is decreasing, it
follows by continuity that

∇f(x̄) = lim
k→∞

∇f(xk) = 0.

There is an important point to keep in mind. Chosing step-sizes smaller than possible will
slow down convergence a lot. As an example think about f(x) = ||x||2. The negative gradient
−∇f(x, y) = −(2x, 2y) points directly to the minimum and gradient descent with step-size
α = 1

L = 1
2 converges in just one step to the global minimum. Gradient descent with smaller (or

even diminishing step-sizes) might require many steps.

Gradient descent on f(x) = ||x||2 with constant step-sizes α = 1
10 , 1

5 , 1
2 .

4.5 Stochastic gradient descent methods
We consider the following setup. Let (Ω,A,P) be the underlying probability space, Z : Ω×Rd →
Rp be a random variable on (Ω,A,P) for every x ∈ Rd with distribution µx. We are interested
in solving the optimization problem

min
x∈Rd

F (x),

where the cost function F : Rd → R is defined as expectation function in form

F (x) = EZ∼µx
[f(x, Z)] =

∫
Rp

f(x, z)µx(dz), x ∈ Rd,

for a function f : Rd × Rp → R. The mechanism that creates random variables Z ∼ µx is often
called an oracle. We assume that we can repeatedly ask the oracle for suggestions (samples).
Here is a standard set of assumption that typically does not pose any problems:

1. The function f : Rd × Rp → R is B(Rd)⊗ B(Rp)/B(R)-measurable.

2. For every z ∈ Rp the function x 7→ f(x, z) is continuously differentiable.

3. For every x ∈ Rd we have

EZ∼µx
[|f(x, Z)|+ ∥∇xf(x, Z)∥] <∞
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Algorithm 29: Plain vanilla stochastic gradient descent method (SGD)
Data: Initial random variable X0 : Ω→ Rd

Result: Approximation of a stationary point
Set k = 0
while not converged do

Determine αk

Sample Zk+1 from µXk

Set Xk+1 = Xk − αk∇xf(Xk, Zk+1)
k 7→ k + 1

end

In fact, writing G(x) = ∇F (x) the algorithm very much looks like stochastic approximation.

Xk+1 = Xk − αk(G(Xk) + εk

)
with unbiased error terms εk = ∇xf(Xk, Zk+1)−∇F (Xk). It is thus not too surprising that the
algorithm will converge towards a zero of ∇F if the error terms are sufficiently well behaved
(such as bounded variance). Indeed, the following simple variant of SGD is also proved using the
Robbins-Siegmund theorem:

Theorem 4.5.1. (SGD almost sure convergence for L-smooth function)
Let F : Rd → R be L-smooth with F∗ = infx∈Rd F (x) > −∞ that satisfies

EZ∼µx
[∥∇xf(x, Z)− E[∇xf(x, Z)]∥2] ≤ c(1 + (F (x)− F∗)). (4.9)

Suppose (αk)k∈N are non-negative step-sizes that are deterministic or adapted
to the stochastic gradient scheme and satisfy almost surely the Robbins-Monro
conditions

∞∑
k=0

αk =∞ and
∞∑

k=0
α2

k <∞.

Moreover, let X0 be a random variable such that E[F (X0)] <∞ and (Xk)k∈N the
sequence of random variables generated by the stochastic gradient Algorithm 29.
Then (F (Xk))k∈N converges almost surely to some finite random variable F∞ and

lim
k→∞

∥∇F (Xk)∥2 = 0

almost surely.

This first theorem on stochastic gradient descent extends Theorem 4.1.2 to the stochastic
setting. The assumptions are weak and also the convergence statement is weak. Under stronger
assumptions on F (such as convexity, strong convexity, gradient domination) there are also
stronger stochastic convergence theorems in the spirit above. There are two points that should
be mentioned. Due to the errors step-sizes must tend to zero in all settings and convergence
rates in the stochastic setting are much slower.

Proof. For the proof we assume additionally that gradient and expectation can be interchanged
(no big problem)

EZ∼µx
[∇xf(x, Z)] = ∇F (x). (4.10)

We define the natural filtration F = (Fk)k∈N through Fk = σ(Xm, m ≤ k) = σ(X0, Zm, m ≤ k)
and note that (αk)k∈N is F-adapted per construction. Using the descent lemma and the
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polarisation formula ⟨x, y⟩ = 1
2 (||x||2 + ||y||2 + ||x− y||2) obtain (pathwise) that

F (Xk+1) = F (Xk − αk∇xf(Xk, Zk+1))

≤ F (Xk)− αk⟨∇F (Xk),∇xf(Xk, Zk+1)⟩+ α2
k

L

2 ∥∇xf(Xk, Zk+1)∥2

= F (Xk)− αk∥∇xF (Xk)∥2 + αk⟨∇xF (Xk), εk⟩

+ α2
k

L

2
(
∥∇xF (Xk)∥2 − ⟨∇F (Xk), εk⟩+ ∥εk∥2),

where εk := ∇F (Xk) − ∇xf(Xk, Zk+1). Using (4.10) and (4.9) we obtain by construction in
Algorithm 29 that

E[εk | Fk] = 0

and
E[∥εk∥2 | Fk] ≤ c(1 + (F (Xk)− F∗)).

This yields

E[
Zk+1≥0︷ ︸︸ ︷

F (Xk+1)− F∗ | Fk] ≤ (F (Xk)− F∗)− αk

(
1− L

2 αk

)
∥∇F (Xk)∥2 + L

2 α2
kc(1 + (F (Xk)− F∗))

= (1 + c
L

2 α2
k)(F (Xk)− F∗︸ ︷︷ ︸

Zk≥0

) + c
L

2 α2
k︸ ︷︷ ︸

Bk≥0

−αk

(
1− L

2 αk

)
∥∇F (Xk)∥2︸ ︷︷ ︸

Ck≥0

.

Here we used the assumption that F is bounded below to deduce that the sequence (Zn) is
non-negative. We can assume without loss of generality that αk ≤ (1− ε) 2

L for some ε ∈ (0, 1),
otherwise let k be sufficiently large, such that (1−L

2 αk) ≥ ε > 0. We can now apply Theorem 3.4.2
to deduce that limk→∞ F (Xk)− F∗ exists almost surely and is finite, as well as

ε

∞∑
k=0

αk∥∇F (Xk)∥2 ≤
∞∑

k=0
αk(1− L

2 αk)∥∇F (Xk)∥2 <∞

almost surely. Since we have assumed
∑∞

k=0 αk =∞ almost surely, using the same argument as
in the proof of Theorem 4.4.1 pathwise we obtain

lim
k→∞

∥∇F (Xk)∥2 = 0

almost surely.

There are many other variants of the theorem, with weaker/stronger assumptions on F or the
oracle that result in weaker/stronger convergence statements. Here is one other variant that is
used in the context of reinforcement learning2.

Suppose instead of (4.9) the condition so-called expected smoothness (or ABC)
condition

EZ∼µx [∥∇xf(x, Z)∥2] ≤ 2A(F (x)− F∗) + B||∇F (x)||2 + C.

Then SGD with constant step-sizes η ∈ (0, 2
LB ) satisfies

min
k≤K

E[∥∇F (Xk)∥2] ≤ 2(F (X0)− F∗)(1 + Lη2A)K

ηK(2− LBη) + LCη

2− LBη

2Yuan, Gower, and Lazaric: "A general sample complexity analysis of vanilla policy gradient", AISTATS 2020
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and, if A = 0, then one can also show

1
K

K∑
k=1

E[∥∇F (Xk)∥]2 = E[∥∇F (X)∥]2 ≤ 2(F (X0)− F∗)(1)K

ηK(2− LBη) + LCη

2− LBη
,

where X is drawn uniformly from X1, ..., XK . For a prespecified accuracy
ε one can then solve for K to achieve the following consequence. For
constant step size γ = min{ 1√

LAK
, a

LB , ε
2LC } and a number of iterations

K ≥ 12(F (X0)−F∗)L
ε2 max{B, 12A(F (X0)−F∗)

ε2 , 2C
ε2 } the gradients can be bounded by

mink≤K E[∥∇F (Xk)∥2] ≤ ε.

4.6 Regularisation
dieses Jahr noch nicht. 3

3discuss regularisation in non-linear optimisation! take previous example as an example



Chapter 5

Policy Gradient methods

The third part of these lecture notes takes a very different view on optimal control problems.
While in the previous parts we developed a complete theory of exact and approximate control
in the tabular setting the third part of these lecture notes will be less complete. The theory is
more complex and much less understood. In the case of state-action spaces that are too large
to deal with all Q-values Q(s, a) different further approximations will be discussed. We start
with powerful policy gradient method, where the optimal control problem will be attacked with
numerical maximisation of the value function. While (approximate) dynamical programming
are methods to find policies that are optimal for all states s (by definition of an optimal policy)
we now fix a state s and try to numerically optimise V (s) only. Without much thought an
immediate idea is the following:

Fix a subclass ΠΘ ⊆ ΠS of parametrised stationary policies πθ that hopefully
contains the optimal policy. Maximising the mapping

θ 7→ Jµ(θ) = V πθ

(µ) =
∑
s∈S

µ(s)V πθ

(s)

using a numerical method based on gradient ascent is called a policy gradient
method to optimise the value function started in µ. The best policy is denoted
by πθ∗ and we hope that πθ∗ ≈ π∗. Since ∇Jµ =

∑
s∈S µ(s)∇Js we will state all

formulas only for the case J(θ) = V πθ (s).

There are many questions to be considerd. (1) How to set up an algorithm, how to compute
the gradients? This is answered with the policy gradient theorems that suprisingly show that
gradient estimates can be obtained even in a model free way. (2) How to chose ΠΘ such that
π∗ ∈ ΠΘ? This is a delicate problem, as it results in a trade-off of chosing large and small families
of policies. Not much is known in practical applications, typically neural networks are involved
and one hopes to get close to π∗. (3) How good is the policy obtained for different starting
conditions? A priori the policy gradient approach does not give any information. Typically one
will uses neural networks and try to optimise them for different states s. In order to use gradient
methods it is not surprising that differentiability assumptions are needed.

Definition 5.0.1. Let Θ ⊂ Rd, then a set {πθ : θ ∈ Θ} of stationary policies
such that θ 7→ πθ(a, ; s) is differentiable in θ for every s ∈ S and a ∈ A is called
differentiable parameterised family of stationary policies.

We will later discuss policies parametrised by neural networks which must be large enough
to include enough (hopefully the optimal) policies but at the same time small enough to be
numerically tractable.
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If Θ = Rd then to reduce the dimension of the (very!) large state-action spaces it is
strongly desirable to have d < |A| |S|.

There is a simple example to keep in mind but massively violates the goal to reduce the dimension
of the problem. The stationary softmax policies that were already discussed for bandits in Section
1.3.4 readily extend to general Markov decision problems:

Example 5.0.2. Suppose d = |S||A| so that every state-action pair has an own parameter.
Denote by θ = (θs,a)s∈S,a∈A the parameters for the parametrised family and define the softmax
policy

πθ(a ; s) = eθs,a∑
a′∈A eθs,a′

.

Instead of the (full) tabular parameterisation one can also chose any differentiable function
θ 7→ hθ(s, a) and define the generalised softmax policy

πθ(a ; s) = ehθ(s,a)∑
a′∈A ehθ(s,a′) .

For instance, if hθ(s, a) = θT Φ(s, a) then the parametrisation is called linear softmax with
features Φ(s, a) and needs as many dimensions as features are fixed. If there are as many features
as state-action pairs and every state-action pair only has its own feature, i.e. the vector Φ(s, a)
is a unit vector with 1 at the position corresponding to (s, a), then the linear softmax equals the
tabular softmax. The feature vector is supposed to reduce complexity, state-action pairs with
same feature vector are treated equally. Hence, in practice the number of features should be large
enough to separate state-action pairs sufficiently well but small enough to be computationally
tractable.

The rest of this chapter will consist of making (practical) sense of gradient ascent algorithms to
find optimal policies. Assuming perfect information, i.e. J(θ) = V πθ (s) is known explicitely, then
Algorithm 30 is the kind of algorithm we aim for. Unfortunately, there are plenty of problems.

Algorithm 30: Plain vanilla policy gradient algorithm (with exact gradietns)
Data: Initial parameter θ0
Result: Approximate policy πθ ≈ πθ∗

Set n = 0.
while not converged do

Choose step-size α.
Calculate K = ∇J(θ)|θ=θn .
Update θn+1 = θn − αK.
Set n = n + 1.

end
return πθn .

Most importantly the following:

• There is no reason θ 7→ J(θ) satisfies typical concavity conditions (it doesn’t!) to apply
gradient ascent methods, why should gradient ascent not get stuck in some stationary
point, i.e ∇J(θ) = 0?

• The gradient ∇J(θ) is typically not known. But how can gradient ascent be implemented
without access to the gradient?

• The first two issues can (partially) be resolved. Still, the simple policy gradient algorithm
converges extremely slow. How can the algorithm be speed up?
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In the next sections we will shed some light on what is going on. First, classical results for
gradient descent/ascent are recalled. Here we focus on what turns out to be the right set-up for
gradient ascent in the policy gradient setup. The PL inequality and L-smoothness. To get a
certain feeling on how to replace ∇J(θ) by estimates we quickly recall some results and arguments
from stochastic gradient descent. Next, we will discuss the policy gradient theorems and how
to combine them with neural network parametrisations. Finally, a couple of modifications are
discussed that are used in practice.

5.1 Policy gradient theorems
1

As the name policy gradient suggests, the optimisation method we want to use is gradient ascent
in order to find a maximum of the objective function J . This requires that Js is differentiable in
θ and a practical formula for the gradient to apply Algorithm 30. To start the discussion we
first prove formulas for ∇J(θ) that go back to Sutton, McAlister, Singh, and Mansour2. Their
observation was that the gradient ∇J(θ) can be expressed rather nicely and, most importantly,
can be approximated in a model-free way as the appearing expectations do not involve the
transition probabilities and can be approximated by sampling only.
For didactic reasons we first deal with finite-time MDPs with undiscounted rewards and ad-
ditionally consider stationary policies only. The situation is not extremely realistic as most
finite-time MDPs do not have optimal strategies that are stationary (think of the ice-vendor
where closer towards the final selling day the ice-vendor will store less ice-cream). Nonetheless,
there are examples with optimal stationary policies (think of Tic-Tac-Toe) and the computations
are simpler to understand the policy gradient theorems. Once the structure of the gradients is
understood we proceeed with the discounted infinite-time case.

5.1.1 Finite-time undiscounted MDPs
In this didactic section we wil derive three different expressions of the gradient. The first theorem
will show that differentiability of θ 7→ J(θ) follows from the differentiability of the parameterised
policy and gives a first formula for the gradient as an expectation. In everything that follows let
us write

RT
t =

T −1∑
k=t

Rk+1.

for the rewards after time t (this is also called a reward to go) and RT
0 for the total (non-discounted)

reward.

Theorem 5.1.1. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function with respect to θ exists and
is given by

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
RT

0

]
.

The statement involves the expectation of a vector which is always defined to be the vector of
expectations of all coordinates of the random vector involved. Please check carefully how this
appears in the proof!

1Notation anpassen. Rewards, Ubergangswkeiten haben alte Form. Ueberall auf Anfangsbed µ
2Sutton, McAlister, Singh, Mansour: "Policy Gradient Methods for Reinforcement Learning with Function

Approximation", NIPS, 1999



5.1. POLICY GRADIENT THEOREMS 155

Proof. Consider a trajectory τ = (s0, a0, r0, . . . , sT −1, aT −1, rT −1, sT , rT ) of the T -step MDP
and recall the MDP path probability

Pπθ

s

(
(S, A, R) = τ

)
= δs(s0)δ0(r0)

T −1∏
t=0

πθ(at ; st)p({st+1, rt+1} ; st, at)

from (2.4). Define

T =
{

τ = (r0, s0, a0, r1, . . . , sT −1, aT −1, rT , sT ) : rt ∈ R, st ∈ S,∀t ≤ T, at ∈ A,∀t < T
}

as the set of all trajectories. From the definition of the value function for a T -step MDP we
deduce that

Js(θ) = V πθ

(s) = Eπθ

s

[ T −1∑
t=0

Rt+1

]
=
∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

) T −1∑
t=0

rt+1.

