
Optimization in Machine Learning Universität Mannheim
HWS 2024 Prof. Simon Weißmann, Felix Benning

Solution Sheet 6

For the exercise class on the 05.12.2024.
Hand in your solutions by 10:15 in the lecture on Tuesday 03.12.2024.

Exercise 1 (Conditional expectation). (8 Points)
Let (Ω,F ,P) be an underlying probability space.

(i) Let G ⊂ F be a σ-algebra and let X,Y ∈ L1(Ω,F ,P). Prove that

(a) for any λ ∈ R there holds E[λX + Y | G] = λE[X | G] + E[Y | G].

Solution. Let A ∈ G. Then

E
[
1A

(
λE[X | G] + E[Y | G]

)]
= λE

[
1AE[X | G]

]
+ E

[
1AE[Y | G]

]
= λE

[
1AX

]
+ E

[
1AY

]
= E

[
1A(λX + Y )

]
Thus, by uniqueness of the conditional expectation, E[λX+Y | G] = λE[X | G]+E[Y | G]
almost surely.

(b) if X ≥ Y P-almost surely, then E[X | G] ≥ E[Y | G] P-a.s. .

Solution. Let A := {E[X | G] < E[Y | G]}. Then A is G measurable and it follows from
the definition of the conditional expectation that

0
def. A
≥ E[1A

(
E[X | G]− E[Y | G]

)
] = E[1A(X − Y )]

X≥Y
≥ 0.

Thus, 1A(X − Y ) = 0 almost surely and by definition of A this implies 1A = 0 almost
surely, i.e. E[X | G] ≥ E[Y | G] almost surely.

(c) |E[X | G]| ≤ E[|X| | G].

Solution. One possibility is to apply Jensen’s inequality for the conditional expectation
to the convex function x 7→ |x|. Another way is to split the random variable X into its
positive and negative part X = X+ − X− and to use the linearity of the conditional
expectation and the previous result, i.e. X+ ≥ 0 almost surely implies E[X+ | G] ≥ 0
almost surely.

(3 pts)

(ii) Let Y1,Y2 be iid. random variables with

P(Y1 = 2) = P(Y1 = 0.5) =
1

2
,

and set

S0 = 2, Sk = S0 ·
k∏

i=1

Yi , k = 1, 2 .

Compute E[S2 | F1], where F1 = σ(S1). (2 pts)
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Solution. We have

E[S2 | F1] = E[S1Y2 | F1] = S1E[Y2 | F1] = S1E[Y2] = S1

(
2
2 + 1/2

2

)
= 5

2S1.

(iii) Let X,Y be independent Bernoulli distributed random variables with parameter p ∈ [0, 1] and
define Z := 1{X+Y=0}.

(a) Compute E[X |σ(Z)] and E[Y |σ(Z)].

Solution. We have

P(Z = 1) = P(X + Y = 0) = P(X = 0, Y = 0) = (1− p)2. (1)

Thus,

E[X |σ(Z)] = E[X |Z = 0]1Z=0 + E[X |Z = 1]︸ ︷︷ ︸
=0

1Z=1

=
E[X1Z=0]

P(Z = 0)
1Z=0

=
0P(X = 0, Y = 1) + 1[P(X = 1, Y = 0) + P(X = 1, Y = 1)]

1− (1− p)2
1Z=0

=
p(1− p) + p2

1− (1− 2p+ p2)
1Z=0

=
p

2p− p2
1Z=0

=
1

2− p
1Z=0.

By a symmetric argument we have E[Y |σ(Z)] = 1
2−p1Z=0.

(b) When are these random variables independent? Hint: You may use the fact that a real
valued random variable is independent from itself if and only if it is a constant.

Solution. Since we have E[X |σ(Z)] = E[Y |σ(Z)] almost surely by the previous result,
E[X |σ(Z)] is independent from E[Y |σ(Z)] if and only if it is a constant almost surely.
For this to be the case, we need 1Z=0 to be constant almost surely, i.e. P(Z = 0) = 0 or
P(Z = 0) = 1. This is only the case for p ∈ {0, 1} by (1).
In summary, E[X |σ(Z)] is independent from E[Y |σ(Z)] if and only if p ∈ {0, 1}.

