
Optimization in Machine Learning Universität Mannheim
HWS 2024 Prof. Simon Weißmann, Felix Benning

Solution Sheet 5

For the exercise class on the 21.11.2024.
Hand in your solutions by 10:15 in the lecture on Tuesday 19.11.2024.

Exercise 1 (Conditional Expectation). (4 Points)
Let (Ω,A,P) be a probability space, F a subalgebra of A and X , Y random vectors. Prove for
F-measurable X ∈ Rd that we have

E[⟨X,Y ⟩ | F ] = ⟨X,E[Y | F ]⟩

Solution. We simply use linearity of the conditional expectation

E[⟨X,Y ⟩ | F ] = E

[
d∑

i=1

XiYi | F

]
=

d∑
i=1

E
[
XiYi | F

]
=

d∑
i=1

XiE
[
Yi | F

]
= ⟨X,E[Y | F ]⟩.

Exercise 2 (Convexity and Expectation). (4 Points)
Let Z be a random variable. Let f(x) := f(x, Z) be a random function (f(x, ω) = f(x, Z(ω)) if you
want) and its expectation

F (x) = E[f(x)]

Is f almost surely convex if and only if F is convex? Prove or disprove both directions.

Solution. Let us first assume f was almost surely convex. Then due to monotonicity of expectation
we have

F (λx+ (1− λ)y) = E[f(λx+ (1− λ)y)]

≤ E[λf(x) + (1− λ)f(y)]

= λE[f(x)] + (1− λ)E[f(y)] = λF (x) + (1− λ)F (y)

so F is convex. The other direction is false. For this let P(Z = −1) = (1 − p) and P(Z = 1) = p
with p > 0.5, and f(x, z) = zx2. Then

F (x) = E[f(x, Z)] = E[Z]x2 = (2p− 1)x2

is convex, but f is not convex, i.e. f(x) = −x2 with probability (1− p).

Exercise 3 (Convergence of SGD on Strongly Convex Functions). (4 Points)
In the lecture we proved for L-smooth functions F and Xn generated by Algorithm 6 (SGD)

∥∇F (Xn)∥2 → 0 a.s.

If we additionally have strong convexity of F , prove ∥Xn − x∗∥ → 0 almost surely.
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Solution. On sheet 3 we proved the PL inequality for L-smooth, strongly convex functions. This
together with strong convexity implies

µ

2
∥Xn − x∗∥2 ≤ F (Xn)− F (x∗)− ⟨∇F (x∗)︸ ︷︷ ︸

=0

, Xn − x∗⟩
PL
≤ L

2µ
∥∇F (Xn)∥2 → 0.

From part in the middle we get F (Xn) → F (x∗) for free.

Exercise 4 (Swap Integration with Differentiation). (12 Points)

(i) What formal requirements on f : V ×Ω → R with V ⊆ R and measure µ on Ω are needed, for
the following argument using the fundamental theorem of calculus (FTC) to work?

∂

∂t

∫
Ω
f(t0, ω)dµ(ω)

linear
= lim

ϵ→0

∫
f(t0 + ϵ, ω)− f(t0, ω)

ϵ
dµ(ω)

FTC II
= lim

ϵ→0

∫
1

ϵ

∫ t0+ϵ

t0

∂

∂t
f(t, ω)dtdµ(ω)

Fubini
= lim

ϵ→0

1

ϵ

∫ t0+ϵ

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

def.+lin.
=

d

dy

∫ y

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

∣∣∣∣∣
y=t0

FTC I
=

∫
∂

∂t
f(t0, ω)dµ(ω).

Formulate the corresponding theorem. (6 pts)

Solution. (a) Linearity of the integral, requires measurability and either positivity (f ≥ 0) or
µ-integrability of f with regard to ω at t0.

(b) For Fubini, we need either ∂
∂tf(t, ω) ≥ 0, or∫ t0+ϵ

t0

∫ ∣∣∣ ∂
∂t

f(t, ω)
∣∣∣dωdt < ∞.