The probabilities are clearly differentiable, thus, for finite state-action states J(θ) is a finite sum
of differentiable functions. This proves the differentiability. Next we use the log-trick we have
already seen for policy gradient in bandits. We have

∇θPπθ

s

(
(S, A, R) = τ

)
= ∇θ(Pπθ

s

(
(S, A, R) = τ

)
)
Pπθ

s

(
(S, A, R) = τ

)
Pπθ

s

(
(S, A, R) = τ

)
= ∇θ

(
log(Pπθ

s

(
(S, A, R) = τ

)
)
)
Pπθ

s

(
(S, A, R) = τ

)
= ∇θ

(
log(δs(s0)) + log(δ0(r0)) +

T −1∑
t=0

(
log(πθ(at; st)) + log(p({st+1, rt+1}; st, at))

))
× Pπθ

s

(
(S, A, R) = τ

)
=

T −1∑
t=0
∇θ

(
log(πθ(at; st))

)
Pπθ

s

(
(S, A, R) = τ

)
.

Due to the log-trick the product of probabilities factors into a sum, where just the summands πθ

depend on θ and so all other summands have derivative 0. Finally we can use the finiteness of
the state, action and reward space to see that we can interchange the derivative and the sum,
and it follows that V πθ is differentiable. We conclude with

∇θJs(θ) = ∇θV πθ

(s)

=
∑
τ∈T
∇θPπθ

s

(
(S, A, R) = τ

) T −1∑
t=0

rt+1

=
∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

) T −1∑
t=0
∇θ

(
log(πθ(at; st))

) T −1∑
t=0

rt+1

= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

) T −1∑
t=0

Rt+1

]
= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
RT

0

]
.

The formula for ∇Js(θ) crucially involves ∇(log(πθ(a ; s))) that in Section 1.3.4 was already
called the score-function of the policy.
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Definition 5.1.2. If π is a policy, then the vector ∇θ(log(πθ(a ; s))) is called the
score-function of πθ.

We have already computed the score-function of the (one-state) softmax policy for stochastic
bandits. To get a feeling please redo the computation:

Show for the tabular softmax parametrisation from Example 5.0.2 that

∂ log(πθ(a ; s))
∂θs′,a′

= 1{s=s′}(1{a=a′} − πθ(a′ ; s′))

and for the linear softmax with features Φ(s, a)

∇ log(πθ(a ; s)) = Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

Given the previous theorem, we weight the gradient of the log-probability of the choosen action
with the reward of the whole trajectory RT

0 . So the gradient with respect to the t-th summand
(and thus the t-th action) is weighted with RT

0 , but due to the Markov property the action in
time t is completely independent from the past time points 0, . . . , t − 1. In the next theorem
we will see that we can indeed replace RT

0 by the rewards of the future time points t′ ≥ t. We
replace the reward of the whole trajectory by the reward to go RT

t .

Theorem 5.1.3. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function can also be written as

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
RT

t

]
.

Proof. From Theorem 5.1.1 we have

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

) T −1∑
t=0

Rt+1

]
=

T −1∑
t′=0

T −1∑
t∗=0

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
.

For every t∗ < t′ we see

Eπθ

s

[
∇θ

(
log(πθ(At′ ; St′))

)
Rt∗+1

]
=
∑
τ∈T

Pπθ

s

(
(S, A, R) = τ

)
∇θ

(
log(πθ(at′ ; st′))

)
rt∗+1

=
∑
a0

∑
s1

∑
r1

· · ·
∑

aT −1

∑
sT

∑
rT

T −1∏
t=0

πθ(at; st)p({st+1, rt+1}; st, at)
(
∇θ

(
log(πθ(at′ ; st′))

)
rt∗+1

)
=
∑
a0

∑
s1

∑
r1

· · ·
∑
st∗

∑
rt∗

t∗∏
t=0

πθ(at; st)p({st+1, rt+1}; st, at)
∑
at∗

πθ(at∗ ; st∗)

×
∑

st∗+1

∑
rt∗+1

p({st∗+1, rt∗+1}; st∗ , at∗)rt∗+1
∑

at∗+1

πθ(at∗+1; st∗+1)× . . .
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×
∑
st′

∑
rt′

p({st′ , rt′}; st′ , at′)
∑
at′

πθ(at′ ; st′)∇θ

(
log(πθ(at′ ; st′))

)
︸ ︷︷ ︸

=
∑

a
t′

∇θπθ(at′ ;st′ )=∇θ

∑
a

t′
πθ(at′ ;st′ )=∇θ1=0

×
sum of probabilities︷︸︸︷

1

= 0.

Now the claim follows.

In the last step we will replace the reward-to-go with the Q-function.

Theorem 5.1.4. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parameterized family of policies
{πθ : θ ∈ Θ}. Then the gradient of the value function can also be written as

∇θJs(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]
.

Proof. For the proof we use the property of a Markov property of Markov reward processes:

Eπθ

s

[
RT

t |St = s, At = a
]

= Qπθ

t (s, a).

Then the claim follows from Theorem 5.1.3:

∇θJs(θ) =
T −1∑
t=0

Eπθ

µ

[
∇θ

(
log(πθ(At; St))

)
RT

t

]
=

T −1∑
t=0

∑
s∈S,a∈As

Eπθ

µ

[
∇θ

(
log(πθ(At; St))

)
RT

t

∣∣∣St = s, At = a
]
Pπθ

µ (St = s, At = a)

=
T −1∑
t=0

∑
s∈S,a∈As

∇θ

(
log(πθ(a; s))

)
Eπθ

µ

[
RT

t

∣∣St = s, At = a
]
Pπθ

µ (St = s, At = a)

=
T −1∑
t=0

∑
s∈S,a∈As

∇θ

(
log(πθ(a; s))

)
QT

t (s, a)Pπθ

µ (St = s, At = a)

= Eπθ

s

[ T −1∑
t=0
∇θ

(
log(πθ(At; St))

)
Qπθ

t (St, At)
]

For intuition the Q-function indicates the expected reward-to-go and not the reward-to-go for a
specific trajectory. More precisely, we have to distinguish between the outer expectation and the
expectation in the definition of the Q-function. While the reward-to-go depends on the trajectory
of the outer expectation, the Q-function calculates its own expectation. For the moment one
might wonder whether there is any use in this representation, Qπθ is not known. The miracle
why this can be useful will be solved later when we discuss actor-critic methods for which a
second parametrisation is used for Q.

Definition 5.1.5. In general optimization methods that aim to maximise f and
the gradient of f takes the form of an expectation that can be sampled are typically
called stochastic gradient methods. The usual form of the gradients is

∇f(θ) = E[g(X, θ)],
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for policy gradient the form is more delicate

∇f(θ) = Eθ[g(X, θ)].

If (unbiased) samples ∇̃f(θ) for the gradients are available (samples of the expecta-
tion), the update scheme

θ ← θ + α∇̃f(θ)

is called stochastic gradient algorithm. If more than one sample is used to estimate
the gradient as a Monte Carlo average the algorithm is called a batch stochastic
gradient ascent algorithm. The number of samples averaged is called the batch size.

Let us come back to the goal of performing a gradient ascent algorithm to maximise V πθ with
initial distribution µ. Using the policy gradient representations the gradient ascent update can
be written as

θt+1 = θt + αEπθ

µ

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

or

θt+1 = θt + αEπθ

µ

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

) T −1∑
t′=t

Rt+1

]
.

Unfortunately, the exact expectations are typically unknown and must be estimated. Similar
to the approximate dynamic programming chapter we rewrote the gradient as an expectation
and thus can estimate the expectation with samples As earlier the first obvious idea to estimate
the gradients is the model-free Monte Carlo method. As the Q-function appearing inside the
expectation is an unknown value (and an expectation itself) it is most common in applications to
use the second policy gradient theorem instead of the third. This can be interpreted as estimating
the Q-function by the unbiased estimator RT

t , the reward-to-go. An estimator for the gradient is
then given by

∇̃Jµ(θ) = 1
K

K∑
i=1

[ T −1∑
t=0
∇θ

(
log πθ(ai

t ; si
t)
) T −1∑

t′=t

rt′+1

]
, (5.1)

with K trajectories (si
0, ai

0, si
1, ri

1, . . . , ai
T −1, si

T , ri
T ) sampled according to the current policy πθ

with initial distribution µ.
This famous algorithm, even not in exactly that form, is due to Ronald Williams3. To use the
algorithm in practice a stopping condition needs to be fixed. Typically, either the number of
iterations is fixed or the algorithm is terminated when the norm of the gradient reaches a small
threshold.

Sampling a trajectory sounds harmless for a Mathematician. But it is not at all!
Imagine we learn how to steer a car or a certain robotic task and πθ is a policy. Then
sampling means running the car (or the robot) K times with the current (possibly
very bad) policy while evaluating the rewards! It is thus easy to imagine pitfalls
for practical applications. Sample efficiency (using as little samples as possible)
in learning is essential and also sampling from very bad policies might be a costly
endeavour.

3Williams: "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning",
Machine Learning, 8, 229-256, 1992
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Algorithm 31: REINFORCE: (Batch-)Stochastic policy gradient algorithm
Data: Initial parameter θ0, K ≥ 1, initial distribution µ
Result: Approximate policy πθL ≈ πθ∗

l = 1.
while not converged do

for i = 1, . . . , K do
Sample initial condition si

0 from µ.
Sample trajectory

(
si

0, ai
0, si

1, ri
1, . . . , ai

T −1, si
T , ri

T

)
using policy πθl−1 .

end
Determine step-size α.

∇̃J(θl−1) = 1
K

∑K
i=1

[ T −1∑
t=0
∇θ

(
log πθl−1(ai

t ; si
t)
) T −1∑

t′=t

ri
t′+1

]
θl = θl−1 − α∇̃J(θl−1)

end
Set l = l + 1.

5.1.2 Infinite-time MDPs with discounted rewards

In this section we will consider MDPs with infinite time horizon and discounted rewards. Recall
that in this setting the use of stationary policies is justified. As before we aim to rewrite the
gradient of the value function as an expectation, but now the infinite time horizon makes it much
more complex to calculate the gradient of the value function. The objective function using a
parametrised policy πθ is given by

Js(θ) = V πθ

(s) = Eπθ

s

[ ∞∑
t=0

γtRt+1

]
=
∑

a∈As

πθ(a; s)Qπθ

(s, a). (5.2)

The infinite sum makes the computation of the gradient more challenging.

Lemma 5.1.6. Under the assumption that Js is differentiable for every start state
s ∈ S we have a closed form of the gradient

∇Js(θ) =
∑
s′∈S

∑
a∈As′

ρπθ

s (s′)∇πθ(a; s′)Qπθ

(s′, a),

where ρπ
µ(s′) =

∑∞
t=0 γtPπ

µ(St = s′) = Eπ
µ[
∑∞

t=0 γt1St=s′ ].

Proof. The trick is essentially simple but tedious to write down. One applies the gradient to the
righthand side of (5.2) to find ∇J (this involves dynamic programming) in a the sum/product
from the cain rules. Repeatadly applying the chain rule again, formally using an induction, leads
to the claim. With the notation p(s→ s′; n, π) = Pπ

s (Sn = s′) we first show the following identity
by induction:

For all n ∈ N it holds that

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)∇Js′(θ).
(5.3)
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By the chain rule we have that

∇Js(θ) =
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)∇Qπθ

(s, a)
)

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)∇
(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)V πθ

(s′)
))

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)γ
∑
s′∈S

p(s′; s, a)∇Js′(θ)
)

=
∑

a∈As

(
∇πθ(a; s)Qπθ

(s, a) + πθ(a; s)γ
∑
s′∈S

p(s′; s, a)
( ∑

a′∈As′(
∇πθ(a′; s′)Qπθ

(s′, a′) + πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

)))
=

1∑
t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑

s′′∈S
γ2p(s→ s′′; 2, πθ)∇Js′′(θ).

This is the induction for n = 1. For the inductive step suppose the statement holds for some
n ∈ N. The same computation, plugging-in the gradient, yields

∇Js(θ) =
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)∇Js′(θ)

=
n∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ)

×
( ∑

a′∈As′

(
∇πθ(a′; s′)Qπθ

(s′, a′) + πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

))

=
n+1∑
t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑
s′∈S

γn+1p(s→ s′; n + 1, πθ) ·
( ∑

a′∈As′

πθ(a′; s′)γ
∑

s′′∈S
p(s′′; s′, a′)∇Js′′(θ)

)

=
n+1∑
t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

+
∑

s′′∈S
γn+2p(s→ s′′; n + 2, πθ)∇Js′′(θ).

The remainder term in (5.3) vanishes for n→∞.

∣∣∣ ∑
s′′∈S

γn+1p(s→ s′′; n + 1, πθ)∇Js′′(θ)
∣∣∣ ≤ γn+1|S|max

s∈S
|∇Js(θ)| → 0, n→∞.
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Hence, we proved that

∇Js(θ) =
∞∑

t=0

∑
s′∈S

γtp(s→ s′; t, πθ)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

=
∑
s′∈S

ρπθ

s (s′)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a).

The exchange of limits and sums is justified as we assume S to be finite.

For episodic MDPs (the MDP terminates almost surely under all policies πθ), we
can get rid of the assumption of the existence of ∇Js(θ). Go through the proof of
Theorem 5.1.6 and argue why it is enough to assume the existence of ∇πθ(· ; s) for
all s ∈ S.

Taking a closer look at the expression from the gradient, it is obvious that the infinite sum
ρπ(s′) = Eπ

s [
∑∞

t=0 γt1St=s′ ] is unpleasant for implementations. There is an alternative way to
rewrite the policy gradient theorem using the discounted state visitation measure:

Definition 5.1.7. The discounted state-visitation measure under policy π for
starting state s ∈ S is given by

dπ
µ(s) :=

ρπ
µ(s)∑

s′ ρπ
µ(s′) .

First note that, using Fubini’s theorem,

∑
s′∈S

ρπθ

µ (s′) =
∑
s′∈S

Eπ
µ

[ ∞∑
t=0

γt1St=s′

]
= 1

1− γ
.

Hence, the normalised state-visitation measure is actually much simpler: dπ(s) = (1− γ)ρπ(s).
With this definition the gradient can also be written as follows:

Theorem 5.1.8. Under the assumption that Js(θ) is differentiable for every start
state s ∈ S the gradient can be expressed as

∇Js(θ) = 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∇ log(πθ(A ; S))Qπθ

(S, A)
]
.

In essence the theorem says the following. Draw a state-action pair (s, a) according to their
relevance measured in terms of expected discounted frequency, compute the direction using the
score function, and follow that direction according to the expected reward.

Proof. By Theorem 5.1.6 we have

∇Js(θ) =
∑
s′∈S

ρπθ

(s′)
∑

a∈As′

∇πθ(a; s′)Qπθ

(s′, a)

= 1
1− γ

∑
s′∈S

∑
a∈As′

∇ log(πθ(a; s′))Qπθ

(s′, a)πθ(a; s′)dπθ

s (s′)

= 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∇ log(πθ(A ; S))Qπθ

(S, A)
]
,

where we used the definition of the state-visitation measure and the log-trick. The second equality
gives the first claim, the final equality the second claim.
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For practical use it will be important to estimate the gradient (an expectation) using Monte
Carlo. Thus, it will be necessary to sample from the discounted occupation measures and then
compute score-function and Q-value. On first sight sampling from the dπ looks infeasible as
an infinite sum is involved. In fact, a sample can be obtained by following a rollout up to an
independent geometric random variable, counting the number of visitations and then drawing
from this empirical distribution. This is justified by a quick computation:

Lemma 5.1.9. If T ∼ Geo(1 − γ) is independent of the MDP, then dπ(s) =
Eπ

s

[∑T
t=0 1St=s

]
. In particular, the sampling of dπ can be carried out as follows.