(3 pts)

Exercise 2 (Martingales). (4 Points)
Let (Ω,F ,P) be an underlying probability space.

(i) Let Y1, . . . , YN be iid. random variables with E[Y1] = 1 and E[|Y1|] < ∞, let Fk := σ(Y1, . . . , Yk)
and define

S0 = Y0 := 1, Sk = Y1 · · · · · Yk =

k∏
i=1

Yi , k = 1, . . . , N .

Prove that (Sk)k=1,...,N is a Martingale with respect to the filtration (Fk)k=1,...,N . (2 pts)
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Solution. We first check E[|Sk|] < ∞ for all k,

E[|Sk|] = E

[∣∣∣ k∏
i=1

Yi

∣∣∣] = E

[
k∏

i=1

|Yi|

]
iid
=

k∏
i=1

E[|Yi|] < ∞ .

For the martingale property note that Sk is Fk-measurable by definition, thus we have

E[Sk+1|Fk] = E
[k+1∏
i=1

Yi | Fk

]
= E

[
Yk+1Sk | Fk

]
= E

[
Yk+1 | Fk

]
Sk = E[Yk+1]Sk

= Sk.

(ii) Let (Xk)k∈N and (Yk)k∈N be two martingales. Prove that (aXk + bXk)k∈N is a martingale for
any a, b ∈ R. (1 pt)

Solution. We have

E[|aXk + bYk|] < |a|E[|Xk|] + |b|E[|Yk|] < ∞

for all k and the martingale property follows from linearity of the conditional expectation

E[aXk+1 + bYk+1|Fk] = aE[Xk+1|Fk] + bE[Yk+1|Fk] = aXk + bYk.

(iii) Let (Xk)k∈N and (Yk)k∈N be two super-martingales. Prove that (min{Xk, Yk})k∈N is a super-
martingale. (1 pt)

Solution. Since Xk, Yk are super-martingales, we have E[|min{Xk, Yk}|] ≤ E[|Xk|] < ∞.
Since min is a measurable function, Zk := min{Xk, Yk} is Fk-measurable and we obtain the
super-martingale property from

E[Zk+1 | Fk] = E[min{Xk+1, Yk+1} |Fk] ≤ E[Xk+1 | Fk] ≤ Xk

and similarly E[Zk+1 | Fk] ≤ Yk which together imply

E[Zk+1 | Fk] ≤ min{Xk, Yk}.

Exercise 3 (SGD with random batches). (12 Points)
Consider the expected risk minimization problem

min
x∈Rd

F (x), F (x) := EZ∼µZ
[f(x, Z)] ,

where f : Rd × Rp → R is measurable and Z : Ω → Rp is a random vector. We assume that the
”usual” conditions (conditions for Lemma 4.1.2 such as measurability, integrability, etc.) from the
lecture are satisfied.
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(i) Assume that E[∥∇xf(x, Z) − ∇xF (x)∥2] ≤ c for some c > 0 and all x ∈ Rd, and let
Z(1), . . . , Z(B), B ≥ 2, be iid. random variables with Z(1) ∼ µZ . Prove that

E
[∥∥∥ 1

B

B∑
m=1

∇xf(x, Z
(m))−∇xF (x)

∥∥∥2] ≤ c

B

for all x ∈ Rd. (4 pts)

Solution. From F (x) = E[f(x, Z)] follows ∇xF (x) = E[∇xf(x, Z)]. Using∥∥∥∑
k

vk

∥∥∥2 = 〈∑
k

vk,
∑
n

vn

〉
=

∑
k,n

⟨vk, vn⟩ (2)

we have, since the Z(i) are iid

E
[∥∥∥ 1

B

B∑
m=1

∇xf(x, Z
(m))−∇xF (x)

