Optimization in Machine Learning Universitit Mannheim
HWS 2024 Prof. Simon Weilmann, Felix Benning

Solution Sheet 6

For the exercise class on the 05.12.2024.
Hand in your solutions by 10:15 in the lecture on Tuesday 03.12.2024.

Exercise 1 (Conditional expectation). (8 Points)
Let (2, F,P) be an underlying probability space.
(i) Let G C F be a o-algebra and let X, Y € L'(Q2, 7, P). Prove that
(a) forany A € R there holds EIAX + Y |G] = AE[X | G] + E[Y | G].
Solution. Let A € G. Then
E[14(AE[X |G] + E[Y |G])] = AE[LAE[X | G]] + E[14E[Y | G]]
= /\E[ﬂAX] + E[ILAY]
=E[1a(AX +Y)]
Thus, by uniqueness of the conditional expectation, E]AX +Y | G] = AE[X | G]+E[Y | G]
almost surely. O

(b) if X > Y P-almost surely, then E[X |G] > E[Y | G] P-ass..

Solution. Let A := {E[X |G] < E[Y | G]}. Then A is G measurable and it follows from
the definition of the conditional expectation that

def. A X>Y
02" E[LA(E[X |G] ~EY |G))] = E[14(X ~ V)] "= o.

Thus, 14(X —Y) = 0 almost surely and by definition of A this implies 1 4 = 0 almost
surely, i.e. E[X | G] > E[Y | G] almost surely. O

(© [EX[G]] <E[IX[|G].

Solution. One possibility is to apply Jensen’s inequality for the conditional expectation
to the convex function = + |x|. Another way is to split the random variable X into its
positive and negative part X = X — X~ and to use the linearity of the conditional
expectation and the previous result, i.e. X > 0 almost surely implies E[X T |G] > 0
almost surely. O

(3 pts)

(i1) Let Y7,Y5 be iid. random variables with

1
P(Y; =2) =P(Y1 =05) = o,

and set i
So=2, Sp==5-][vi k=12.
i=1
Compute E[S, | F1], where F; = o (51). (2 pts)



Solution. We have
E[S: | F1] = E[S1Y2 | Fi] = SiE[Ya | Fi] = S1E[Yz] = S1(35 + %) =551 -
(iii) Let X,Y be independent Bernoulli distributed random variables with parameter p € [0, 1] and
define Z := 1{X+y:0}.
(a) Compute E[X |o(Z)] and E[Y | 0(Z)].
Solution. We have
P(Z=1)=P(X+Y =0)=P(X =0,Y =0)= (1 -p)* (1)
Thus,
E[X |0(2)] = E[X | Z = 0]17—0 + E[X | Z = 1] 10
=0
_ E[X12-0] 1
P(Z=0) 27°
_P(X =0,Y =1)+1P(X =1Y =0)+P(X =1,Y = 1)]
B 1—(1-p)?

1z-0

_ p(l—p)+p? L
1—(1-2p+p?)
P
= ]l —
2p—p? 770
1

= 1z-0.
2 p Z=0

By a symmetric argument we have E[Y |o(Z)] = ﬁ 1z—0. O

(b) When are these random variables independent? Hint: You may use the fact that a real
valued random variable is independent from itself if and only if it is a constant.

Solution. Since we have E[X |0(Z)] = E[Y | 0(Z)] almost surely by the previous result,
E[X | 0(Z)] is independent from E[Y | o(Z)] if and only if it is a constant almost surely.
For this to be the case, we need 17— to be constant almost surely, i.e. P(Z = 0) = 0 or
P(Z = 0) = 1. This is only the case for p € {0,1} by ().

In summary, E[X | 0(Z)] is independent from E[Y | o(Z)] if and only if p € {0,1}. O

(3 pts)

Exercise 2 (Martingales). (4 Points)
Let (2, F,P) be an underlying probability space.