First run teh MDP until an independent Geo(1− γ) time and then sample from
the obtained occupation measure.

This is easily seen as

Eπ
s

[ T∑
t=0

1St=s

]
= Eπ

s

[ ∞∑
t=0

1t≤T 1St=s

]
Fubini=

∞∑
t=0

Eπ
s

[
1t≤T 1St=s

]
ind.=

∞∑
t=0

P(t ≤ T )Eπ
s

[
1St=s

]
=

∞∑
t=0

γtEπ
s

[
1St=s

]
= Eπ

s

[ ∞∑
t=0

γt1St=s

]
4

Here is another representation in the spirit of the finite-time policy gradient theorem. The
representation avoids the sampling from the discounted occupation measure but instead uses
trajectories.

Theorem 5.1.10. Suppose that (s, a) 7→ ∇θ

(
log πθ(a ; s)

)
Qπθ (s, a) is bounded.

Then

∇θJs(θ) = Eπθ

s

[ ∞∑
t=0

γt∇θ

(
log πθ(At ; St)

)
Qπθ

(St, At)
]
.

5 The assumption does not hold for arbitrary parametrisation and might also be hard to check.
For softmax policies the score-function can be computed and is bounded for instance for bounded
feature vector. If the rewards are additionally bounded (which imples the Q-function is bounded)
the assumption of the theorem holds.

Proof.

∇θJs(θ) =
∞∑

t=0
γt
∑
s′∈S

Pπθ

s (St = s′)
∑
a∈A
∇πθ(a ; s′)Qπθ

(s′, a)

=
∞∑

t=0
γtEπθ

s

[∑
a∈A
∇πθ(a ; St)Qπθ

(St, a)
]

4allgemeines lemma schreiben, das gleiche braucht man auch bei dem performance difference lemma.
E[
∑

γtF (St, At)] =
∑

s,a
d(s)π(a, s)F (s, a)

5brauche auch die version mit reward to go, beweis wie oben mit reinbedingen
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=
∞∑

t=0
γtEπθ

s

[∑
a∈A

πθ(a ; St)∇ log πθ(a ; St)Qπθ

(St, a)
]

=
∞∑

t=0
γtEπθ

s

[
∇ log πθ(At ; St)Qπθ

(St, At)
]

= Eπθ

s

[ ∞∑
t=0

γt∇ log πθ(At ; St)Qπθ

(St, At)
]

The final eschenge of sum and expectation is justified by dominated convergence and the
assumption of the theorem.

A dirty version of the REINFORCE algorithm is then obtained by running trajectories up to
some large T and to use the truncated series as an estimator for the gradient. Since the truncated
estimator is not unbiased smarter approaches have been proposed. As for the discounted
occupation measure one might ask if geometric times can be used to truncate the infinite
time-horizon. Under certain assumptions on the policy parametrisation this can be done.

Assumption 5.1.11. The policy πθ is differentiable with respect to θ and
∇ log(πθ(a; s)) exists and is LΘ-smooth and has bounded norm for any (s, a) ∈ S×A,
i.e.

∥∇ log(πθ1(a; s))−∇ log(πθ2(a|s))∥ ≤ LΘ∥θ1 − θ2∥, for any θ1, θ1 ∈ Θ,

∥∇ log(πθ(a; s))∥ ≤ BΘ, for any θ ∈ Θ,

for some LΘ, BΘ > 0.

This assumption is for example fulfilled by tabular and linear softmax parametrisations or by
Gaussian policies.

Show that the tabular and linear softmax parametrisation fulfills Assumption 5.1.11.

Using a computation similar to the one for the occupation measure gives the following theorem6.

Proposition 5.1.12. Suppose that the policy parametrisation fulfills Assump-
tion 5.1.11 and T ∼ Geo(1− γ), T ′ ∼ Geo(1− γ1/2) are independent of each other
and the MDP, then

∇Js(θ) = 1
1− γ

Eπθ

s

[
∇ log(πθ(ST ; AT ))

T +T ′∑
t=T

γ(t−T )/2R(St, At)
]
.

7 The advantage of this policy gradient theorem is clear, unbiased estimates can be obtained by
running the MDP for a finite (random) number of steps.

Proof. We split the proof into two steps.

The term Q̂πθ (s, a) :=
∑T ′

t′=0 γt′/2R(St′ , At′) is an unbiased estimator of the Q-

6Zhang, Koppel, Zhu, Basar: "Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal
Policies", SIAM Journal on Control and Optimization, 2020

7doppeltes s, da sollte ein mu stehen
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function,

Eπθ
a

s

[ T ′∑
t′=0

γt′/2R(St′ , At′)
]

= Qπθ

(s, a).

First note that by the bounded reward assumption

Eπθ
a

s

[ N∑
t=0

10≤t≤T ′γt/2Rt+1

]
≤ R∗ET ′

[ N∑
t=0

10≤t≤T ′γt/2
]
.

If we write Eπθ

s we mean the expectation with respect to all appearing random variables, i.e. also
of T ′. When we bound R by R∗, only the expectation with respect to T ′ is left, which is why we
denote it with ET ′ . In the following we will write ET ′ [Eπθ

s [·]] to highlight the independence of T ′

to the MDP. As the RHS of the inequality is monotonically increasing and the limit exists, we
can use the monotone convergence theorem to show that

Eπθ
a

s

[
Q̂πθ

(s, a)
]

= ET ′

[
Eπθ

a
s

[ T ′∑
t′=0

γt′/2R(St′ , At′)
]]

= ET ′

[
Eπθ

a
s

[
lim

N→∞

N∑
t′=0

10≤t′≤T ′γt′/2R(St′ , At′)
]]

= lim
N→∞

N∑
t′=0

ET ′

[
Eπθ

a
s

[
10≤t′≤T ′γt′/2R(St′ , At′)

]]
= lim

N→∞

N∑
t′=0

Eπθ
a

s

[
ET ′ [10≤t′≤T ′ ]γt′/2R(St′ , At′)

]
= lim

N→∞

N∑
t′=0

Eπθ
a

s

[
γt′

R(St′ , At′)
]

= lim
N→∞

Eπθ
a

s

[ N∑
t′=0

γt′
R(St′ , At′)

]
= Qπθ

(s, a),

where we have used that T ′ is independent of the MDP and that ET ′ [10≤t′≤T ′ ] = P(T ′ ≥ t) = γt/2

by the Geo(1 − γ1/2) distribution. In the last equation we used the dominated convergence
theorem to bring the limit back inside the expectation.

For the second step we define the estimator ∇̂Js(θ) =
1

1−γ∇ log(πθ(AT ; ST ))Q̂(ST , AT ). Then by definition

1
1− γ

Eπθ

s

[
∇ log(πθ(ST ; AT ))

T +T ′∑
t=T

γ(t−T )/2R(St, At)
]

= Eπθ

s

[
∇̂Js(θ)

]
.

It remains to show that Eπθ

s

[
∇̂Js(θ)

]
= ∇Js(θ).

As T and T ′ are independent and independent of the MDP, we have directly that

Eπθ

s

[
∇̂Js(θ)

]
= 1

1− γ
Eπθ

s

[
∇ log(πθ(ST ; AT ))

T +T ′∑
t=T

γ(t−T )/2R(St, At)
]
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= 1
1− γ

Eπθ

s,T,T ′

[
∇ log(πθ(ST ; AT ))Q̂(ST , AT )

]
= 1

1− γ
Eπθ

s,T

[
∇ log(πθ(ST ; AT ))E

πθ
AT

T ′,ST
[Q̂(ST , AT )]

]
= 1

1− γ
Eπθ

s,T

[
∇ log(πθ(ST ; AT ))Q(ST , AT )

]
,

where the last equality is due to step 1. As Q is bounded by R∗
1−γ and ∥∇ log(πθ(a; s))∥ ≤ BΘ by

Assumption 5.1.11, we can again use the monotone convergence theorem as in step 1 to show
that

Eπθ

s

[
∇̂Js(θ)

]
= 1

1− γ
Eπθ

s,T

[
∇ log(πθ(ST ; AT ))Q(ST , AT )

]
= 1

1− γ
Eπθ

s,T

[ ∞∑
t=0

1t=T∇ log(πθ(St ; At))Q(St, At)
]

= lim
N→∞

N∑
t=0

ET [1t=T ] 1
1− γ

Eπθ

s

[
∇ log(πθ(St ; At))Q(St, At)

]
= lim

N→∞

N∑
t=0

γtEπθ

s

[
∇ log(πθ(St ; At))Q(St, At)

]
= Eπθ

s

[ ∞∑
t=0

γt∇ log(πθ(St ; At))Q(St, At)
]

= ∇Js(θ),

where we used the independence of T to the MDP and that ET [1t=T ] 1
1−γ = P(T =t)

1−γ = γt. The
last equation is due to the policy gradient theorem 5.1.10

Using this proposition results in the following REINFORCE algorithm with geometric rollouts.

Algorithm 32: Mini-batch REINFORCE for infinite time horizon
Data: Initial parameter θ0, K ≥ 1, initial state s
Result: Approximate policy πθL ≈ πθ∗

l = 1
while not converged do

for i = 1, . . . , K do
Sample Ti ∼ Geo(1− γ)
Sample trajectory

(
si

0 = s, ai
0, si

1, ri
1, . . . , ai

T −1, si
Ti

, ri
Ti

, ai
Ti

)
using policy πθl−1 .

Sample T ′
i ∼ Geo(1− γ

1
2 )

Set s̃i
0 = si

Ti
and ãi

0 = ai
Ti

Sample trajectory
(

s̃i
0, ãi

0, s̃i
1, r̃i

1, . . . , ãi
T ′

i
−1, s̃i

T ′
i
, r̃i

T ′
i
, ãi

T ′
i

)
using policy πθl−1 .

end
Determine step-size α.

∇̂Js(θl−1) = 1
1−γ

1
K

∑K
i=1

[
∇θ

(
log πθl−1(ai

Ti
; si

Ti
)
) T ′

i −1∑
t′=0

γt′/2r̃i
t′+1

]
θl = θl−1 − α∇̂Js(θl−1)

end
Set l = l + 1.

The representation is not only useful from a practical point of view. The random variables can
be shown to have bounded variance, an ingredient that was crucial for the proof of convergence
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to a stationary point for stochastic gradient schemes. We will see this in the subsequent section.
Combined with an additional PI inequality (only known for tabular softmax parametrisation)
then also yields convergence to an optimal policy.

5.1.3 Convergence of REINFORCE

Under certain assumptions we can prove convergence of REINFORCE to stationary points using
Theorem 4.5.1. First, we will need L-smoothness, which can be shown under Assumption 5.1.11.
Secondly, we need an unbiased estimator with bounded variance of the gradient ∇J(θ) for any
θ ∈ Rd. This can be achieved using the geometric rollouts discussed in the previous section. The
unbiasedness has already be shown in Proposition 5.1.12 and the bounded variance is discussed
below. The algorithm we consider is the REINFORCE Algorithm 32.
First we prove L-smoothness of the objective.

Lemma 5.1.13. Under Assumption 5.1.11, the objective Js0(θ) is L-smooth with
L = R∗LΘ

(1−γ)2 + (1+γ)R∗B2
Θ

(1−γ)3 , where R∗ is the maximal reward of the bounded reward
assumption.

Proof. From the policy gradient theorem 5.1.8 we obtain for an initial state s0 that

∇Js0(θ) = 1
1− γ

∑
s∈S,a∈A

dπθ

s0
(s)πθ(a; s)∇ log(πθ(a; s))Qπθ

(s, a).

Now note that we can rewrite Q to be

Qπθ

(s, a) =
∞∑

t′=0
γt′ ∑

s′∈S,a′∈A
p((s, a)→ s′; t′, πθ)πθ(a′; s′)r(s′, a′),

where p((s, a)→ s′; t′, πθ) = Pπθ
a

s (St′) = s′). Using the definition of the state-visitation measure
and this form of Qπθ we obtain for the gradient

∇Js0(θ)

=
∑

s∈S,a∈A

∞∑
t=0

γtp(s0 → s; t, πθ)πθ(a; s)∇ log(πθ(a; s))Qπθ

(s, a)

=
∞∑

t=0
γt

∑
s∈S,a∈A

p(s0 → s; t, πθ)πθ(a; s)∇ log(πθ(a; s))
∞∑

t′=0
γt′ ∑

s′∈S,a′∈A
p((s, a)→ s′; t′, πθ)πθ(a′; s′)r(s′, a′)

=
∞∑

t=0

∞∑
t′=0

γt+t′ ∑
s∈S,a∈A,s′∈S,a′∈A

p(s0 → s; t, πθ)πθ(a; s)p((s, a)→ s′; t′, πθ)πθ(a′; s′)∇ log(πθ(a; s))r(s′, a′).

For notation simplicity we define

fs0,θ
t,t′ (s, a, s′, a′) := p(s0 → s; t, πθ)πθ(a; s)p((s, a)→ s′; t′, πθ)πθ(a′; s′)

and get

∇Js0(θ) =
∞∑

t=0

∞∑
t′=0

γt+t′ ∑
s∈S,a∈A,s′∈S,a′∈A

fs0,θ
t,t′ (s, a, s′, a′)∇ log(πθ(a; s))r(s′, a′).
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For any θ1 and θ2 we can analyse the difference of gradients using this representation as follows.

∥∇Js0(θ1)−∇Js0(θ2)∥

=
∥∥∥ ∞∑

t=0

∞∑
t′=0

γt+t′
·
{ ∑

s∈S,a∈A,s′∈S,a′∈A
fs0,θ

t,t′ (s, a, s′, a′)
(
∇ log(πθ1(a; s))−∇ log(πθ2(a; s))

)
r(s′, a′)

+
∑

s∈S,a∈A,s′∈S,a′∈A

(
fs0,θ1

t,t′ (s, a, s′, a′)− fs0,θ2
t,t′ (s, a, s′, a′)

)
∇ log(πθ2(a; s))r(s′, a′)

}∥∥∥
≤

∞∑
t=0

∞∑
t′=0

γt+t′
·
{ ∑

s∈S,a∈A,s′∈S,a′∈A
fs0,θ

t,t′ (s, a, s′, a′)
∥∥∇ log(πθ1(a; s))−∇ log(πθ2(a; s))

∥∥|r(s′, a′)|

+
∑

s∈S,a∈A,s′∈S,a′∈A
|fs0,θ1

t,t′ (s, a, s′, a′)− fs0,θ2
t,t′ (s, a, s′, a′)| ∥∇ log(πθ2(a; s))∥ |r(s′, a′)|

}
.

Using LΘ-smoothness of the log-policy and the bounded reward assumption we have for the first
term, that∑
s∈S,a∈A,s′∈S,a′∈A

fs0,θ
t,t′ (s, a, s′, a′)

∥∥∇ log(πθ1(a; s))−∇ log(πθ2(a; s))
∥∥|r(s′, a′)| ≤ R∗LΘ∥θ1 − θ2∥.

(5.4)

For the second term we have to work a little harder to bound the difference of the probability
densities |fs0,θ1

t,t′ (s, a, s′, a′)− fs0,θ2
t,t′ (s, a, s′, a′)|. Therefore, we first denote by Tt all trajectories

from 0 to t, i.e.

Tt = {τ = {s0, a0, . . . , st, at}|s0, a0 ∈ A0, . . . , st ∈ S, at ∈ Ast}

and rewrite fs0,θ
t,t′ (s, a, s′, a′) as follows

fs0,θ
t,t′ (s, a, s′, a′) = p(s0 → s; t, πθ)πθ(a; s)p((s, a)→ s′; t′, πθ)πθ(a′; s′)

=
∑

τ∈Tt+t′

1st=s,at=a,st′ =s′,at′ =a′

t+t′∏
n=0

πθ(an; sn)
t+t′−1∏

n=0
p(sn+1; sn, an).