∥∥∥2]
(2)
= E

[ 1

B2

B∑
m,n=1

〈
∇xf(x, Z

(m))−∇xF (x),∇xf(x, Z
(n))−∇xF (x)

〉2]

=
1

B2

B∑
m,n=1

E
[〈

∇xf(x, Z
(m))−∇xF (x),∇xf(x, Z

(n))−∇xF (x)
〉2]

iid
=

1

B2

B∑
m=1

E
[∥∥∇xf(x, Z

(m))−∇xF (x)
∥∥2]︸ ︷︷ ︸

≤c

≤ c

B
.

Let X0 : Ω → Rd be the initial random variable, (αk)k∈N be a sequence of positive deterministic step
sizes and for batch sizes (Bk)k∈N let (Z(m)

k )k∈N, m=1,...,Bk−1
be a sequence of iid. random variables

with Z
(1)
1 ∼ µZ .

(ii) Formulate the stochastic gradient descent (SGD) scheme using the stochastic gradient estimator
with batch size Bk:

Gk(x) :=
1

Bk

Bk∑
m=1

∇xf(x, Z
(m)
k+1) , x ∈ Rd .

(2 pts)

Solution. Until convergence select

Xk+1 := Xk − αkGk(Xk)

and increase k (cf. Algorithm 8 in the lecture notes).
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(iii) Assume that F is L-smooth and µ-strongly convex, and let αk ∈ (0, 1
L ] for all k ∈ N. Prove

that

E[∥Xk+1 − x∗∥2] ≤ (1− αkµ)E[∥Xk − x∗∥2] + c̃
α2
k

Bk

for some c̃ > 0, where (Xk)k∈N is generated by SGD with batch-sizes (Bk)k∈N and x∗ =
argminx∈Rd F (x). (3 pts)

Solution. The proof is analogous to the proof of Theorem 4.1.16, i.e. let the filtration be given
by Fn := σ(X0, (Z

(m)
k )m=1,...,Bk

, k ≤ n) such that by induction Xn is Fn-measurable with
induction step n → n+ 1

Xn+1 = Xn − αnGn(Xn) = Xn︸︷︷︸
Fn-meas.

−αn
1

Bn

Bm∑
m=1

∇f(Xn, Z
(m)
n+1)︸ ︷︷ ︸

Fn+1-meas.

.

Let Mk+1 := ∇F (Xk)−Gk(Xk), then we have∥∥Xk+1 − x∗
∥∥2

=
∥∥Xk − αkGk(Xk)− x∗

∥∥2
=

∥∥Xk − x∗
∥∥2 − 2αk

〈
Gk(Xk)︸ ︷︷ ︸
=∇F (Xk)−Mk+1

, Xk − x∗
〉
+ α2

k

∥∥Gk(Xk)
∥∥2

=
∥∥Xk − x∗

∥∥2 − 2αk

〈
∇F (Xk), Xk − x∗

〉
+ α2

k

∥∥∇F (Xk)
∥∥2

+ 2αk

〈
Mk+1, Xk − x∗

〉
− 2α2

k

〈
Mk+1,∇F (Xk)

〉
+ α2

k

∥∥Mk+1

∥∥2
Since Xk is Fk-measurable and E[Gk(Xk) | Fk] = ∇F (Xk), we have

E[Mk+1 | Fk] = 0 (3)

E
[∥∥Mk+1

∥∥2 | Fk

] (i)

≤ c

Bk
. (4)

This implies

E
[∥∥Xk+1 − x∗

∥∥2 | Fk

]
(3)
=

∥∥Xk − x∗
∥∥2 − 2αk

〈
∇F (Xk), Xk − x∗

〉
+ α2

k

∥∥∇F (Xk)
∥∥2 + α2

kE
[∥∥Mk+1

∥∥2 | Fk

]
(4)
≤

∥∥Xk − x∗
∥∥2 − 2αk

〈
∇F (Xk), Xk − x∗

〉
+ α2

k

∥∥∇F (Xk)
∥∥2 + α2

k

c

Bk
. (5)

