
Optimization in Machine Learning Universität Mannheim
FSS 2023 Prof. Simon Weißmann, Felix Benning

Solution Sheet 5

For the exercise class on the 11.05.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 11.05.2023.

Exercise 1 (Conditional Expectation). (2 Points)
Let (Ω,A,P) be a probability space, F a subalgebra of A and X , Y random vectors. Prove for
F-measurable X ∈ Rd that we have

E[⟨X,Y ⟩ | F ] = ⟨X,E[Y | F ]⟩

Solution. We simply use linearity of the conditional expectation

E[⟨X,Y ⟩ | F ] = E

[
d∑

i=1

XiYi | F

]
=

d∑
i=1

E
[
XiYi | F

]
=

d∑
i=1

XiE
[
Yi | F

]
= ⟨X,E[Y | F ]⟩.

Exercise 2 (Convexity and Expectation). (2 Points)
Let Z be a random variable. Let f(x) := f(x, Z) be a random function (f(x, ω) = f(x, Z(ω)) if you
want) and its expectation

F (x) = E[f(x)]

Is f almost surely convex if and only if F is convex? Prove or disprove both directions.

Solution. Let us first assume f was almost surely convex. Then due to monotonicity of expectation
we have

F (λx+ (1− λ)y) = E[f(λx+ (1− λ)y)]

≤ E[λf(x) + (1− λ)f(y)]

= λE[f(x)] + (1− λ)E[f(y)] = λF (x) + (1− λ)F (y)

so F is convex. The other direction is false. For this let P(Z = −1) = (1 − p) and P(Z = 1) = p
with p > 0.5, and f(x, z) = zx2. Then

F (x) = E[f(x, Z)] = E[Z]x2 = (2p− 1)x2

is convex, but f is not convex, i.e. f(x) = −x2 with probability (1− p).

Exercise 3 (Convergence of SGD on Strongly Convex Functions). (2 Points)
In the lecture we proved for L-smooth functions F and Xn generated by Algorithm 6 (SGD)

∥∇F (Xn)∥2 → 0 a.s.

If we additionally have strong convexity of F , prove ∥Xn − x∗∥ → 0 almost surely.
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Solution. On sheet 3 we proved the PL inequality for L-smooth, strongly convex functions. This
together with strong convexity implies

µ

2
∥Xn − x∗∥2 ≤ F (Xn)− F (x∗)− ⟨∇F (x∗)︸ ︷︷ ︸

=0

, Xn − x∗⟩
PL
≤ L

2µ
∥∇F (Xn)∥2 → 0.

From part in the middle we get F (Xn) → F (x∗) for free.

Exercise 4 (Swap Integration with Differentiation). (9 Points)

(i) What formal requirements on f : V ×Ω → R with V ⊆ R and measure µ on Ω are needed, for
the following argument using the fundamental theorem of calculus (FTC) to work?

∂

∂t

∫
Ω
f(t0, ω)dµ(ω)

linear
= lim

ϵ→0

∫
f(t0 + ϵ, ω)− f(t0, ω)

ϵ
dµ(ω)

FTC II
= lim

ϵ→0

∫
1

ϵ

∫ t0+ϵ

t0

∂

∂t
f(t, ω)dtdµ(ω)

Fubini
= lim

ϵ→0

1

ϵ

∫ t0+ϵ

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

def.+lin.
=

d

dy

∫ y

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

∣∣∣∣∣
y=t0

FTC I
=

∫
∂

∂t
f(t0, ω)dµ(ω).

Formulate the corresponding theorem. (5 pts)

Solution. (a) Linearity of the integral, requires measurability and either positivity (f ≥ 0) or
µ-integrability of f with regard to ω at t0.

(b) For Fubini, we need either ∂
∂tf(t, ω) ≥ 0, or∫ t0+ϵ

t0

∫ ∣∣∣ ∂
∂t

f(t, ω)
∣∣∣dωdt < ∞.