So,

fs0,θ1
t,t′ (s, a, s′, a′)− fs0,θ2

t,t′ (s, a, s′, a′)

=
∑

τ∈Tt+t′

1st=s,at=a,st′ =s′,at′ =a′

( t+t′∏
n=0

πθ1(an; sn)−
t+t′∏
n=0

πθ2(an; sn)
) t+t′−1∏

n=0
p(sn+1; sn, an).

Then, using Taylor expansion (or also the more dimensional mean value or Lagrange theorem) of
θ 7→

∏t+t′

n=0 πθ(an; sn) we obtain the existence of a θ̃ ∈ [θ1, θ2] such that

∣∣∣ t+t′∏
n=0

πθ1(an; sn)−
t+t′∏
n=0

πθ2(an; sn)
∣∣∣ ≤ ∣∣∣(θ1 − θ2)T ∇θ

( t+t′∏
n=0

πθ(an; sn)
)∣∣

θ=θ̄

∣∣∣
≤ ∥θ1 − θ2∥

∥∥ t+t′∑
n=0
∇πθ̃(an; sn)

t+t′∏
m=0,m ̸=n

πθ̃(am; sm)
∥∥

≤ ∥θ1 − θ2∥
t+t′∑
n=0

∥∥∇ log(πθ̃(an; sn))
∥∥ t+t′∏

m=0
πθ̃(am; sm)

≤ ∥θ1 − θ2∥(t + t′ + 1)BΘ

t+t′∏
m=0

πθ̃(am; sm).
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Finally, we follow for the second term, that∑
s∈S,a∈A,s′∈S,a′∈A

|fs0,θ1
t,t′ (s, a, s′, a′)− fs0,θ2

t,t′ (s, a, s′, a′)| ∥∇ log(πθ2(a; s))∥ |r(s′, a′)|

≤
∑

τ∈Tt+t′

∣∣∣ t+t′∏
n=0

πθ1(an; sn)−
t+t′∏
n=0

πθ2(an; sn)
∣∣∣ t+t′−1∏

n=0
p(sn+1; sn, an)BΘR∗

≤ ∥θ1 − θ2∥(t + t′ + 1)B2
ΘR∗

∑
τ∈Tt+t′

t+t′∏
m=0

πθ(am; sm)
t+t′−1∏

n=0
p(sn+1; sn, an)

︸ ︷︷ ︸
=1

= ∥θ1 − θ2∥(t + t′ + 1)B2
ΘR∗.

All in all, we obtain

∥∇Js0(θ1)−∇Js0(θ2)∥ ≤
∞∑

t=0

∞∑
t′=0

γt+t′
(R∗LΘ∥θ1 − θ2∥+ ∥θ1 − θ2∥(t + t′ + 1)B2

ΘR∗)

≤ L∥θ1 − θ2∥,

for L = R∗LΘ
(1−γ)2 + (1+γ)R∗B2

Θ
(1−γ)3 , where we used that

∞∑
t=0

∞∑
t′=0

γt+t′
(t + t′ + 1) = 1 + γ

(1− γ)3 .

Secondly, we show that the estimator used in Algorithm 32 has bounded variance.

Lemma 5.1.14. The estimator ∇̂Js(θ) proposed in Algorithm 32 for K = 1 has
bounded variance. More precisely,

∥∇̂Js(θ)∥ ≤ BΘR∗

(1− γ)(1− γ1/2)

and therefore,

E[∥∇̂Js(θ)−∇J(θ)∥2] ≤ C

for C = R2
∗B2

Θ

(
1

(1−γ)2(1−γ1/2)2 + 2
(1−γ)3(1−γ1/2) + 1

(1−γ)4

)
.

Proof. By the definition of ∇̂Js(θ) we have that

∥∇̂Js(θ)∥ =
∥∥∥ 1

1− γ
∇θ log(πθ(AT ; ST ))

T ′−1∑
t′=0

γt′/2R(ST +t′ , AT +t′)
∥∥∥

= 1
1− γ

∥∇θ log(πθ(AT ; ST ))∥
T ′−1∑
t′=0

γt′/2|R(ST +t′ , AT +t′)|

≤ BΘR∗

(1− γ)

T ′−1∑
t′=0

γt′/2

= BΘR∗

(1− γ)(1− γ1/2) .
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For the second claim, first note that

∥∇Js(θ)∥ = ∥ 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∇ log(πθ(A ; S))Qπθ

(S, A)
]
∥

≤ 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
∥log(πθ(A ; S))∥Qπθ

(S, A)
]

≤ 1
1− γ

E
S∼dπθ

s ,A∼πθ(· ; S)
[
BΘ

R∗

1− γ

]
= BΘR∗

(1− γ)2 .

Hence, we have that

E[∥∇̂Js(θ)−∇Js(θ)∥2]
≤ E[∥∇̂Js(θ)∥2] + 2E[∥∇̂Js(θ)∥]∥∇Js(θ)∥+ ∥∇Js(θ)∥2

≤ R2
∗B2

Θ
(1− γ)2(1− γ1/2)2 + 2 R∗BΘ

(1− γ)(1− γ1/2)
R∗BΘ

(1− γ)2 + R2
∗B2

Θ
(1− γ)4

= R2
∗B2

Θ

( 1
(1− γ)2(1− γ1/2)2 + 2

(1− γ)3(1− γ1/2) + 1
(1− γ)4

)
.

Define C = R2
∗B2

Θ

(
1

(1−γ)2(1−γ1/2)2 + 2
(1−γ)3(1−γ1/2) + 1

(1−γ)4

)
proves the claim.

Theorem 5.1.15. Assume the objective function θ 7→ J(θ) is L-smooth and
the policy parametrisation fulfills Assumption 5.1.11. Consider the stochastic
process (θn)n≥0 generated in Algorithm 32 for K = 1, where the step-sizes (αl)l∈N
(deterministic or F-adapted) satisfy

αl > 0,

∞∑
l=0

αl =∞ and
∞∑

l=0
α2

l <∞

(almost surely). Then,
lim

l→∞
∥∇Js(θl)∥2 = 0

almost surely.

Proof. First note that we consider a maximisation problem instead of a minimisation problem and
therefore have to consider −J in the SGD Theorem 4.5.1. By the bounded reward assumption we
know that Js,∗ = supθ∈Rd Js(θ) ≤ R∗

1−γ <∞, i.e. infθ −Js(θ) > −∞. Furthermore, we know that
Js (and thus also −Js) is L-smooth. We have by ∇̂Js(θ) from Algorithm 32 an estimator which
fulfills the equations (4.10) and (4.9) shown in Proposition 5.1.12 and Lemma 5.1.14. Hence,
defining

• F = −Js,

• x = θ and Z takes the roll of the MDP rollouts up to the geometric length, i.e. Z(x) =
(T, T ′, ST , AT , ST +1, . . . , ST +T ′ , AT +T ′)(θ) under policy πθ,

• ∇xf(x, Z) = 1
1−γ∇θ log(πθ(ST ; AT ))

∑T +T ′

t=T γ(t−T )/2R(St, At),

leads to almost sure convergence:

lim
l→∞
∥∇Js(θl)∥2 = 0.
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5.1.4 Variance reduction tricks
Traditionally it is believed that reducing the variance in estimating the gradient ∇J(θ) is crucial.
Recalling the discussion from Section 1.3.4 there are also other effects when using the variance
reduction by baselines for the softmax policy gradient approach to stochastic bandits. Nonetheless,
reducing variances is certainly a good idea.

Baseline

Let us generalise the baseline idea from stochastic bandits to general MDP policy gradient,
formulated in the finite MDP setting.

Theorem 5.1.16. Assume that (S, A, R) is a T -step MDP with finite state-action
spaces and consider a stationary differentiable parametrized family of policies
{πθ : θ ∈ Θ}. For any b ∈ R the gradient of J(θ) can also be written as

∇θJ(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

) (
Qπθ

t (St, At)− b
)︸ ︷︷ ︸

or (RT
t −b) or (RT

0 −b)

]
.

Proof. The computation is very similar to the bandit case, we redo the log-trick and see that for
every t ≤ T − 1

Eπθ

s

[
∇θ

(
log πθ(At ; St)

)
b
]

= b
∑
st∈S

∑
at∈As

Pπθ

s (St = st)πθ(at ; st)∇θ

(
log πθ(at ; st)

)
= b

∑
st∈S

Pπθ

s (St = st)
∑

at∈As

∇θπθ(at ; st)

= b
∑
st∈S

Pπθ

s (St = st)∇θ

∑
at∈A

πθ(at ; st)︸ ︷︷ ︸
=1

= 0.

Thus, the additional term vanishes in all three representations of the gradient so that −b can be
added.

Show that the constant baseline b can be replaced by any deterministic state-
dependent baseline b : S → R, i.e.

∇θJ(θ) = Eπθ

s

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)(
Qπθ

t (St, At)− b(St)
)]

.

We will come back to the most important state-dependent baseline b(s) = V πθ (s) when we
discuss actor-critic methods.

Write down and proof the baseline gradient representation for infinite discounted
MDPs.

In the bandit case we have already seen that the baseline trick is a variance reduction trick. The
same is true in the MDP setting.

Importance sampling trick/likelihood ratio method

There is a nice trick from stochastic numerics that is useful in many situations for reinforcement
learning, the so-called importance sampling trick (or likelihood ratio method). Suppose m =
E[g(X)] is to be approximated using a Monte Carlo method. The likelihood ratio trick is used in
two situations:
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• If it is hard to sample X but easy to simulate a random variable Y with similar density.

• The variance g(X) should be reduced.

The first advantage of the method is what is closer to the interest of reinforcement learning.
Before showing why let us recall the trick. Suppose X has density fX and Y is another random
variable with (positive) density fY . Then

E[g(X)] =
∫

g(x)fX(x) dx =
∫

g(y)fX(y)
fY (y) fY (y) dy = E[g̃(Y )]

with g̃(y) = g(y) fX (y)
fY (y) . Suppose that fX is close to a know density fY but somehow wiggles

around. It might then be much easier to simulate Y instead and correct the Monte Carlo
estimator with the likelihood ratios. Alternatively, if g̃(Y ) has smaller variance than g(X), then
the Monte Carlo convergence using Y would converge faster. This is typically the case if Y has
more mass on the important values (justifying the name importance sampling) giving the most
contribution to the expectation.
We now turn towards reinforcement learning and, quite surprisingly, find the trick useful to
construct off-policy estimators for the policy gradients! These are estimators that do not uses
samples produced from πθ). Here is the main trick:

Suppose τ = (s0, a0, . . . , sT −1, aT −1, sT ) is a policy and π, πb are two policies. Using
the path probabilities gives

Pπ
µ(τ)

Pπb

µ (τ)
= µ(s0)δ0(r0)

∏T −1
i=0 π(ai ; si)p(si+1 ; si, ai)

µ(s0)δ0(r0)
∏T −1

i=0 πb(ai ; si)p(si+1 ; si, ai)
=

T −1∏
i=0

π(ai ; si)
πb(ai ; si)

.

What is crucial here is the cancellation of the transition p, the change from π to πb

is model-free!

The likelihood ratio trick now does the following. Write down the policy gradient estimator,
replace πθ by some behaviro policy πb and compensate by inserting the likelihood ratio. Here is
the version of the finite-time non-discounted case:

Proposition 5.1.17. (Likelihood ratio trick for policy gradients)
Suppose πb is a behavior policy (with strictly positive weights), then

∇θJµ(θ) = Eπb

µ

[ T −1∏
i=0

πθ(Ai ; Si)
πb(Ai ; Si)

T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

Proof. The claim follows from the definition of discrete expectations E[g(X)] =
∑

k g(k)P(X = k)
and the MDP likelihood trick:

∇J(θ) = Eπθ

µ

[ T −1∑
t=0
∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

=
∑

τ : trajectory

( T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)
)
Pπθ

µ (τ)

=
∑

τ : trajectory

(Pπθ

µ (τ)
Pπb

µ (τ)

T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)
)
Pπb

µ (τ)

=
∑

τ : trajectory

( T −1∏
i=0

πθ(ai ; si)
πb(ai ; si)

T −1∑
t=0
∇θ

(
log πθ(at ; st)

)
Qπθ

t (st, at)
)
Pπb

µ (τ)
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= Eπb

µ

[ T −1∑
t=0

T −1∏
i=0

πθ(Ai ; Si)
πb(Ai ; Si)

∇θ

(
log πθ(At ; St)

)
Qπθ

t (St, At)
]

There are several reasons why the trick can be useful. It can be used to reduce the variance of
policy gradients (the original idea of the trick). Somehow this seems not to be very succesful.
Alternatively, the trick can be used to simulate from only one policy to approximate all policy
gradients ∇θJµ(θ), i.e. run an off-policy policy gradient ascent, see for instance8. This approach
turns out to be delicate as small values of πb can strongly increase the variance. From the
theoretical point of view the likelihood trick is very useful as the REINFORCE algorithm turns
into a true stochastic gradient descent algorithm of a function f(θ) = E[h(X, θ)], the dependence
of θ is removed from the sampled law.

5.1.5 Natural policy gradient

8Metelli, Papini, Faccio, Restelli: "Policy Optimization via Importance Sampling", NIPS 2018



Chapter 6

Reinforcement learning with
function approximation

Tabular methods generally assumed small state- and action-spaces. Small in the sense that in
principle all Q-values Q(s, a) could be considered separately in a table. In reality the number
of states/actions is typically way too big. Additionally, it seems unpractical to estimate (learn)
all Q-values separately as small changes in states might only have little impact on Q(s, a). For
instance, if s is a picture such as the state of an Atari game. In that case improved learning of
Q(s, a) should also effect Q(s′, a) for s′ similar (in some sense) to s. As an illustration one might
think of a function f : Nd → R that should be learned in some learning context. If f(n) = a ·n+b
is (affine) linear it would be completely unreasonable to learn all values f(n) separately, only
the vectors a and b would have to be estimated. If linear functions are a good approximation
to the true function f then it might still be much more reasonable to estimate two parameters
for an approximation instead of approximating all true values f(n). Exactly this happens in
RL with function approximation, the state-value function V or the state-action value function
Q is approximated using a parametric class of functions Vw (resp. Qw) and instead of finding
estimates V̂ (s) for all s ∈ S (or Q̂(s, a) for all s, a) a parameter-vector w is estimated that best
approximates V (s) for all s (or Q(s, a) for all s, a). In this chapter we will mostly deal with
linear function approximation, in practice Vw or Qw are neural network functions and w is the
vector with all weights. As in dynamic programming there are different possible tasks:

• policy evaluation with function approximation, i.e. find Vw from the approximating
parametric class that best approximates V π (or Qw that best approximates Qπ),

• policy iteration with function approximation, i.e. alternate between policy evaluation
with function approximation and policy improvement, which can either be model-based or
model-free using samples,

• value iteration with function approximation or a sample based Q-learning with function
approximation,

• policy gradient with function approximation.

The good news is that even though it’s complicated to make it work, in many settings dynamic
programming or policy gradient with function approximation works. Bad news are lack of
mathematical understanding. In very restricted settings proofs can be given but for the most
relevant use of function approximation there are still large gaps in the understanding.

6.1 Policy evaluation with function approximation
In this section we deal with the evaluation of a fixed policy π, i.e. the computation of the
state-value function V π and the state-action-value function Qπ. Of course, we already know
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exact and approximative tabular solution methods that use the theory of dynamic programming
and stochastic approximation to obtain estimates of V π and Qπ.
The aim of this section is to adapt the algorithms from the tabular case to obtain more general
methods that do not require us to store estimates of every entry of V π and Qπ. Estimates
of V π and Qπ will not be stored as lookup-tables (or vectors), where estimates for each of
the entries of V π(s) and/or Qπ(a, s) individually. Instead, we will use a parametrized family
{fw : w ∈ Rd}. Typically the number d of parameters will be much smaller than the number
of states (or state-action pairs) which means that we will have to tune far fewer parameters
than in our previous tabular algorithms. While this is definitely an advantage, we cannot expect
convergence to the value functions V π and Qπ once approximations are introduced. One obvious
reason for that is that they may not be within the set of functions that we can represent exactly
using our chosen parametrization. In this new setting, the following questions appear naturally:

(i) Does a given algorithm converge to something?