(i) LetYy,..., Yy beiid. random variables with E[Y;] = 1 and E[|Y1]] < oo, let i, := o(Y7,..., Y})

and define
k
So=Yp:=1, Sp=Y1---V=][Y, k=1,...N.
i=1
Prove that (Sj) k=1, n is a Martingale with respect to the filtration (Fj)g=1,.. N- (2 pts)
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Solution. We first check E[|.S;|] < oo for all k,

k
11
i=1

For the martingale property note that Sy, is Fi-measurable by definition, thus we have

k

[T

i=1

E[ISk]) = E —E

k
CTIEY]) < oo.
=1

E[Sps1|Fe] = E [lﬁly | F| = B[ Yir1Se| Fe| = E[Viyr | F| Sk = ElYiya]Se
=1
= Sk" D

(ii) Let (Xx)ken and (Yx)ren be two martingales. Prove that (a Xy, + b X} )ken is a martingale for
any a,b € R. (1 pt)

Solution. We have
EllaXy + 0Yi|] < |a[E[| Xk[] + [bE[ Yz]] < oo
for all £ and the martingale property follows from linearity of the conditional expectation

ElaXki1 + 0Yii1|Fk] = aB[Xg 41| Fk] + bE[Yi11|Fi] = a Xy + bYy. O

(iii) Let (X% )ken and (Yx)gen be two super-martingales. Prove that (min{ X}, Yi})ren is a super-
martingale. (1 pt)

Solution. Since X}, Y}, are super-martingales, we have E[| min{ X, Y;}|] < E[|Xj|] < oc.
Since min is a measurable function, Zj := min{ Xy, Y3} is Fi-measurable and we obtain the
super-martingale property from

E[Zk11 | Fi] = Elmin{ Xy 11, Vip1} | Fi] < E[Xpr1 [ Fi] < X,
and similarly E[Z}. 11 | Fi] < Y} which together imply

E[ZkJrl ‘fk} < min{Xk, Yk} ]

Exercise 3 (SGD with random batches). (12 Points)
Consider the expected risk minimization problem

;IGI%RI; F(x), F(z):=Ezu,[f(z,2)],

where f : R x RP? — R is measurable and Z :  — RP is a random vector. We assume that the
“usual” conditions (conditions for Lemma 4.1.2 such as measurability, integrability, etc.) from the
lecture are satisfied.



(i) Assume that E[|V,f(z,Z) — V.F(x)||?] < c for some ¢ > 0 and all € RY, and let
Z(l)7 cey Z(B), B > 2, be iid. random variables with AORS wz. Prove that

1 B 2 c
E[||5 3 Vel (@, 20) - v, F@)| ] < £
m=1

for all z € R<. (4 pts)

Solution. From F(x) = E[f(x, Z)] follows V. F(z) = E[V,f(z, Z)]. Using

H;WHQ - <zk:“'f§“n> = _{vk, vn) )

,n

we have, since the Z (@) are iid

m=1
E[ﬁ EB: <me<$, 20—V, F(z), Vyf(x, 2 - er(x)ﬂ
mn=1
== ZB: E[(Vaf(2.207) = VoP (@), Vo (2, 2) = V. F ()|

m,n=1

B B
W S B[V @ 2) - VP @]

m=1

<c

O

IN

<
5

Let Xp : 2 — RY be the initial random variable, (az)xcn be a sequence of positive deterministic step
sizes and for batch sizes (By)ken let (£ ,gm)) keN, m=1,...,B,_, be a sequence of iid. random variables

with Z}l) ~ lz.

(i) Formulate the stochastic gradient descent (SGD) scheme using the stochastic gradient estimator
with batch size By:

By
1 m
Gi() = 5 N Vof(z,21)), zeR7.

m=1
(2 pts)
Solution. Until convergence select
X1 = X — aGr(Xy)
and increase k (cf. Algorithm 8 in the lecture notes). O
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(iii) Assume that F' is L-smooth and pu-strongly convex, and let a € (0, %] for all £k € N. Prove

that )
e
B X1 — ] < (1 - @B — o))+ o5
for some ¢ > 0, where (X )ren is generated by SGD with batch-sizes (By)ken and ., =
argmin cps F(z). (3 pts)

Solution. The proof is analogous to the proof of Theorem 4.1.16, i.e. let the filtration be given

by F, = o(Xo, (Z,im))mzl’m,gk, k < n) such that by induction X, is F;,-measurable with
induction stepn — n + 1

B'IYL
X1 = X, — G (X)) = VF(Xn, 2™,
+1 G (Xn) Z f( ntd)

Fn-meas. Fpt1-meas.