Recall that µ-strong convexity implies

⟨∇F (Xk), x∗ −Xk⟩+ µ
2

∥∥x∗ −Xk

∥∥2 ≤ F (x∗)− F (Xk)

which, rearranged, gives

−⟨∇F (Xk), Xk − x∗⟩ ≤ F (x∗)− F (Xk)− µ
2

∥∥x∗ −Xk

∥∥2. (6)
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L-smoothness on the other hand implies via the descent lemma

F (x∗) ≤ F (Xk)− 1
2L∥∇F (Xk)∥2

which, rearranged, gives

F (x∗)− F (Xk) ≤ − 1
2L∥∇F (Xk)∥2 (7)

Starting with (5) and applying (6) and then (7) we get

E
[∥∥Xk+1 − x∗

∥∥2 | Fk

]
(6)
≤

∥∥Xk − x∗
∥∥2 + 2αk

[
F (x∗)− F (Xk)− µ

2

∥∥x∗ −Xk

∥∥2]+ α2
k

∥∥∇F (Xk)
∥∥2 + α2

k

c

Bk

(7)
≤

∥∥Xk − x∗
∥∥2 + 2αk

[
− 1

2L∥∇F (Xk)∥2 − µ
2

∥∥x∗ −Xk

∥∥2]+ α2
k

∥∥∇F (Xk)
∥∥2 + α2

k

c

Bk

= (1− αkµ)
∥∥Xk − x∗

∥∥2 + αk

(
αk − 1

L

)︸ ︷︷ ︸
≤0

∥∥∇F (Xk)
∥∥2 + α2

k

c

Bk

≤ (1− αkµ)
∥∥Xk − x∗

∥∥2 + c
α2
k

Bk
.

(iv) Determine sequences of step sizes (αk)k∈N and batch-sizes (Bk)k∈N to deduce convergence
limk→∞ E[∥Xk+1 − x∗∥2] = 0. (3 pts)

Solution. There are many possible combinations of sequences, one possibility is to set the
batchsize to be constant Bk = B. In this case, our upper bound is equal to the one without
minibatching up to a constant and the step size from Corollary 4.1.17 works.

Another possibility is to select a constant step size α < 1
L and only change the batch size. In

this case we have for ∆k = E[∥Xk − x∗∥2] by induction

∆n+1 ≤ (1− αµ)n+1∆0 + cα2
n∑

k=0

(1− αµ)n−k

Bk
.

The induction step (n− 1) → n follows from the previous exercise, i.e.

∆n+1 ≤ (1− αµ)∆n + cα2 1

Bn

ind.
≤ (1− αµ)

[
(1− αµ)n∆0 + cα2

n−1∑
k=0

(1− αµ)n−1−k

Bk

]
+ cα2 1

Bn

≤ (1− αµ)n+1∆0 + cα2
n∑

k=0

(1− αµ)n−k

Bk
.

To prove that 0 < α < 1
L and

∑∞
k=0

1
Bk

< ∞ are sufficient conditions for convergence we use
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1
L ≤ 1

µ , which implies 1 > (1− αµ) > 0 and split the sum into two parts

∆n+1 ≤ (1− αµ)n+1∆0 + cα2
[⌈n

2
⌉∑

k=0

(1− αµ)n−⌈n
2
⌉

Bk
+

n∑
k=⌈n

2
⌉+1

(1− αµ)n−k

Bk

]

≤ (1− αµ)n+1︸ ︷︷ ︸
→0

∆0 + cα2
[
(1− αµ)

n
2︸ ︷︷ ︸

→0

∞∑
k=0

1

Bk︸ ︷︷ ︸
<∞

+

∞∑
k=⌈n

2
⌉+1

1

Bk︸ ︷︷ ︸
→0

]

→ 0 (n → ∞).

Many other options are available and it is not clear what the optimal choice is.
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