(ii) If the algorithm does convergence, is the limit close (in some sense) to the true value
function V π (resp. Qπ)?

(iii) If the algorithm does not converge, does it at least oscillate within some small region
around V π (resp. Qπ)?

6.1.1 Function approximation
We will broadly classify the parametrized approximation architectures as either linear or non-
linear. Linear architectures approximate the state-value function as follows:

fw(s) = w · ϕ(s) =
d∑

i=1
wiϕi(s),

where ϕ : S → Rd and ϕi(s) denotes the i-th entry of ϕ(s). Here ϕ is a fixed mapping from S to
Rd called the feature extractor, ϕ should extract the most important features of a state. Feature
vectors can be anything, a good choice for concrete problems is clearly a tricky task. Essentially,
using feature extraction the state-space is reduced to a subset of Rd and we approximate a
function Rd → R by linear functions only. The linear architecture for Qπ is entirely analogous:

fw(s, a) = w · ϕ(s, a) =
d∑

i=1
wiϕi(s, a),

with ϕ : S ×A → Rd. In this section we will only deal with policy evaluation for the state-value
function, the action-values can be handled similarly as the Bellman operator is essentially the
same. As we will see soon, convergence of many algorithms can only be guaranteed in the case
of linear approximation architectures. Still, non-linear parametrizations like neural network
funcations are very popular in practical applications of RL (in this particular example, w would
denote the weights and biases of the network). Fortunately, linear methods still allow for a good
deal of flexibility as we will discuss below.

Example 6.1.1. Let us partition S into m disjoint subsets Si, i.e. S =
⋃̇m

i=1Si with Si∩Sj = ∅
for all i ̸= j. Define

ϕ : S → Rm such that ϕi : s 7→ 1Si
(s).

Then states from a fixed partition set are treated equally and the linear function approximation
simplifies to fw(s) = wi for all s ∈ Si. This particularly simple linear function approximation is
referred to as state eaggregation. State aggregation can for instance be useful in a computer
game where many of the possible images on the screen may have near identical state values
because many features (for instance the sun in the background of super mario) of the image are
irrelevant for the game.
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It is not surprising that many rigorous results exist for state aggregation. In a way it first
simplifies the problem and then treats the remaining problem as a tabular problem.

Tabular reinforcement learning can be seen as reinforcement learning with function
approximation. Tabular is nothing but state aggregation with the finest partition
Si = {si}.

Example 6.1.2. From the more familiar tasks of regression and interpolation we already that
polynomials are good at approximating real-valued functions. It is not so surprising, then, that
polynomials can be used in tasks where the states can be expressed as numbers, e.g. positions or
angles in a robotics task. Suppose, for example, S ⊆ R2 and let

ϕ(s) = (1, s1, s2, s1s2) so that fw(s) = w1 + w2s1 + w3s2 + w4s1s2,

where the last term takes into account interactions between the dimensions. Of course, we
could also use higher-dimensional polynomials to model more complex interactions, say ϕ(s) =
(1, s1, s2, s1s2, s2

1, s2
1s3

2, s3
1, s3

2) if we expect V π to behave like a cubic function. This already
highlights how we should incorporate prior knowledge about the nature of the task into the
construction of useful feature vectors.

6.1.2 Sample based policy evaluation with function approximation
All function approximation algorithms must use some notion of error between functions to
evaluate the quality of the function approximation. To give simple algorithms the notion should
be useful and simple. The most classical one is the weighted mean-squared error:

Definition 6.1.3. Let µ a (discrete) probability measure on S and {fw : w ∈ Rd}
a set of approximation architectures. We define the mean square value error as

E(w) = 1
2
∑
s∈S

µ(s)
(
V π(s)− fw(s)

)2 = 1
2ES∼µ

[
(V π(S)− fw(S))2].

The weights µ are supposed to indicate the importance of the respective states, thus, a natural
choice is the (discounted) state visitation measure. Ideally, we want to find w such that E(w)
attains its global minimum. If our parametrized function class contains the true value function
the value of the minimum will, of course, be 0. But there is no reason that should be the case,
and typically it won’t. It should be noted that it is not clear that E is the right performance
objective for reinforcement learning. Our reason to even learn the value function is (at least
most of the time) to obtain a better policy. However, the best value function approximation
need not be the one that minimizes E. Even so, it is not obvious what a sensible alternative
goal would be.

The following discussion will be kept somewhat informal to illustrate the important points, a
formal treatment follows below. Least-squares problem as minimising E appear in many contexts,
solution methods are quite standard. If the approximation architecture is linear the minimisation
problem can be solved explicitly but involves non-trivial matrix inversions. In general, as long as
the approximation architecture is differentiable the minimum (at least a local minimum) can be
obtained using gradient descent on the parameters as the gradient can be obtained easily from
the chain rule. This yields

∇wE(w) = 1
2
∑
s∈S

µ(s)∇w

(
V π(s)− fw(s)

)2

= −
∑
s∈S

µ(s)
(
V π(s)− fw(s)

)
∇wfw(s)

= ES∼µ

[
(fw(S)− V π(S))∇wfw(S)

]
.

(6.1)
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What we see is that the gradient takes precisely the form needed for stochastic gradient algorithms
(SGD). In order for SGD algorithms to work, a minimal necessary requirement is that we should
use unbiased estimates of the gradient of the potential function. For the sake of argument, assume
just for now that we somehow have access to the value function. As suggested by the calculations
above, a sample based SGD algorithm for calculating the best function approximation would be
given by

wn+1 = wn + αn (V π(sn+1)− fwn
(sn+1))∇wfwn

(sn+1), w0 ∈ Rd,

where the states s1, ... are sampled independently according to µ and step-sizes that satisfy
decay rates depending on the problem (most of the time the Robbins-Monro conditions work).
Obviously, we do not have access to the value function in practice. Therefore, we will have to
replace V π(sn) by estimates Ut which leads to the following general algorithm:

wn+1 = wn + αn (Un+1 − fwn(sn+1))∇wfwn(sn+1), w0 ∈ Rd. (6.2)

If f is a linear architecture, then the algorithm simplifies to

wn+1 = wn + αn (Un+1 − wn · ϕ(sn+1)) ϕ(sn+1), w0 ∈ Rd.

We can get creative here and chose Ut as one of the estimates of the value function from sample-
based dynamic programming. In theory the simplest choice of U is a Monte Carlo estimator
where independent samples are generated:

Example 6.1.4. Setting Un =
∑∞

t=0 γtR(Sn
t+1, An

t+1) with rollouts (Sn
t , An

t )t≥0 sampled ac-
cording to the policy π with starting state Sn

0 = sn, the Monte Carlo version of policy evaluation
with function approximation is

wn+1 = wn + αn

( ∞∑
t=0

γtR(Sn+1
t+1 , An+1

t+1 )︸ ︷︷ ︸
Theoretical Monte Carlo estimator for V π(sn+1)

−fwn
(sn+1)

)
∇wfwn

(sn+1), w0 ∈ Rd.

This is somewhat a double stochastic gradient scheme, sampling independently from states and
total reward distributions. We will see below that for linear function architectures convergence
follows directly from standard stochastic gradient theorems.

Similarly to sample-based dynamic programming the Monte Carlo approach is inefficient, there
is no bootstrapping of rollouts. Rollouts are only used once, with the advantage that there is a
lot of independence that facilitates convergence guarantees. Reusing rollouts by including the
already estimated value function yields a one-step temporal difference approach (TD(0)). Recall
that in TD(0) a value function estimation is improved by only resampling one times-step and
then reusing the old estimate of V π:

V π(s)← R(s, a) + γV π(s′),

where a ∼ π(· ; s) and s′ ∼ p(· ; s, a) is a one-step sample. While this sounds plausible, a formal
justification is throught the Bellman operator written in terms of expectations. Since V π is
unknown it is plausible to replace V π by the best-known current approximation of V π. The
corresponding update formula is as follows:e

Example 6.1.5. The TD(0) update rule for policy evaluation with function approximation is

wn+1 = wn + αn

(
R(sn+1, a) + γfwn

(s′)︸ ︷︷ ︸
TD(0) estimator for V π(sn+1)

−fwn
(sn+1)

)
∇wfwn

(sn+1), w0 ∈ Rd, (6.3)

where a ∼ π(· ; sn+1) and s′ ∼ p(· ; sn+1, a).

Analogously to sample based dynamic programming one-step temporal differences are also
replaced by n-steps or a TD(λ) version:
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Example 6.1.6. The N -step temporal difference update rule for policy evaluation with function
approximation is

wn+1 = wn + αn

(N−1∑
t=0

γtR(Sn+1
t , An+1

t ) + γN fwn(Sn
N )︸ ︷︷ ︸

N-step TD estimator for V π(sn+1)

−fwn(sn+1)
)
∇wfwn(sn+1), (6.4)

where An
0 , Sn

0 , ..., Sn
N are MDP rollouts started in sn.

Using approximators fw to estimate V π destroys the gradient descent property of
the algorithm. The update rule is not anymore obtained from the chain rule of
the least-square error! In reinforcement learning such algorithms are often called
semi-gradient, they look like gradient descent updates but aren’t. As a matter of
fact, most algorithms do not converge, and if so, the analysis does not follow from
gradient descent theorems but from the very specific form of the iteration.

Up to now the discussion was informal and, in fact, problematic. There is a big problem with
the chain rule. If, as we did for the TD(0) update, the value function is replaced by a function
approximation fw, then the dependence of w yields a different derivative and the gradient descent
update is not (6.4). Nonetheless, the algorithm could still be reasonable and (at least for linear
function approximation) actually is.

Theorem 6.1.7. (Stochastic Gradient Descent)
Suppose (Ω,A,Fn) is a filtered probability with Fn+1-measurable errors εn and
define the recursion

rn+1 = rn − αt

(
∇g(rn) + εn

)
where g : Rn → R≥0 is a cost function. We assume that the stepsizes αn are
nonnegative, Fn-measurable and satisfy

∞∑
n=0

αn =∞ and
∞∑

n=0
α2

n <∞.

g is assumed to be L-smooth, i.e. g is differentiable and the gradient ∇g is
L-Lipschitz continuous. In addition, we assume that the noise terms are Fn+1-
measurable and conditionally unbiased in the sense that

E[εn | Fn] = 0

and have sufficiently small variances

E[∥εn∥2 | Fn] ≤ A + B∥∇g(rn)∥2

for some constants A, B ∈ R. Under these assumptions the sequence (g(rn))n∈N
converges almost surely and limn→∞∇g(rn) = 0. Moreover, every limit point of
(rn)n∈N is a stationary point of g.

Note that the theorem only requires L-smoothness on g but no convexity assumption. Hence,
the result is only convergence to a critical point but not convergence to a global minimum 1.
To prove at least something we can show without much effort the convergence of the gradient
descent based value prediction algorithm with linear function approximation in the case the
value function is estimated without bias (e.g. with Monte Carlo estimation):

1The proof of this theorem can be found in Bertsekas’ and Tsitsiklis’ book Neuro-Dynamic Programming
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Theorem 6.1.8. Suppose (wn)n∈N is the sequence from Example 6.1.4 initialised
in some w0 ∈ Rd, i.e. approximate policy evaluation with Monte Carlo estimates.
If features and rewards are bounded and the approximation architecture is linear,
then (wn)n∈N converges almost surely to the global mimimum of E.

The linear least-squared problem can also be solved explicitly by matrix inversion. In contrast
to gradient descent methods (with provable convergence or not) the direct approach does not
extend to non-linear approximation architectures. To give a first impression we discuss a simple
convergence proof for the simple linear situation with Monte Carlo estimates.

Proof. Since the fw are assumed linear the mean-squared error is a quadratic function. Thus,
it is L-smooth (the derivative is linear) and has a unique global minimum (which is the only
critical point). Furthermore, the gradient is

∇wE(w) (6.1)= Eµ [(fw(S)− V π(S))∇wfw(S)] .

To link the update scheme formally to the stochastic gradient scheme we write

wn+1 = wn + αn

[
(Un+1 − fw(Sn+1))∇wfwn

(Sn+1)
]

= wn + αn

[
∇wE(wn) + εn

]
,

with

εn := (fwn
(Sn+1)− Un+1)∇wfwn

(Sn+1)−∇wE(wn),

where Un is a Monte Carlo sample of V π(Sn) generated independently of Sn ∼ µ. Next, denote
by Fn the filtration generated by all random variables of the algorithm to produce wn. These are
all αk with k < n and all rollouts (Sk, Ak) that result in Uk with k < n. Then Un is independent
of Fn and Fn+1-measurable (thus, εn is Fn+1-measurable). Furthermore, Sn is independent
of Fn. Hence, the tower property and measurabilty/independence properties of conditional
expectation yield

E[εn | Fn]
= E[fwn(Sn+1)∇wfwn(Sn+1) | Fn]− E[Un+1∇wfwn(Sn+1) | Fn]−∇wE(wn)
= E[fwn(Sn+1)∇wfwn(Sn+1) | Fn]− E[E[Un+1∇wfwn(Sn+1) |σ(Fn, Sn+1)] | Fn]−∇wE(wn)
= E[fwn(Sn+1)∇wfwn(Sn+1) | Fn]− E[E[Un+1 |σ(Fn, Sn+1)]∇wfwn(Sn+1) | Fn]−∇wE(wn)
= E[fwn(Sn+1)∇wfwn(Sn+1) | Fn]− E[E[Un+1 | Sn+1]∇wfwn(Sn+1) | Fn]−∇wE(wn)
= E[fwn(Sn+1)∇wfwn(Sn+1) | Fn]− E[V π(Sn+1)∇wfwn(Sn+1) | Fn]−∇wE(wn)

ind.= ESn+1∼µ[(fwn
(Sn+1)− V π(Sn))∇wfwn

(Sn+1)]−∇wE(wn)
= 0.

2 Finally, the second moments satisfy

E
[
∥εn∥2 | Fn

]
= E

[
∥2 (fwn

(Sn+1)− Un+1)∇wfwn
(Sn+1)−∇wE(wn)∥2 ∣∣Fn

]
≤ E

[
(2 ∥Un∇wfwn

(Sn+1)∥2 + ∥2fwn
(Sn+1)∇wfwn

(Sn+1)− E(wn)∥)2 ∣∣Fn

]
= E

[
4U2

n∥∇wfwn(Sn+1)∥2 ∣∣Fn

]
+ E [2|Un| · ∥∇wfwn(Sn)∥2 · ∥2fwn(Sn)∇wfwn(Sn)− E(wn)∥ | Fn]

+ E
[
∥2fwn

(Sn+1)∇wfwn
(Sn+1)− E(wn)∥2 | Fn

]
≤ C1 · E[U2

n+1 | Fn] + C2 · E[|Un+1| | Fn] + C3

= C1 · E[E[U2
n+1 |Sn]Fn] + C2 · E[E[|Un+1| |Sn]|Fn] + C3

≤ C1K1 + C2K2 + C3

2warum sind die gradienten beschrankt? stimmt nicht
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where C1,C2,C3 ∈ R exist due to the finiteness of the state space and K1,K2 ∈ R exist due to
our assumption on the variance of Ut. By the SGD theorem, it immediately follows that wt

converges to a stationary point of E. Since E is a finite sum of convex functions if we use a
linear architecture, it is a convex function itself. Therefore, the only stationary point is a global
minimum which proves the theorem.