Let My := VF(X}y) — Gi(X}), then we have
[popray
= || X% — nGr(Xi) — x*Hz
= HXk — x*||2 — 2ak<Gk<Xk)7Xk — x*> + CV%HG]C(Xk)HQ
——
=VF(Xg)—Mpi1
= ||X5 — 2. ||” = 200 VF(Xy), Xi — 2.) + o} | VF(X3) ||
+ 200 Mygi1, Xi, — 24) — 200 M1, VE (X)) + o || M1 H2
Since X}, is Fi-measurable and E[Gy(Xy) | Fi] = VF(X}), we have
E[My41 | Fi] =0 3)
- c
M, Fi] € — 4
B[ M1 7] < - “)
This implies
E[[[ X — .| Fi]
X5 — 2||” = 200 (VF(X1), Xi — 2) + 2| VE(X0)|) + o2E[|| My || | Fi]

@
< 1% — 2.|* = 205 (VF(Xp), Xp — 2.) + o} | VF(Xp)||* + aiBik. 5)

Recall that p-strong convexity implies
2
(VE(Xp),xe — Xp) + b |2 = Xp||” < F(zs) — F(Xg)
which, rearranged, gives

—(VF(Xg), Xg — ) < Fa.) — F(Xg) — &]Ja. — X3 || (6)



L-smoothness on the other hand implies via the descent lemma
F(z,) < F(Xg) = o lIVF (X))
which, rearranged, gives
F(z.) = F(Xk) < =57 [VF(Xp)|? )
Starting with (3) and applying (6)) and then (7)) we get
E[|| Xe+1 — UC*H2 | ]

@
< (1K = @] + 206 | F(2) = F(X) = § o = Xi|[*] + o[ VF(XR)* + agBik

INSI

1% = . |* + 201 |~ IV F(XR)I2 = § | = X|[*] + 02| V(X0 + aiBik

= (1= awp)|[ X — 2| + . (o = ) [VE )| + af -
——— k
<0
ok

O
By,

< (1 — akM)HXk - a:*H2 +c

(iv) Determine sequences of step sizes (ay)ren and batch-sizes (By)ren to deduce convergence
limy oo E[HXk—i-l — Tx HZ} = 0. (3 pts)

Solution. There are many possible combinations of sequences, one possibility is to set the
batchsize to be constant By = B. In this case, our upper bound is equal to the one without
minibatching up to a constant and the step size from Corollary 4.1.17 works.

Another possibility is to select a constant step size o < % and only change the batch size. In
this case we have for A, = E[|| X — .| by induction

Z" (1—apm*
An-{-l < (1 — CY,LL)TL+1A0 + ca2 37
k
k=0

The induction step (n — 1) — n follows from the previous exercise, i.e.

1
Api1 < (1—ap)A, + ca®—

By,
ind. nmlg o n—1-k 1
< (1—ap) [(1 —ap)"Ag +ca? Y (Gl IS
Bk n
k=0
n
1— au)n—k’
<(1-— nJrlA 2 (7
< (1—ap) 0+ ca ,;) By

To prove that 0 < a < % and ) 7, Bik < oo are sufficient conditions for convergence we use



1< i which implies 1 > (1 — ap) > 0 and split the sum into two parts
(51

— n—=[5] " _ n—k
A1 < (1—ap)" ™ Ag + coﬂ[ (A —op)"712] + Z w}

F=0 P k=T21+1 By
< (L =ap)™ gt ea?[(1—ap)iY =t =]
RO o k=0 k=g141 "
<oo —_—
—0

—0 (n — o00).

Many other options are available and it is not clear what the optimal choice is.