Since we let ϵ → 0, there only needs to be a small environment around t0, where this is
the case. I.e. we need “local-integrability” around t0 of ∂tf with regard to t

∃a, b ∈ R : t0 ∈ [a, b], a < b,

∫ b

a

∫ ∣∣∣ ∂
∂t

f(t, ω)
∣∣∣dωdt < ∞.

This also covers the second usage of linearity.

(c) For the second fundamental theorem of calculus (FTC II), we do not even need f(·, ω)
to be continuous. It is sufficient, if it is for µ-almost-all ω absolutely continuous (i.e. a
density exists).
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(d) For the first fundamental theorem of calculus (FTC I), we need continuity. I.e.

t 7→
∫

∂tf(t, ω)dµ(ω)

needs to be continuous.

So we get

Theorem (Swap Integration and Differentiation). Let f : U×Ω → R be a measurable function
for U ⊆ R which satisfies

(a) f µ-integrable over ω ∈ Ω at t0 ∈ U ,
(b) for µ-almost all ω ∈ Ω we have: t → f(t, ω) is differentiable (or absolutely continuous)

in t.
(c) If ∂

∂tf is further “locally integrable in t0”, i.e. there exists a < b ∈ R, such that t0 ∈
[a, b] ⊆ U and

∃a < b ∈ R : t0 ∈ [a, b] ⊆ U,

∫ b

a

∫
Ω

∣∣∣∣ ddtf(t, ω)
∣∣∣∣ dµ(ω)dt < ∞,

or ∂
∂tf ≥ 0 in the neighborhood [a, b].

(d) In a similar local neighborhood [a, b] of t0 assume that

t 7→
∫

∂

∂t
f(t, ω)dµ(ω)

is continuous.

then swapping derivative in t0 and integration over ω is allowed

∂

∂t

∫
f(t0, ω)dµ(ω) =

∫
∂

∂t
f(t0, ω)dµ(ω).

(ii) We want to find an example for a function, where you can not swap integration with differenti-
ation. So for a function f(t, ω) we need some t0 such that

∂

∂t

∫
Ω
f(t0, ω)dω ̸=

∫
Ω

∂

∂t
f(t0, ω)dω.

For this consider f(t, ω) = t3e−t2ω. Prove the inequality at t0 = 0 and Ω = [0,∞). Why is
this not a contradiction to (i)? (4 pts)

Solution. We have∫ ∞

0
f(t, ω)dω =

∫ ∞

0
t3e−t2ωdω =

−te−t2ω
∣∣∣ω=∞

ω=0
t ̸= 0

0 t = 0

= t.
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So its derivative is constant
∂

∂t

∫ ∞

0
f(t, ω)dω = 1.

In particular this is also the case at t0 = 0. On the other hand we have

∂

∂t
f(t, ω) = 3t2e−t2ω − 2t4ωe−t2ω = t2e−t2ω(3− 2t2ω).

In particular ∂
∂tf(t0, ω) = 0. Therefore∫ ∞

0

∂

∂t
f(t0, ω)dω = 0 ̸= 1 =

∂

∂t

∫ ∞

0
f(t0, ω)dω.

We also have for t ̸= 0∫ ∞

0

∂

∂t
f(t, ω)dω = −3e−t2ω

∣∣∣ω=∞

ω=0
−2t2

∫ ∞

0
t2ωe−t2ωdω

= 3− 2t2

[
ωe−t2ω

∣∣∣ω=∞

ω=0
−
∫ ∞

0

( d

dω
ω
)

︸ ︷︷ ︸
=1

e−t2ωdω

]

= 3− 2

∫ ∞

0
t2e−t2ωdω

= 1

So in total ∫ ∞

0

∂

∂t
f(t, ω)dω =

{
0 t = 0

1 t ̸= 0.

In particular

t 7→
∫ ∞

0

∂

∂t
f(t, ω)dω

is not continuous. But this was a requirement for (i) so this is not a contradiction.

Exercise 5 (SGD on quadratic functions). (9 Points)
Throughout we use the notation for SGD

Xn+1 = Xn − αn∇fn+1(Xn)

using X0 = x0 ∈ Rd with sample errors ϵn = ∇fn(x)−∇F (x) for stochastic gradients

fn(x) := f(x, Zn)

for sample data (Zn)n with Zn
iid∼ µ random vectors in Rd. Additionally we write for GD

xn+1 = xn − αnF (xn).