The proof did not require much. The linear architecture was used to ensure the least-square
error is an L-smooth (here quadratic) function, and that the error has a global minimum. The
algorithm might still converge to a stationary point for other estimators and other function
approximations. Unfortunately, the sampling will usually have a bias as the true value function
is replaced by the current estimate. For linear architectures with TD(λ) estimators we refer to
the famous paper of Tsitskilis and van Roy3.
What we did in this section works equally well for approximate evaluation of the Q-function for
a given policy. The minimisation goal becomes

E(w) =
∑

s∈S,a∈A
µ(s)π(a ; s)

(
Qπ(s, a)− fw(s, a)

)2
.

The generic gradient descent motivated minimisation algorithm is

wn+1 = wn + αn (Un+1 − fw(sn+1, an+1))∇wfw(sn+1, an+1), w0 ∈ Rd,

where sn is drawn from the reference measure µ on S, an according to π(· ; sn), and Un are
estimates for Qπ(sn, an). In the simplest situation of independent Monte Carlo estimates and
linear function approximations fw(s, a) = w ·ϕ(s, a) the same stochastic gradient argument shows
convergence of (wn)n∈N to the best linear approximation of Qπ.

6.2 Approximate policy improvement
Explain how policy evaluation is done approximately and what is known.

• Replace for large action space argmaxaQ(s, a) by an approximation such as softmax or
Gumbel softmax. Explain why this is useful and prove what is known.

• Make link to policy gradient, seeing a gradient step as approximation to taking best action.
Also make connection to natural gradient.

6.3 Generic bounds for policy iteration with approxima-
tions

So far we discussed both ingredients for policy iteration (policy evaluation, policy improvement)
with function approximation, i.e. replacing the true targets by targets that are simpler to obtain.
Since both steps involve errors it is a priori not clear how strongly the errors accumulate while
iterating. In this section we give a generic result on how errors propagate.

Proposition 6.3.1. Consider a policy improvement algorithm that produces a
sequence of stationary policies πk and a corresponding sequence of approximate
state-value functions V̂ πk with given accuracies

• Policy evaluation error: ||V̂ πk − V πk ||∞ ≤ ε for all k ∈ N

• Policy improvement error: ||T πk+1 V̂ πk − T ∗V̂ πk ||∞ ≤ δ for all k ∈ N

3J. Tsitsiklis, B. van Roy: "An Analysis of Temporal-Difference Learning with Function Approximation", 1997,
IEEE Transactions on Automatic Control, Vol 42(5)
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It then holds that

lim sup
k→∞

||V ∗ − V πk ||∞ ≤
δ + 2γε

(1− γ)2 .

Before we turn to the proof, let us discuss what this statement really means. In approximative
policy iteration there are two error sources:

• errors obtained in policy evaluation (estimation errors and approximation errors),

• errors obtained in finding the greedy policy corresponding to the estimated value functions
V̂ πk .

While the first error is clear from the statement, the second error is more hidden. It becomes
clearer recalling an important fact from dynamic programming.

A policy π is greedy with respect to some function V ∈ Rn if and only if T ∗V = T πV .

Thus, δ measures, in some sense, the deviation of policies πk+1 from the greedy policy obtained
from V̂ πk . But why do we not just estimate the policies in some sense as measures, for instance
in total deviation? Using the definitions the error measure used in the proposition turns out to
be the deviation from the best policy (the greedy one) weighted by the future impact of actions
when playing the action:

(T ∗V̂ πk )(s)− (T πk+1 V̂ πk )(s)

= max
a∈As

{
r(s, a) + γ

∑
s′∈S

p(s′ ; s, a)V̂ πk (s′)
}
−
∑

a∈As

πk+1(a ; s)
(

r(s, a) + γ
∑
s′∈S

p(s′; s, a)V̂ πk (s′)
)

=
∑

a∈As

(
greedy(V̂ πk )(a ; s)− πk+1(a ; s)

)︸ ︷︷ ︸
deviation from best policy

(
r(s, a) + γ

∑
s′∈S

p(s′; s, a)V̂ πk (s′)
)

︸ ︷︷ ︸
currently estimated Q-value

The proposition is very general and sheds some light to different situations.
(i) If all errors are zero, an explicit policy iteration can be performed, then the proposition yields
another proof of convergence.
(ii) Suppose the model is known, everything is computable but policy evaluation is performed
with function approximation. Then the Q-functions can be computed and the greedy policies
obtained without error. In that case δ = 0 and ε measures the approximation error of the value
function using the approximation class. The proposition shows how badly the errors can at most
accumulate.
What might be possible reasons why δ ̸= 0? One way this can happen is if there is no model of
the system available. Without knowledge of the transition probabilities, we cannot compute Qπk

and consequently cannot compute the greedy policy of V πk either. Another reason could be that
we do indeed have a model available, but we do not want to use a strictly greedy policy in the
next step to ensure sufficient exploration (e.g. an ε-greedy method).

As a side note, by letting ε, δ = 0 we recover the convergence result for the exact
policy iteration procedure.

The above proposition does not only apply in the case of function approximation but in the
tabular setting as well, where it might still happen that ε ̸= 0 if we use an approximate method
for the policy evaluation like Monte-Carlo. Is the bound provided by the proposition any good?
Clearly, the term (1− γ)2 in the denominator is annoying if γ is close to 1, but the good news is
that the bound only depends linearly on ε and δ.

Two properties of Bellmann’s expectation operator T π (and T ∗) will be used:
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(i) Monotonicity: V (s) ≥ U(s) for all s ∈ S implies T πV (s) ≥ T πU(s) for all s ∈ S.

(ii) Let c ∈ R and let 1 ∈ R|S| the vector with 1 in every component. Then,

T π(V + c1)(s) = T πV (s) + γc, ∀s ∈ S.

Both properties follow immediately by the definition or by writing T πV (s) = Eπ
s [R(s, A0) +

γV (S1)]. The proposition is proved in two steps. A first lemma deals with a one-step version of
the proposition, which is then extended to n steps. Taking limits will then prove the proposition.

Lemma 6.3.2. (generalised policy improvement lemma)
Let π and π̄ be some policies and let V ∈ R|S| be a vector. If

• ∥V − V π∥∞ ≤ ε for some ε > 0,

• ||T ∗V − T πV ||∞ ≤ δ for some δ > 0,

then

max
s∈S

(
V π(s)− V π(s)

)
≤ δ + 2γε

1− γ
.

Why do we call the lemma generalised policy improvement? If V = V π and π = π̄ then the
choices ε = δ = 0 yield the policy improvement lemma for the greedy policy obtained from V π

because T ∗V π is nothing but the value function of the greedy policy obtained from V π. The
generalisation tells us that value weakening can be controled in the approximate policz iteration
step. We will later apply the lemma to π = πk, π̄ = πk+1 and V = V̂ πk for fixed k ∈ N. The
assumptions of the proposition imply the assumption of the lemma for this particular choice.

Proof. Define ξ = maxs∈S
(
V π(s)− V π(s)

)
so that

V π(s) + ξ ≥ V π(s), ∀s ∈ S.

Using the assumption we obtain

0 ≤ − (T ∗V ) (s) +
(
T πV

)
(s) + δ ≤ − (T πV ) (s) +

(
T πV

)
(s) + δ

for all s. We have used our assumption on π in the first inequality and the general inequality
T ∗V (s) ≥ T πV (s) in the second one. We can now derive the main inequality that we need,

V π(s)− V π(s) = V π(s)− T πV π(s)
≤
(
V π(s)− T πV π(s) + γξ

)
+
(
− (T πV ) (s) +

(
T πV

)
(s) + δ

)
≤ ||V π − T πV ||∞ + ||T πV − T πV π||∞ + γξ + δ

= ||T πV π − T πV ||∞ + ||T πV − T πV π||∞ + γξ + δ

≤ 2γ||V π − V ||∞ + γξ + δ

≤ 2γε + γξ + δ,

where we have used additionally the fixedpoint and contraction properties of the Bellman
expectation operators. The definition of ξ implies that ξ ≤ 2γε + γξ + δ which is equivalent to

ξ ≤ δ + 2γε

1− γ

which proves the statement.

Next, define

ξk = ||V πk − V πk+1 ||∞ and ζk = max
s∈S

(
V ∗(s)− V πk (s)

)
.

We will now derive a bound for ζk which involves in the upper bound the term estimated in the
previous lemma for the right choices of π, π̄.
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Lemma 6.3.3. Suppose the assumptions from Proposition 6.3.1 hold, then

ζk+1 ≤ γζk + γξk + δ + 2γε

for all k ∈ N.

Proof. First note that

V ∗(s)− ζk ≤ V πk (s), ∀k ∈ N.

Monotonicity and linearity of T ∗ as well as the fixed point property yield

T ∗V πk (s) ≥ T ∗(V ∗ − ζk1)(s) = T ∗V ∗(s)− γζk = V ∗(s)− γζk, ∀s ∈ S.

Using the assumption and monotonicity of T πk this yields

T πk+1V πk (s) ≥ T πk+1(V̂ πk − ε1)(s)
= T πk+1 V̂ πk (s)− γε

≥ T ∗V̂ πk (s)− δ − γε

≥ T ∗(V πk − ε1)(s)− δ − γε

= T ∗V πk (s)− δ − 2γε

≥ T ∗(V ∗ − ζk1)(s)− δ − 2γε

= V ∗(s)− γζk − δ − 2γε

for all s ∈ S, where we have used our assumptions on the approximation error of V̂ πk and the
computational error of the corresponding greedy policy. It follows that

V πk+1(s) = T πk+1V πk+1(s)
≥ T πk+1(V πk − ξk1)(s)
= T πk+1V πk (s)− γξk

≥ V ∗(s)− γζk − δ − 2γε− γξk

for all s ∈ S. Rearranging this yields

0 ≤ V ∗(s)− V πk+1(s) ≤ γζk + γξk + δ + 2γε

for all s ∈ S from which we conclude the result.

We can now easily prove the original proposition by using a familiar trick from introductory
analysis courses.

Proof of Proposition 6.3.1: The second lemma yields

ζk+1 − γζk ≤ γξk + δ + 2γε

which, combined with the first lemma (using π = πk, π̄ = πk+1, V = V̂ πk and the assumption of
the proposition to check the assumptions of the lemma), gives

ζk+1 − γζk ≤ γ
δ + 2γε

1− γ
+ δ + 2γε.

Taking the limit superior on both sides yields

(1− γ) lim sup
k→∞

ζk ≤ γ
δ + 2γε

1− γ
+ δ + 2γε.

Simplifying the righthand side and dividing by (1− γ) proves the claim.
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6.4 Q-learning with linear function approximation
Let us quickly recall what we learnt in dynamic programming and the sample based analogue.
Dynamic programming lead to two kind of algorithms:

• Policy iteration algorithms based on Banach’s fixed point theorem. Iterating T π or T ∗

leads to iterative algorithms that approximate the value function V π (resp. Qπ) or the
optimal value-function V ∗ (resp. Q∗). If V ∗ or Q∗ is known, then an optimal policy is
obtained by taking the greedy policy.

• Using that T π and T ∗ for Q (not for V !) can be written as expectations the stochastic
approximation theorem for ||·||∞-contractions gives sample based algorithms to approximate
V π, Qπ, and Q∗. Since the mathematical structure is the same (stochastic approximation
of fixedpoint) the algorithms looked very similar, using the respective operator.

So far we discussed policy evaluation with function approximation and gave a rigorous justification
of the simplest update rule

wn+1 = wn + αn

(
V π(sn+1)︸ ︷︷ ︸

≈Un+1

−fwn(sn+1)
)
∇wfwn(sn+1), w0 ∈ Rd,

in terms of stochastic gradient descent. The update minimises (at least for linear approximation
architectures) the least-squared error. Similarly, for Q-learing with function approximation the
goal is to minimise

E(w) = 1
2

∑
s∈S,a∈As

µ(s, a)
(
Q∗(s, a)− fw(s, a)

)2 = 1
2E(S,A)∼µ

[
(Q(S, A)− fw(S, A))2]

for some reference measure µ. Just as before a stochastic gradient algorithm to minimise E is

wn+1 = wn + αn

(
Q∗(sn+1, an+1)− fwn

(sn+1, an+1)
)
∇wfwn

(sn+1, an+1), w0 ∈ Rd.

As for the temporal difference approach to policy evaluation with function approximation
we use the Bellman operator. Recalling that Q∗ is the unique fixedpoint of T ∗Q(s, a) =
Eπa

s

[
R(s, a) + γ maxa′∈AS1

Q(S1, a′)
]

we replace the unknown Q∗ by a sample of the expectation
and the unknown Q by the best known approximation fw.

Definition 6.4.1. The update scheme

wn+1

= wn + αn

(
R(sn+1, an+1) + max

a
fwn(sn+1, a)− fwn(sn+1, an+1)

)
∇wfwn(sn+1, an+1)

is called Q-learning with function approximation. If {fw = wT Φ : w ∈ Rd} one
speaks of Q-learning with linear function approximation, if {fw : w ∈ Rd} are neural
network functions one speaks of deep Q-learning (DQN). The choice of state-action
pairs (sn, an) is handled differently in different versions of the algorithm.

6.5 Policy gradient with linear function approximation
Similarly to stochastic approximation

wn+1 = wn + αn

(
R(sn, an) + γ max

a′
fw(s′, a′)− fw(sn, an)

)
∇wfw(sn, an),
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6.6 A quick dive into neural networks
6.6.1 What are neural network functions?
To get the discussion started let us look at the simplest example, that of a single neuron. A neuron
in our brain is an electrically excitable cell that fires electric signals called action potentials.
In mathematical term, a neuron is a function that takes a vector (incoming information) and
returns a number (signal, e.g. 0 or 1). A network of billions of communicating neurons passes
incoming signals to outcoming action signals. Inspired from neuroscience a century of research
in computer science has led to incredible results in artificial intelligence. Let us first describe
the simplest model of a neuron, and then continue with artificial networks of neurons (so-called
neural networks or perceptrons). The simplest model4 is

f(x) = 1[0,∞)

( d∑
i=1

wixi + b
)

.

If the combined strength of the signals (weighted according to neurons judgement of importance
for the signals) exceeds a certain level the neural fires, otherwise not. More generally, for the
definition of an artificial neuron the indicator is typically replaced by a generic function σ, the
so-called activation function.

Definition 6.6.1. For σ : R → R, w ∈ Rd, and b ∈ R, the function f : Rd → R
defined by

f(x) = σ
( d∑

i=1
wixi + b

)
is called an artificial neuron with activation function σ, weights w1, ..., wd for the
signals x1, ..., xd and bias b.

The weights can be interpreted as importance of the signal for the neuron, the bias as susceptability
of the neuron.

Example 6.6.2. Here are some typcial activation functions:
• σ(s) = 1[0,∞)(s), the Heavyside function, yields a neuron that either fires or not,

• σ(s) = s yields a linear neuron which is not really used,

• σ(s) = max{0, s} is called rectified linear unit (ReLU), a very typical practical choice,

• σ(s) = 1
1+e−s = es

1+es is called logistic activation function. The logistic activation function
is nothing but the softmax probability for one of two possible actions.

Graphical representation of an artificial neuron
4McCulloch, Pitts: "A logical calculus of ideas immanent in nervous activity", Bull. Math. Biophys., 5:115-133,

1943
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As mentioned the brain consists of billions of neurons that form a network in some very
complicated manner. We will do the same, transfer the outputs of neurons into new neurons.

Graphical representation of a neural network with 2 hidden layers, 3 input dimensions, 2 output
dimensions

Here is a mathematical formulisation of a simple network of neurons using the same activation
function, such networks of artificial neurons are also called multilayer perceptrons5:

Definition 6.6.3. (Feedforward neural networks)
Let d, L ∈ N, L ≥ 2, and σ : R → R. Then a multilayer perceptron (or fully
connected feedforward neural network) with d-dimensional input, L layers, and
activation function σ is a function F : Rd → Rk that can be written as

F (x) = TL(σ(TL−1(... σ(T1(x))))),

where L− 1 is the number of hidden layers with Nl units (number of neurons per
layer), N0 = d and NL = k, and Tl(x) = Wlx + bl are affine functions with

• weight matrices Wl ∈ RNl×Nl−1 ,

• biases bl ∈ RNl .

