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For the exercise class on the 05.12.2024.
Hand in your solutions by 10:15 in the lecture on Tuesday 03.12.2024.

Exercise 1 (Conditional expectation). (8 Points)
Let (Ω,F ,P) be an underlying probability space.

(i) Let G ⊂ F be a σ-algebra and let X,Y ∈ L1(Ω,F ,P). Prove that

(a) for any λ ∈ R there holds E[λX + Y | G] = λE[X | G] + E[Y | G].
(b) if X ≥ Y P-almost surely, then E[X | G] ≥ E[Y | G] P-a.s. .

(c) |E[X | G]| ≤ E[|X| | G].

(3 pts)

(ii) Let Y1,Y2 be iid. random variables with

P(Y1 = 2) = P(Y1 = 0.5) =
1

2
,

and set

S0 = 2, Sk = S0 ·
k∏

i=1

Yi , k = 1, 2 .

Compute E[S2 | F1], where F1 = σ(S1). (2 pts)

(iii) Let X,Y be independent Bernoulli distributed random variables with parameter p ∈ [0, 1] and
define Z := 1{X+Y=0}.

(a) Compute E[X |σ(Z)] and E[Y |σ(Z)].

(b) When are these random variables independent? Hint: You may use the fact that a real
valued random variable is independent from itself if and only if it is a constant.

(3 pts)

Exercise 2 (Martingales). (4 Points)
Let (Ω,F ,P) be an underlying probability space.

(i) Let Y1, . . . , YN be iid. random variables with E[Y1] = 1 and E[|Y1|] < ∞, let Fk := σ(Y1, . . . , Yk)
and define

S0 = Y0 := 1, Sk = Y1 · · · · · Yk =

k∏
i=1

Yi , k = 1, . . . , N .

Prove that (Sk)k=1,...,N is a Martingale with respect to the filtration (Fk)k=1,...,N . (2 pts)
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(ii) Let (Xk)k∈N and (Yk)k∈N be two martingales. Prove that (aXk + bXk)k∈N is a martingale for
any a, b ∈ R. (1 pt)

(iii) Let (Xk)k∈N and (Yk)k∈N be two super-martingales. Prove that (min(Xk, Yk))k∈N is a super-
martingale. (1 pt)

Exercise 3 (SGD with random batches). (12 Points)
Consider the expected risk minimization problem

min
x∈Rd

F (x), F (x) := EZ∼µZ
[f(x, Z)] ,

where f : Rd × Rp → R is measurable and Z : Ω → Rp is a random vector. We assume that the
”usual” conditions (conditions for Lemma 4.1.2 such as measurability, integrability, etc.) from the
lecture are satisfied.

(i) Assume that E[∥∇xf(x, Z) − ∇xF (x)∥2] ≤ c for some c > 0 and all x ∈ Rd, and let
Z(1), . . . , Z(B), B ≥ 2, be iid. random variables with Z(1) ∼ µZ . Prove that

E[∥ 1

B

B∑
m=1

∇xf(x, Z
(m))−∇xF (x)∥2] ≤ c

B

for all x ∈ Rd. (4 pts)

Let X0 : Ω → Rd be the initial random variable, (αk)k∈N be a sequence of positive deterministic step
sizes and for batch sizes (Bk)k∈N let (Z(m)

k )k∈N, m=1,...,Bk−1
be a sequence of iid. random variables

with Z
(1)
1 ∼ µZ .

(ii) Formulate the stochastic gradient descent (SGD) scheme using the stochastic gradient estimator
with batch size Bk:

Gk(x) :=
1

Bk

Bk∑
m=1

∇xf(x, Z
(m)
k+1) , x ∈ Rd .

(2 pts)

(iii) Assume that F is L-smooth and µ-strongly convex, and let αk ∈ (0, 1
L ] for all k ∈ N. Prove

that

E[∥Xk+1 − x∗∥2] ≤ (1− αkµ)E[∥Xk − x∗∥2] + c̃
α2
k

Bk

for some c̃ > 0, where (Xk)k∈N is generated by SGD with batch-sizes (Bk)k∈N and x∗ =
argminx∈Rd F (x). (3 pts)

(iv) Determine sequences of step sizes (αk)k∈N and batch-sizes (Bk)k∈N to deduce convergence
limk→∞ E[∥Xk+1 − x∗∥2] = 0. (3 pts)
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