Since we let ϵ → 0, there only needs to be a small environment around t0, where this is
the case. I.e. we need “local-integrability” around t0 of ∂tf with regard to t

∃a, b ∈ R : t0 ∈ [a, b], a < b,

∫ b

a

∫ ∣∣∣ ∂
∂t

f(t, ω)
∣∣∣dωdt < ∞.

This also covers the second usage of linearity.

(c) For the second fundamental theorem of calculus (FTC II), we do not even need f(·, ω)
to be continuous. It is sufficient, if it is for µ-almost-all ω absolutely continuous (i.e. a
density exists).
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(d) For the first fundamental theorem of calculus (FTC I), we need continuity. I.e.

t 7→
∫

∂tf(t, ω)dµ(ω)

needs to be continuous.

So we get

Theorem (Swap Integration and Differentiation). Let f : U×Ω → R be a measurable function
for U ⊆ R which satisfies

(a) f µ-integrable over ω ∈ Ω at t0 ∈ U ,
(b) for µ-almost all ω ∈ Ω we have: t → f(t, ω) is differentiable (or absolutely continuous)

in t.
(c) If ∂

∂tf is further “locally integrable in t0”, i.e. there exists a < b ∈ R, such that t0 ∈
[a, b] ⊆ U and

∃a < b ∈ R : t0 ∈ [a, b] ⊆ U,

∫ b

a

∫
Ω

∣∣∣∣ ddtf(t, ω)
∣∣∣∣ dµ(ω)dt < ∞,

or ∂
∂tf ≥ 0 in the neighborhood [a, b].

(d) In a similar local neighborhood [a, b] of t0 assume that

t 7→
∫

∂

∂t
f(t, ω)dµ(ω)

is continuous.

then swapping derivative in t0 and integration over ω is allowed

∂

∂t

∫
f(t0, ω)dµ(ω) =

∫
∂

∂t
f(t0, ω)dµ(ω).

(ii) We want to find an example for a function, where you can not swap integration with differenti-
ation. So for a function f(t, ω) we need some t0 such that

∂

∂t

∫
Ω
f(t0, ω)dω ̸=

∫
Ω

∂

∂t
f(t0, ω)dω.

For this consider f(t, ω) = t3e−t2ω. Prove the inequality at t0 = 0 and Ω = [0,∞). Why is
this not a contradiction to (i)? (6 pts)

Solution. We have∫ ∞

0
f(t, ω)dω =

∫ ∞

0
t3e−t2ωdω =

−te−t2ω
∣∣∣ω=∞

ω=0
t ̸= 0

0 t = 0

= t.
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So its derivative is constant
∂

∂t

∫ ∞

0
f(t, ω)dω = 1.

In particular this is also the case at t0 = 0. On the other hand we have

∂

∂t
f(t, ω) = 3t2e−t2ω − 2t4ωe−t2ω = t2e−t2ω(3− 2t2ω).

In particular ∂
∂tf(t0, ω) = 0. Therefore∫ ∞

0

∂

∂t
f(t0, ω)dω = 0 ̸= 1 =

∂

∂t

∫ ∞

0
f(t0, ω)dω.

We also have for t ̸= 0∫ ∞

0

∂

∂t
f(t, ω)dω = −3e−t2ω

∣∣∣ω=∞

ω=0
−2t2

∫ ∞

0
t2ωe−t2ωdω

= 3− 2t2

[
ωe−t2ω

∣∣∣ω=∞

ω=0
−
∫ ∞

0

( d

dω
ω
)

︸ ︷︷ ︸
=1

e−t2ωdω

]

= 3− 2

∫ ∞

0
t2e−t2ωdω

= 1

So in total ∫ ∞

0

∂

∂t
f(t, ω)dω =

{
0 t = 0

1 t ̸= 0.

In particular

t 7→
∫ ∞

0

∂

∂t
f(t, ω)dω

is not continuous. But this was a requirement for (i) so this is not a contradiction.

4