Note that the function σ is applied coordinate-wise to the vectors. A neural network
is called shallow if L = 1, i.e. there is only one hidden layer and deep if the number
of layers is large. Finally, if the output is supposed to be a probability vector one
applies a final normalisation with the softmax function Φ(y)i = eyi∑k

j=1
eyj

to the

output vector:

F (x) = Φ(TL(σ(TL−1(... σ(T1(x)))))).

6 The multilayer perceptron is quite special in it’s structure. All neurons of a fixed layer receive
the same input vector (the outputs of the neurons before) which is then multiplied with the
weight-vector of the neuron, shifted, and plugged-into the activation function to yield the signal.
To visualise the mapping one can for instance write the real-valued weights on the arrow pointing
into a neuron. If a weight is forced to be zero the arrow is usually removed from the graphical
representation. This neural network was made up by thinking, not by brute-force training on
mass data. The network produces a vector of features of an image, such as "number of circles",
"number of edges", ...

Definition 6.6.4. The architecture of a feedforwards neural network is the chosen
number of layers, units, and fixed zero-weights.

5F. Rosenblatt: "The perceptron: a probabilistic model for information storage and organization in the brain"
Psychological review, 65(6):386, 1958

6include drawings
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The class of neural network functions has been investigated for decades. While the first approach
was to understand what particular architecture leads to desired behavior the modern approach is
to use mass data to learn the weights and biases by optimising a carefully chosen loss-function.
Keeping in mind that the graphical representation of the architecture is only a visualisation
of the weights it can be instructive to look at plots of very small-dimensional neural network
functions with ReLU activation function:

Three functions obtained from ReLU neural networks

To get an idea why neural networks with the simple ReLU activation and linear output function
can create such functions two observations are useful:

• One can construct addition, shifting, and linear transformations of functions obtained from
a neural network through a neural network with same activation function. To do so write
the neural networks on top of each other without connections (i.e. set the linking weights
to 0), and use the output weights to obtain the desired transformation.

• The sum ReLU(−1)− 2ReLU(0) + ReLU(1) gives a spike at 0, with ReLU(b) = max{0, b}.

There are other classes of artificial neural networks that are much more relavant in applications.
Neural networks that do not only pass signals forwards but also have arrows pointing to previously
used neurons are called recurrent neural networks. Those are particularly useful to model time-
dependent behavior. More recently, the so-called transformer network architecture has received
enormous attention and allowed massive progress in large language models. Since this is an
introductory course to reinforcement learning we will only discuss two important features of
neural networks, function approximation and differentiation by backwards propagation through
the network.

6.6.2 Approximation properties
We will show that already the simplest neural network functions are useful enough to approximate
important classes of functions, so-called Boolean functions and continuous functions. The proofs
are not complicated but only lead to rather uninteresting existence results7.

Theorem 6.6.5. (Approximation of Boolean functions)
Every Boolean function f : {0, 1}d → {0, 1} can be represented by a neural network
with activation function σ(x) = 1[0,∞).

Proof. First note that for all Boolean variables a, b ∈ {0, 1} it holds that 2ab− a− b ≤ 0 with
equality if and only if a = b (check the cases). Thus, for u ∈ {0, 1}d,

1x=u = 1[0,∞)

( d∑
i=1

(2xiui − xi − ui)
)

= σ
( d∑

i=1
(2xiui − xi − ui)

)
.

7Check for instance these lecture notes of Philipp Christian Petersen for more.
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Now denoting by A := {u ∈ Rd : f(u) = 1} it follows that

f(x) = σ
(
− 1 +

∑
u∈A

1x=u

)
= σ

(
− 1 +

∑
u∈A

σ
( d∑

i=1
(2xiui − xi − ui)

))
.

This, in fact, this is nothing but a neural network with two hidden layers. The first with |A|
units, the second with one unit.

Definition 6.6.6. A subset F of neural networks has the universal approximation
property if for any K ⊂ Rd, any ε > 0, and any continuous function g : K → R
there exists a neural network f ∈ F with ||f − g||∞ < ε.

In fact, for many activation functions the universal approximation property holds. An activation
function is called sigmoid (S-formed) if it is bounded with limits limx→+∞ σ(x) = 1 and
limx→−∞ f(x) = 0. The terminology comes from the logistic activation function that really looks
like an S. An important result on neural networks is that shallow (one hidden layer) feedforward
neural networks with sigmoid activation function have the universal approximation property.

Theorem 6.6.7. (Universal approximation theorem)
If the activation function σ is sigmoid then the set of all shallow feedforward neural
networks has the universal approximation property.

Proof. Let us denote by Fp the subset of shallow neural networks with p neurons. We first
consider d = 1 and show that Lipschitz functions on [0, 1] can be approximated. To do so
we first approximate h with piecewise constant functions and then approximate the piecewise
constant function with a shallow neural network function. For that sake let xi = i

p and set
hp(x) =

∑p
i=1 h(xi)1[xi−1,xi)(x).

There is f ∈ Fp with ||f − h||∞ ≤ C ω(h, 1/p) with C independent of h.

In the estimate the so-called modulus of continuity appears:

ω(h, δ) = sup
x,y∈R:|x−y|≤δ

|h(x)− h(y)|

For a function h : R → R the modulus of continuity is a very rough measure for the flatness
of h. The smaller ω the flatter the function. For Lipschitz continuous functions with Lipschitz
constant L it follows immediately that ω(h, δ) ≤ Lδ, the fluctuation of f over intervals of lengths
δ are at most δL. The estimate shows that Lipschitz functions with smaller constant L can
be well-approximated with 1/L many units, thus, rougher functions need more units to be
approximated. We will only use the statement for the exponential function which is clearly
Lipschitz continuous on compact sets (bounded derivative on compact sets). To prove the first
claim note that

sup
x∈[0,1]

|h(x)− hp(x)| = sup
x∈[0,1]

∣∣∣h(x)−
p∑

i=1
h(xi)1[xi−1,xi)(x)

∣∣∣ ≤ ω(h, 1/p)

by the definition of hp and ω. With a telescopic sum we rewrite

hp(x) = h(x1) +
⌊px⌋∑
i=1

(
h(xi+1)− h(xi)

)
.
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Next, we define a the shallow neural network function with p units as

fp(x) = h(x1)σ(α) +
p−1∑
i=1

(
h(xi+1)− h(xi)

)
σ
(
α(px− i)

)
∈ Fp

for some α ∈ R that is specified next. Fix ε > 0 and choose α large enough such that
|σ(z) − 1[0,∞)(z)| ≤ ε

p whenever |z| ≥ α. Since σ is a sigmoid function this is possible. The
choice of α shows that ∣∣σ(α(px− i)

)
− 1i≤⌊px⌋

∣∣ ≤ ε

p

holds for all i /∈ {⌊px⌋, ⌊px⌋+ 1} because then |α(px− i)| > α. It then follows that∣∣fp(x)− hp(x)
∣∣

=
∣∣∣h(x1)(σ(α)− 1) +

p−1∑
i=1

(
h(xi+1)− h(xi)

)(
σ(α(px− i))− 1i≤⌊px⌋

)∣∣∣
≤ ε

p

(
|h(x1)|+ (p− 2)ω(h, 1/p)

)
+ |h(x⌊px⌋+1)− h(x⌊px⌋)||σ(α(px− ⌊px⌋))− 1|

+ |h(x⌊px⌋+2)− h(x⌊px⌋+1)||σ(α(px− ⌊px⌋ − 1))− 1|.

The first summand can be made arbitrarily small, the other two can both be estimated by
ω(h, 1/p)(1 + ||σ||∞). Combining the approximation of h by hp and the approximation of hp by
fp it follows that for all δ > 0 there is some p such that

sup
x∈[0,1]

|h(x)− fp(x)|
∆
≤ sup

x∈[0,1]
|h(x)− hp(x)|+ sup

x∈[0,1]
|hp(x)− fp(x)|

≤ ω(h, 1/p) + δ + 2(||σ||∞ + 1)ω(h, 1/p).

Now the claim follows. Covering a compact set K ⊆ R by finitely many intervals it then
follows that for all h : K → R and all ε > 0 there is a neural network function f such that
supx∈K |h(x)− f(x)| < ε.
It remains to extend the arguments to the d-dimensional case. To reduce to the one-dimensional
case a simple dense family is used:

The set

E :=
{

g : K → R
∣∣∣ g(x) =

N∑
i=1

sie
⟨vi,x⟩, x ∈ Rd, N ∈ N, vi ∈ Rd, si ∈ {−1, 1}

}
is dense in (C(K), || · ||∞).

Using Stone-Weierstrass from functional analysis one only needs to check that E is an algebra
that separates points. Easy.
Next, we approximate E by neural network functions with one hidden layer:

For every g(x) =
∑N

i=1 sie
⟨vi,x⟩ ∈ E and every ε > 0 there is a neural network

function f : Rd → R with one hidden layer such that supx∈K |g(x)− f(x)| < ε.

Define gvi(x) = e⟨vi,x⟩. The trick is simple. Let K̄i the linear transformation of Ki under
x 7→ ⟨vi, x⟩. Then K̄i ⊆ R is compact again. Next, apply the first step to chose from Fp an

fi(x) =
p∑

l=1
wlσ(x− b)
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with supx∈K̄i
|fi(x)− ex| < ε

N . Then define the neural network function f̄i : Rd → R as

f̄i(x) = sifi

( d∑
k=1

vi
kxk

)
so that

sup
x∈K

∣∣f̄i(x)− sie
⟨vi,x⟩∣∣ = sup

x∈K

∣∣sifi(⟨vi, x⟩)− sie
⟨vi,x⟩∣∣

= sup
x∈K̄i

|sifi(x)− sie
x| < ε

N
.

To see that f̄i is a neural network function with one hidden layer note that

f̄i(x) =
p∑

l=1
siwlσ

( d∑
k=1

vi
kxk − bl

)
.

Recalling that sums of neural network functions are neural network functions with the same
number of hidden layers (stacking neural networks without connections) a neural network
approximation of g is given by f =

∑N
i=1 f̄i:

sup
x∈K
|f(x)− g(x)| ≤

N∑
i=1

sup
x∈K

∣∣f̄i(x)− sie
⟨vi,x⟩∣∣ < ε.

The universal approximation property is satisfied for Fp.

Suppose h ∈ (C(K), || · ||∞) and ε > 0. Using the two steps before we can choose g ∈ E with
supx∈K |g(x)−h(x)| < ε

2 and a neural network function f : Rd → R with supx∈K |f(x)−h(x)| < ε
2 .

Then supx∈K |h(x)− f(x)| ≤ supx∈K |h(x)− g(x)|+ supx∈K |g(x)− f(x)| < ε. This proves the
theorem.

6.6.3 Differentiation properties
There are a couple of reasons why the use of deep neural networks is extremely successful
in reinforcement learning. We will highlight here a differentiation property that led to the
breakthroughs in image classification. Suppose a set of labeled images is given: {(xi, yi) : i ≤ N}.
We assume the images are already transformed into a pixel vector, say Rd, and they are labeled as
a k-dimensional feature vector. A feature vector is an abstraction of an image used to characterize
and numerically quantify the contents of an image. Simply put, a feature vector is a list of
numbers used to represent an image. The pixel vector itself is a possible feature vector that fully
describes an image but the aim is extract as little abstract information as possible that describes
a images as good as possible. This could be counting geometric forms or more specifically the
number of persons on the images.

A main goal of image analysis is to define feature vectors that encode the images
well and then find mappings that are simple to evaluate and map an image to its
featue vector.

The typical approach consists learning both tasks on a large training set {(xi, yi)} of images xi

for which the labels yi were coded manually by humans. There are plenty of such examples, for
instance imageNet8 with more than fourteen million labeled images. There are two amazing
features why neural networks are used to map images to feature vectors:

8imageNet website

https://www.image-net.org
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• Differentiation: neural network structures allow to differentiate well for the weights, thus,
allowing gradient descent methods to minimise the error between outputs of the neural
network and the labels. Since neural networks used have dozents of millions of parameters
this is crucial. Imagine for every gradient step to compute a gradient of fifty million partial
derivatives. This is only possible if many of the computations can be reused, a property
that holds for neural network functions due to the so-called back propagation algorithm.

• Generalisation: for some magic reasons that are not fully understood, yet, neural networks
generalise extremely well. This means that the mapping from image to labels obtained
by gradient descent on a finite labeled set generalises well to further images. Overfitting
is a smaller problem than one might imagine (at least there are efficient tricks such as
dropout) if for instance sixty million parameters are used to classify one million images.
For imageNet one typically uses a training set of 1.2 million images and then compares the
generalisation property for the other images.

Since this is not a course on deep learning we only discuss a very nice differentiation trick.
Algorithm 33 summarises the most famous one, the delta-method that can be used to train a
neural network on given input/output pairs or to just compute the gradient ∇wF (x).

Theorem 6.6.8. The δ-method from Algorithm 33 is nothing but stochastic
gradient descent for Fw :=

∑N
i=1

1
2 ||Fw(x)i − yi||2 with (xi, yi) chosen uniformly

from the training set.

9 In the algorithm and the proof we allowed a generic function Φ to normalise the outputs so the
chain of concatenations is

F (x) = TL(σ(TL−1(... σ(T1(x))))),

This is needed if the network should output a probability vector.

Proof. In what follows we use the definitions of h, V appearing in the algorithm. Please check
Figure ??10 for a graphical representation to ease the understanding. 11 First of all, note
that the optimisation is equivalent to optimising 1

N Fw, thus, Fw can be written as expectation
Fw = E[||Fw(x)− y||2], where the randomness comes by uniformly choosing the pair (x, y) from
the training set. Hence, a stochastic gradient algorithm first chooses a pair (x, y) uniformly and
then computes the gradient ∇w||Fw(x)− y||2. In what follows we show all partial derivatives

∂
∂wl

i,j

of the gradient are indeed computed by the δ-rule.

Output layer: To compute the partial derivative with respect to the final weights wL
i,j we

proceed as follows. Writing the norm and the definition of the neural network yields

∂

∂wL
i,j

1
2 ||Fw(x)− y||2 = ∂

∂wL
i,j

NL∑
s=1

1
2

(
Φ
(NL−1∑

t=1
wL

t,sV L−1
t

)
− ys

)2

= ∂

∂wL
i,j

1
2

(
Φ
(NL−1∑

t=1
wL

t,jV l−1
t

)
− yj

)2

=
(

Φ
(Nl−1∑

t=1
wL

t,jV L−1
t

)
− yj

)
Φ′(hL

j ) ∂

∂wL
i,j

NL−1∑
t=1

wL
t,jV L−1

t

= (V L
j − yj)Φ′(hL

j )V L−1
i

=: δL
j V L−1

i .

9Φ muss weg weil es nicht koordinatenweise wirkt, dazu passen die indices nicht
10bildchen noch malen
11put drawing



6.6. A QUICK DIVE INTO NEURAL NETWORKS 191

There are two crucial points involved in the second and fourth equality. For the second equality
we use that only the jth term depends on wL

i,j (compare the graphical representation of the
network) so that all other derivatives equal zero. Similarly, for the fourth equality only the
term t = i depends on wL

i,j so that all other derivatives vanish and the tth term simply has the
derivative V L−1

i .
Last hidden layer: To compute the partial derivative with respect to the final weights wL−1

i,j

we proceed similarly. Writing the norm and the definition of the neural network yields

∂

∂wL−1
i,j

1
2 ||Fw(x)− y||2

= ∂

∂wL−1
i,j

NL∑
s=1

1
2

(
Φ
(NL−1∑

t=1
wL

t,sσ
(Nl−2∑

r=1
wL−1

r,t V L−2
r

))
− ys

)2

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s ) ∂

∂wL−1
i,j

NL−1∑
t=1

wL
t,sσ
(Nl−2∑

r=1
wL−1

r,t V L−2
r

)

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s )
NL−1∑
t=1

wL
t,sσ′

(Nl−2∑
r=1

wL−1
r,t V L−2

r

) ∂

∂wL−1
i,j

Nl−2∑
r=1

wL−1
r,t V L−2

r

=
NL∑
s=1

(V L
s − ys)Φ′(hL

s )
NL−1∑
t=1

wL
t,sσ′(hL−2

j ) ∂

∂wL−1
i,j

Nl−2∑
r=1

wL−1
r,t V L−2

r .