(i) Prove for any y0 and the recursion

yn+1 := yn − 1
n+1(yn − zn+1)

that yn is a running mean

yn =
1

n

n∑
k=1

zk =: z̄n, ∀n ∈ N (1 pt)
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Solution. This is simply induction with induction start

y1 = x0 − (y0 − z1) = z1

and induction step

yn+1 =
(
1− 1

n+1

) 1
n

n∑
k=1

zn + 1
n+1zn+1 =

1

n+ 1

n+1∑
k=1

zk.

(ii) Let Z ∈ Rd be a random vector and consider the sample loss

f(x, Z) := 1
2∥x− Z∥2H

recall
= 1

2⟨x− Z,H(x− Z)⟩

Prove that
F (x) = E[f(x, Z)] = 1

2∥x− x∗∥2H + const.

with
x∗ = argmin

x
E[∥x− Z∥2H ].

What is x∗? What is the (in the L2 sense) optimal step size for SGD in the case H = I? (4 pts)

Solution. We have

2E[f(x, Z)] = E∥x− Z∥2H = ∥x∥2H − 2E⟨x, Z⟩H + E∥Z∥2H
= ∥x∥2H − 2xTHE[Z] + ∥E[Z]∥2H + (E∥Z∥2H − ∥E[Z]∥2H)

= ∥x− E[Z]∥2H + (E∥Z∥2H − ∥E[Z]∥2H)︸ ︷︷ ︸
=const.

.

So x∗ = E[Z] does the job. We know that Z̄n is the minimum variance estimator of E[Z], so it
would be perfect if Xn = Z̄n. And with αn = 1

n+1 this is in fact possible if we recall

∇fn(x) = ∇x
1
2∥x− Zn∥2H = H(x− Zn) = (x− Zn+1).

Because then we get

Xn+1 = Xn − αn∇fn+1(Xn) = Xn − 1
n+1(Xn − Zn+1).

By the previous exercise, this is therefore the optimal step size.

(iii) Prove for this quadratic loss, that SGD can be written as GD plus accumulated error

Xn − x∗ = (xn − x∗)−
n−1∑
k=0

αk

(
n−1∏

i=k+1

(1− αiH)

)
ϵk+1. (2 pts)

Solution. Recall
∇F (x) = ∇x

1
2∥x− x∗∥2H = H(x− x∗).
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Then by induction with induction start n = 0 (clear) and induction step

Xn+1 − x∗ = Xn − αn(∇F (Xn) + ϵn+1)− x∗

= Xn − x∗ − αnH(Xn − x∗)− αnϵn+1

= (1− αnH)(Xn − x∗)− αnϵn+1

ind.
= (1− αnH)(xn − x∗)− (1− αnH)

n−1∑
k=0

αk

(
n−1∏

i=k+1

(1− αiH)

)
ϵk+1 − αnϵn+1

= (xn+1 − x∗)−
n−1∑
k=0

αk

(
n∏

i=k+1

(1− αiH)

)
ϵk+1 − αnϵn+1

= (xn+1 − x∗)−
n∑

k=0

αk

(
n∏

i=k+1

(1− αiH)

)
ϵk+1.

(iv) Consider the previous setting with constant step sizes αn = α. Additionally we are going to
assume f is a quadratic loss with H = I. Prove

Xn = (1− α)nx0 +
n∑

k=1

α(1− α)n−kZk.

Compare the estimate Xn to the mean Z̄n. (2 pts)

Solution. Proof by induction with induction start X0 = x0 and induction step

Xn+1 = Xn − α∇fn+1(Xn)

= Xn − α[Xn − Zn+1] = (1− α)Xn − αZn+1

ind.
= (1− α)

(
(1− α)nx0 +

n∑
k=1

α(1− α)n−kZk

)
− αZn+1

= (1− α)n+1x0 +

n+1∑
k=1

α(1− α)n+1−kZk.
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