Optimization in Machine Learning HWS 2024

Sheet 6

For the exercise class on the **05.12.2024**.

Hand in your solutions by 10:15 in the lecture on Tuesday 03.12.2024.

Exercise 1 (Conditional expectation).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an underlying probability space.

- (i) Let $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra and let $X, Y \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Prove that
 - (a) for any $\lambda \in \mathbb{R}$ there holds $\mathbb{E}[\lambda X + Y | \mathcal{G}] = \lambda \mathbb{E}[X | \mathcal{G}] + \mathbb{E}[Y | \mathcal{G}].$
 - (b) if $X \ge Y$ \mathbb{P} -almost surely, then $\mathbb{E}[X \mid \mathcal{G}] \ge \mathbb{E}[Y \mid \mathcal{G}]$ \mathbb{P} -a.s.
 - (c) $|\mathbb{E}[X | \mathcal{G}]| \leq \mathbb{E}[|X| | \mathcal{G}].$
- (ii) Let Y_1, Y_2 be iid. random variables with

$$\mathbb{P}(Y_1 = 2) = \mathbb{P}(Y_1 = 0.5) = \frac{1}{2},$$

and set

$$S_0 = 2, \quad S_k = S_0 \cdot \prod_{i=1}^k Y_i, \ k = 1, 2.$$

Compute $\mathbb{E}[S_2 | \mathcal{F}_1]$, where $\mathcal{F}_1 = \sigma(S_1)$.

- (iii) Let X, Y be independent Bernoulli distributed random variables with parameter $p \in [0, 1]$ and define $Z := \mathbb{1}_{\{X+Y=0\}}$.
 - (a) Compute $\mathbb{E}[X \mid \sigma(Z)]$ and $\mathbb{E}[Y \mid \sigma(Z)]$.
 - (b) When are these random variables independent? **Hint:** You may use the fact that a real valued random variable is independent from itself if and only if it is a constant.

(3 pts)

(2 pts)

Exercise 2 (Martingales).

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an underlying probability space.

(i) Let Y_1, \ldots, Y_N be iid. random variables with $\mathbb{E}[Y_1] = 1$ and $\mathbb{E}[|Y_1|] < \infty$, let $\mathcal{F}_k := \sigma(Y_1, \ldots, Y_k)$ and define

$$S_0 = Y_0 := 1, \quad S_k = Y_1 \cdot \dots \cdot Y_k = \prod_{i=1}^{\kappa} Y_i, \ k = 1, \dots, N.$$

Prove that $(S_k)_{k=1,\dots,N}$ is a Martingale with respect to the filtration $(\mathcal{F}_k)_{k=1,\dots,N}$. (2 pts)

(8 Points)

(3 pts)

Universität Mannheim

Prof. Simon Weißmann, Felix Benning

(4 Points)

- (ii) Let $(X_k)_{k\in\mathbb{N}}$ and $(Y_k)_{k\in\mathbb{N}}$ be two martingales. Prove that $(aX_k + bX_k)_{k\in\mathbb{N}}$ is a martingale for any $a, b \in \mathbb{R}$. (1 pt)
- (iii) Let $(X_k)_{k\in\mathbb{N}}$ and $(Y_k)_{k\in\mathbb{N}}$ be two super-martingales. Prove that $(\min(X_k, Y_k))_{k\in\mathbb{N}}$ is a supermartingale. (1 pt)

Exercise 3 (SGD with random batches).

(12 Points)

Consider the expected risk minimization problem

$$\min_{x \in \mathbb{R}^d} F(x), \quad F(x) := \mathbb{E}_{Z \sim \mu_Z}[f(x, Z)],$$

where $f : \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$ is measurable and $Z : \Omega \to \mathbb{R}^p$ is a random vector. We assume that the "usual" conditions (conditions for Lemma 4.1.2 such as measurability, integrability, etc.) from the lecture are satisfied.

(i) Assume that $\mathbb{E}[\|\nabla_x f(x,Z) - \nabla_x F(x)\|^2] \leq c$ for some c > 0 and all $x \in \mathbb{R}^d$, and let $Z^{(1)}, \ldots, Z^{(B)}, B \geq 2$, be iid. random variables with $Z^{(1)} \sim \mu_Z$. Prove that

$$\mathbb{E}[\|\frac{1}{B}\sum_{m=1}^{B}\nabla_{x}f(x,Z^{(m)}) - \nabla_{x}F(x)\|^{2}] \leq \frac{c}{B}$$
(4 pts)

for all $x \in \mathbb{R}^d$.

Let $X_0: \Omega \to \mathbb{R}^d$ be the initial random variable, $(\alpha_k)_{k \in \mathbb{N}}$ be a sequence of positive deterministic step sizes and for batch sizes $(B_k)_{k \in \mathbb{N}}$ let $(Z_k^{(m)})_{k \in \mathbb{N}, m=1,\dots,B_{k-1}}$ be a sequence of iid. random variables with $Z_1^{(1)} \sim \mu_Z$.

(ii) Formulate the stochastic gradient descent (SGD) scheme using the stochastic gradient estimator with batch size B_k :

$$G_k(x) := \frac{1}{B_k} \sum_{m=1}^{B_k} \nabla_x f(x, Z_{k+1}^{(m)}), \quad x \in \mathbb{R}^d.$$
(2 pts)

(iii) Assume that F is L-smooth and μ -strongly convex, and let $\alpha_k \in (0, \frac{1}{L}]$ for all $k \in \mathbb{N}$. Prove that

$$\mathbb{E}[\|X_{k+1} - x_*\|^2] \le (1 - \alpha_k \mu) \mathbb{E}[\|X_k - x_*\|^2] + \tilde{c} \frac{\alpha_k^2}{B_k}$$

for some $\tilde{c} > 0$, where $(X_k)_{k \in \mathbb{N}}$ is generated by SGD with batch-sizes $(B_k)_{k \in \mathbb{N}}$ and $x_* = \arg \min_{x \in \mathbb{R}^d} F(x)$. (3 pts)

(iv) Determine sequences of step sizes $(\alpha_k)_{k \in \mathbb{N}}$ and batch-sizes $(B_k)_{k \in \mathbb{N}}$ to deduce convergence $\lim_{k \to \infty} \mathbb{E}[||X_{k+1} - x_*||^2] = 0.$ (3 pts)