All derivatives of the last term disappear, except for r = i and t = j. The remaining derivative
equals 1, thus, the expression simplifies to

∂

∂wL−1
i,j

1
2 ||Fw(x)− y||2 = V L−2

i σ′(hL−2
j )

NL∑
s=1

(V L
s − ys)Φ′(hL

s )wL
j,s

= V L−2
i σ′(hL−2

j )
NL∑
s=1

δL
j wL

j,s

=: V L−2
i δL−1

j .

Well, anyone who likes playing with indices is warmly invited to turn this into a clean induction
:).12

Since the derivatives of σ repeatadly appear it is clearly desirable to chose activation functions
that are easy to differentiate. The logistic function σ(x) = 1

1+e−x is a typical example with a
reasonable derivative σ′(x) = ex

(1+ex)2 .

Go through the previous arguments to check that the gradient ∇wFw(x) is computed
analogously with δL

j = Φ′(hL
j ) and δl

i = σ′(hl−1
i )

∑Nl

j=1 wl
i,jδl

j .

6.6.4 Using neural networks to approximate value functions

6.6.5 Using neural networks to parametrise policies
The success of neural networks in supervised learning was not overseen in the reinforcement
learning community where neural networks are used in all branches with increasing success. We
give a very brief overview of the use of neural networks for policy gradient schemes but also
Q-learning. In later sections we will see how to combine both (actor-critic) and how to proceed
much further in deep Q-learning.

12write induction
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Algorithm 33: δ-method to train a neural network
Data: labeled training set (xi, yi)
Result: weights w to minimise training error

∑
i ||Fw(xi)− yi||2

Set n = 0.
Initialise all weights (for instance iid Gaussian).
while not converged do

Chose (x, y) uniformly from the labeled training set.
Forwards propagation: Starting from the input x compute forwards through the
network V 0

i := xi and

• hl
i :=

∑Nl−1
k=1 wl

k,lV
l−1

k , i = 1, ..., Nl,

• V l
i := σ(hl

i), i = 1, ..., Nl,

for l < L and

• hL
i :=

∑NL

k=1 wl
k,lV

l−1
k

• V L
i := Φ(hL

i )

Back propagation:

• compute δL
j = (V L

j − yj)Φ′(hL
j ).

• compute δl
i = σ′(hl−1

j )
∑Nl+1

j=1 wl+1
i,j δl+1

j

Chose a step-size α.
Update all weights as wl

i,j = wl
i,j + α δl

j V l
i .

end

Linear softmax with neural networks representations:

First recall the simplest parametrisation in the tabular setting. The tabular softmax policy was
defined as πθ(a ; s) = eθs,a∑

a′ e
θ

s,a′ with a single parameter θs,a tuning the probability of action a

in state s. Since this is only reasonable for small state-action spaces the policy has no practical
relevance. More relevant are linear softmax policies of the form

πθ(a ; s) = eθT ·Φ(s,a)∑
a′ eθT Φ(s,a′) , θ ∈ Rd,

or

πθ(a ; s) = eθT
a ·Φ(s)∑

a′ eθT
a′ Φ(s) , θ = (θa1 , ..., θak

) ∈ Rad,

where Φ is a representation (feature vector) of the state (resp. state-action pair). In order to
use such policies a reasonable representation Φ must be obtained. One way is to work with
representations Φ obtained in supervised learning. For a concrete example let us think of learning
to play Atari games. The state-space is large, it consists of all possible Atari frames of 210x160
pixel. Without any prior knowledge the state-space is 210 × 160 dimensional. Using neural
networks trained on large libraries of images (such as imageNet) there are large neural networks
that give a reasonably large representation of the states, say 1000-dimensional. The function Φ
takes an input Atari frame and returns the last hidden layer of the neural network. Essentially,
the precise structure of the state s is replaced by the essential information Φ(s). Using the linear
softmax policy we could now run a policy gradient algorithm with the linear softmax policies,
which is a 1000-dimensional stochastic gradient algorithm.
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Direct use of neural network

The linear softmax has the advantage to provide a the simple and explicit score function
Φ(s, a)−

∑
a′ πθ(a′ ; s)Φ(s, a′) which is useful to compute the policy gradient. A neural network

can also be used directly to write down a parametrised policy πθ(s, a), where θ is the vector of
all weights. There are two approaches with the same disadvantage: the parameter vector θ is the
entire weight vector of the neural network, which, for many applications, will be huge.
State as input, action probabilities as output: Thinking of Atari games (many states, few
actions) once more here is a visulisation of the idea. An image (which is nothing but a long pixel
vector) is fed into a neural network, the output vector are the probabilities π(a1 ; s), ..., π(ak ; s).
In that case a softmax function transforms the final hidden layer into probabilities.

Direct policy parametrisation using neural networks

State-action as input, action probability as output: Alternatively, one might feed a
state-action pair into a neural network and obtain a one-dimensional output π(a ; s).

6.7 Deep Q-learning (DQN)

6.8 Deep policy gradient (actor critic methods)
Rethinking the plain vanilla REINFORCE algorithm it comes as no surprise that more advanced
algorithms have been developed. REINFORCE is nothing but stochastic gradient descent with
non-iid data using the policy gradient theorem to evaluate the expectations. Since stochastic
gradient descent is known to be slow and for reinforcement learning we are interested in very
large problems there is generally not much hope that REINFORCE works in practice. Indeed, it
doesn’t but combinded with further idea it does. In this section we will discuss some of the most
important ideas for practical use of REINFORCE.

6.8.1 Simple actor-critic (AC) and advantage actor-critic (A2C)
So far we have discussed two classes of approaches to solve optimal control problems:

• Policy-based algorithms that learn the optimal policy using gradient descent. A possible
drawback of such methods is that the gradient estimators may have a large variance, no
bootstrapping of old values is used in the gradient updates.

• Valued-based algorithms that evaluate the value-function (or Q-function). Such methods
are indirect, they do not try to optimise directly over a set of policies.

Algorithms that directly deal with policies are called actor-only methods while algorithms that
improve by criticising the outcome (value-function) of a policy that someone else obtained
are called critic-only algorithms. Mixing both approaches is called actor-critic. The typical
approach is as follows. Using the policy gradient theorems to perform the REINFORCE algorithm
incorporates the Q-functions Qπθn or, since the Q-function is typically unknown, estimates of
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the Q-functions (for instance rewards to go) that introduce variance in the gradient update.
An alternative approach is to fix a (simpler) parametrised family (Qπθn

w ) to approximate Qπθn .
Usually the critic’s family (Qπθn

w ) is parametrised by a neural network and w is the vector of
weights. Actor-critic than works by alternating actor and critic 13,14:

• critic step: approximate Qπθn by some Qπθn

w ,

• actor step: perform gradient update using the policy gradient theorem with Qπθn

w instead
of Qπθn .

Compared to the direct REINFORCE algorithm the actor-critic approach as advantages and
disadvantages. On the plus side actor-critic algorithms can reduce the variance of the policy
gradient by using the critic’s value function as a baseline. Less variance means less steps for
convergence. Next, actor-critic algorithms can incorporate ideas from temporal-difference learning
to force bootstrapping of samples. Actor-critic algorithms also have some disadvantages compared
to plain vanilla policy gradient algorithms. For instance, they introduce a trade-off between
bias and variance, as the approximation in the critic step introduces a bias. Additionally, the
approximation increases complexity and computational cost for the algorithm as they require the
actor steps and typically the training of a neural network for the parametrisation of the critic’s
value function. We will next show a result that shows that actor-critic with linear function
approximations theoretically converges but using non-linear function approximations (such as
neural network functions) there is no theoretical justification for convergence and in practice
it is a delicate matter to make such an algorithm converge. Let us start with the plain vanilla
actor-critic in a very theoretical setup of linear function approximation. 15

Proposition 6.8.1. If Qπθ

satisfies the compatibility with the policy (score
function)

∇wQπθ

w (s, a) = ∇θ log(πθ(s, a))

and the approximation property∑
s∈S

∑
a∈As

dπθ

(s)πθ(a ; s)
(
Qπθ

(s, a)−Qπθ

w (s, a)
)
∇wQπθ

w (s, a) = 0,

then

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Qπθ

w (s′, a).

16 The exact same formulas also hold with the other policy gradient representations from Section
5.1.2.

Proof. By the chain rule the first condition is equivalent to ∇wQπθ

w (s, a)πθ(s, a) = ∇θπθ(s, a).
Plugging-into the second yields∑

s′∈S
dπθ

(s′)
∑

a∈As′

∇θπθ(a ; s)
(
Qπθ

(s′, a)−Qπθ

w (s′, a)
)

= 0

13R. Sutton, D. McAllester, S. Singh, Y. Mansour: "Policy Gradient Methods for Reinforcement Learning with
Function Approximation", NIPS 1999

14V. Konda, J. Tsitsiklis: "Actor-Critic Algorithms", NIPS 1999
15ueberall µ in gradient einarbeiten, auch fuer dπ

16Bedeutung beider Eigenschaften ausfuehren
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Using the policy gradient theorem (version of Theorem 5.1.6) and the above yields the claim:

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Qπθ

(s′, a)

− 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇θ log(πθ(s, a))
(
Qπθ

(s′, a)−Qπθ

w (s′, a)
)

= 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s )∇ log(πθ(a; s′))Qπθ

w (s′, a)

On first sight the theorem does not look useful at all as the conditions on Q are very special.
Here are two examples that show that the assumptions are not completely artificial. They are
satisfied for linear function approximations.

Example 6.8.2. Recall the linear softmax policy

πθ(a ; s) = eθT ·Φ(s,a)∑
a′∈A eθT ·Φ(s,a′)

with feature vectors Φ(s, a) for the state-action pairs. The linear softmax has score function

Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′).

thus, requiring linear function approximation

Qπθ

w (s, a) = wT ·
(

Φ(s, a)−
∑
a′

πθ(a′ ; s)Φ(s, a′)
)

.

What does it mean? Q must be a linear function with the same features as the policy, except
normalized to be mean zero for each state.

Example 6.8.3. A similar example can be obtained for a continuous action space. Suppose πθ

is a linear Gaussian policy, i.e.

πθ(a ; s) ∼ N
(
θT · Φ(s), σ2)

for feature vectors Φ(s) and a constant σ. For the compatibility we first need to compute the
score function:

∇ log πθ(s, a) = ∇θ
−(θT · Φ(s))2

2σ2 = θT · Φ(s)
σ2 Φ(s)

For f to satisfy the compatibility, as in the previous example Q must be linear:

Qπθ

w (s, a) = wT · θT · Φ(s)
σ2 Φ(s).

Taking account to the new representation of the policy gradient here is a first version of an
actor-critic algorithm with provable convergence. We call the algorithm theoretical actor critic
as the connection of critic computation and actor update is nothing else then a regular update
of the policy gradient algorithm (Proposition 6.8.1). Thus, whenever the exact gradient ascent
algorithm converges to a maximum (or a stationary point) the simple actor-critic will do the
same. If implemented there are a couple of approximations entering the scene:

• functions Qw will be used that do not satisfy the needed conditions,

• the approximation of Qπθ will produce an approximation error in every round,
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Algorithm 34: Theoretical simple actor-critic algorithm

Data: Initial parameter θ0 and approximation class Qπθ

w .
Result: Approximate policy πθ ≈ πθ∗

Set n = 0.
while not converged do

Policy evaluation of critic: find a critcial point w of the weighted approximation error,
i.e.

∇w

∑
s∈S

∑
a∈As

dπθn (s)πθn(a ; s)
(
Qπθn (s, a)−Qπθ

w (s, a)
)2 = 0.

Policy improvement of actor: chose step-size α and set
θn+1 = θn + α 1

1−γ

∑
s∈S

∑
a∈As

dπθn (s)πθn∇ log(πθn(a; s′))Qπθ

w (s, a).
end

• the gradient will be approximated as in the REINFORCE algorithm replacing the Q-function
by the estimated Q-function Qπθ

w .

Each approximation will generate an error and a priori it seems difficult to make the algorithm
converge.
In our previous discussions of baselines for policy gradients a good guess for the baseline seemed
to be the value function as it reinforces actions that are better than the average and negatively
reinforces actions that are worse then the mean. So far we did not follow upon the idea as the
value function V π is unknown, so how could it serve as a baseline of an implementable algorithm?
Let’s ignore this fundamental issue for a moment.

Definition 6.8.4. The advantage function of a policy is defined as Aπ(s, a) =
Qπ(s, a)− V π(s).

The advantage function measures the advantage (or disadvantage) of first playing action a.
Recalling that baselines can be state-dependent the policy gradient can be written as

∇Js(θ) = 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))
(
Qπθ

(s′, a)− V πθ

(s′)
)

= 1
1− γ

∑
s′∈S

∑
a∈As′

dπθ

(s′)πθ(a ; s)∇ log(πθ(a; s′))Aπθ

(s′, a).

In what follows we will discuss what is known as A2C (advantage-actor-critic) algorithms in which
similarly to the approximation of Q by linear functions the advantage function is approximated.
All A2C algorithms consist of two alternating steps:

• Use the current policy πθ to produce samples from which an approximation Âπθ of the
unknown Aπθ is derived.

• Plug Âπθ into the policy gradient formula to obtain an estimate of the gradient which is
used to update θ.

There are plenty of approaches to turn this into an algorithm. All of them are use ideas from
temporal difference learning. The simplest approach is as follows. As for 1-step temporal
difference we write the advantage function as

Aπ(s, a) = Qπ(s, a)− V π(s) = r(s, a) + V π(s′)− V π(s), s′ ∼ p(· ; s, a).

This shows that only the value function needs to be estimated. Now suppose there is a parametric
family Vw : S → R that we intend to use to approximate all value functions V πθ . Typically, Vw
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will be given by a neural network with weight vector w. So how do we fit Vw to V πθ for some
policy πθ? We approximate V πθ (s) using samples (Monte Carlo) and then minimise the error.
More precisely, suppose y1, ..., yn are the discounted rewards of n rollouts under policy πθ, then
we solve the regression problem

min
w

n∑
i=1
||Vw(si

0)− yi||2.

If Vw is given by neural networks the regression problem is solved (approximatively) by back
propagation. The solution Vw is then used to give an estimator Âπθ of Aπθ from the gradient
step is computed.

Algorithm 35: A2C with Monte Carlo approximation
Data: Initial parameter θ and approximation functions Vw

Result: Approximate policy πθ ≈ πθ∗

while not converged do
Sample N starting points si

0 from dπθ and using policy πθ rollouts (si
0, ai

0, ...).
minimise

∑
i ||Vw(si

0)−
∑∞

t=0 γtR(si
t+1, ai

t+1)||2 over w.
set Â(si

0, ai
0) = R(si

0, si
0) + V̂ π

w (si
1)− V̂ θ

w(si
0).

set ∇̂θJ(θ) = 1
N

∑N
i=1

1
1−γ∇ log(πθ(ai

0 ; si
0))Â(si

0, ai
0).

update θ = θ + α∇πθ(a; s′).
end

More advanced versions use n-step or TD(λ) approximations for V πθ to bootstrap samples. It is
far from obvious if any of these versions converges to an optimal policy. 17

6.8.2 Soft actor-critic (SAC)
6.8.3 Proximal policy optimisation (PPO)

17bespreche sampling aus dπ durch stoppen nach geometrischer zeit. und bedeutung von dππ
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