Solution Sheet 5

For the exercise class on the 11.05.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 11.05.2023.
Exercise 1 (Conditional Expectation).
(2 Points)
Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathcal{F} a subalgebra of \mathcal{A} and X, Y random vectors. Prove for \mathcal{F}-measurable $X \in \mathbb{R}^{d}$ that we have

$$
\mathbb{E}[\langle X, Y\rangle \mid \mathcal{F}]=\langle X, \mathbb{E}[Y \mid \mathcal{F}]\rangle
$$

Solution. We simply use linearity of the conditional expectation

$$
\mathbb{E}[\langle X, Y\rangle \mid \mathcal{F}]=\mathbb{E}\left[\sum_{i=1}^{d} X_{i} Y_{i} \mid \mathcal{F}\right]=\sum_{i=1}^{d} \mathbb{E}\left[X_{i} Y_{i} \mid \mathcal{F}\right]=\sum_{i=1}^{d} X_{i} \mathbb{E}\left[Y_{i} \mid \mathcal{F}\right]=\langle X, \mathbb{E}[Y \mid \mathcal{F}]\rangle
$$

Exercise 2 (Convexity and Expectation).
(2 Points)
Let Z be a random variable. Let $f(x):=f(x, Z)$ be a random function $(f(x, \omega)=f(x, Z(\omega))$ if you want) and its expectation

$$
F(x)=\mathbb{E}[f(x)]
$$

Is f almost surely convex if and only if F is convex? Prove or disprove both directions.
Solution. Let us first assume f was almost surely convex. Then due to monotonicity of expectation we have

$$
\begin{aligned}
F(\lambda x+(1-\lambda) y) & =\mathbb{E}[f(\lambda x+(1-\lambda) y)] \\
& \leq \mathbb{E}[\lambda f(x)+(1-\lambda) f(y)] \\
& =\lambda \mathbb{E}[f(x)]+(1-\lambda) \mathbb{E}[f(y)]=\lambda F(x)+(1-\lambda) F(y)
\end{aligned}
$$

so F is convex. The other direction is false. For this let $\mathbb{P}(Z=-1)=(1-p)$ and $\mathbb{P}(Z=1)=p$ with $p>0.5$, and $f(x, z)=z x^{2}$. Then

$$
F(x)=\mathbb{E}[f(x, Z)]=\mathbb{E}[Z] x^{2}=(2 p-1) x^{2}
$$

is convex, but f is not convex, i.e. $f(x)=-x^{2}$ with probability $(1-p)$.
Exercise 3 (Convergence of SGD on Strongly Convex Functions).
In the lecture we proved for L-smooth functions F and X_{n} generated by Algorithm 6 (SGD)

$$
\left\|\nabla F\left(X_{n}\right)\right\|^{2} \rightarrow 0 \quad \text { a.s. }
$$

If we additionally have strong convexity of F, prove $\left\|X_{n}-x_{*}\right\| \rightarrow 0$ almost surely.

Solution. On sheet 3 we proved the PL inequality for L-smooth, strongly convex functions. This together with strong convexity implies

$$
\frac{\mu}{2}\left\|X_{n}-x_{*}\right\|^{2} \leq F\left(X_{n}\right)-F\left(x_{*}\right)-\langle\underbrace{\nabla F\left(x_{*}\right)}_{=0}, X_{n}-x_{*}\rangle \stackrel{\text { PL }}{\leq} \frac{L}{2 \mu}\left\|\nabla F\left(X_{n}\right)\right\|^{2} \rightarrow 0 .
$$

From part in the middle we get $F\left(X_{n}\right) \rightarrow F\left(x_{*}\right)$ for free.
Exercise 4 (Swap Integration with Differentiation).
(9 Points)
(i) What formal requirements on $f: V \times \Omega \rightarrow \mathbb{R}$ with $V \subseteq \mathbb{R}$ and measure μ on Ω are needed, for the following argument using the fundamental theorem of calculus (FTC) to work?

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{\Omega} f\left(t_{0}, \omega\right) d \mu(\omega) & \stackrel{\text { linear }}{=} \lim _{\epsilon \rightarrow 0} \int \frac{f\left(t_{0}+\epsilon, \omega\right)-f\left(t_{0}, \omega\right)}{\epsilon} d \mu(\omega) \\
& \stackrel{\text { FTC II }}{=} \lim _{\epsilon \rightarrow 0} \int \frac{1}{\epsilon} \int_{t_{0}}^{t_{0}+\epsilon} \frac{\partial}{\partial t} f(t, \omega) d t d \mu(\omega) \\
& \stackrel{\text { Fubini }}{=} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{t_{0}}^{t_{0}+\epsilon} \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega) d t \\
& \left.\stackrel{\text { def.+lin. }}{=} \frac{d}{d y} \int_{t_{0}}^{y} \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega) d t\right|_{y=t_{0}} \\
& \stackrel{\text { FTC I }}{=} \int \frac{\partial}{\partial t} f\left(t_{0}, \omega\right) d \mu(\omega) .
\end{aligned}
$$

Formulate the corresponding theorem.
Solution. (a) Linearity of the integral, requires measurability and either positivity ($f \geq 0$) or μ-integrability of f with regard to ω at t_{0}.
(b) For Fubini, we need either $\frac{\partial}{\partial t} f(t, \omega) \geq 0$, or

$$
\int_{t_{0}}^{t_{0}+\epsilon} \int\left|\frac{\partial}{\partial t} f(t, \omega)\right| d \omega d t<\infty
$$

Since we let $\epsilon \rightarrow 0$, there only needs to be a small environment around t_{0}, where this is the case. I.e. we need "local-integrability" around t_{0} of $\partial_{t} f$ with regard to t

$$
\exists a, b \in \mathbb{R}: \quad t_{0} \in[a, b], a<b, \int_{a}^{b} \int\left|\frac{\partial}{\partial t} f(t, \omega)\right| d \omega d t<\infty .
$$

This also covers the second usage of linearity.
(c) For the second fundamental theorem of calculus (FTC II), we do not even need $f(\cdot, \omega)$ to be continuous. It is sufficient, if it is for μ-almost-all ω absolutely continuous (i.e. a density exists).
(d) For the first fundamental theorem of calculus (FTC I), we need continuity. I.e.

$$
t \mapsto \int \partial_{t} f(t, \omega) d \mu(\omega)
$$

needs to be continuous.
So we get
Theorem (Swap Integration and Differentiation). Let $f: U \times \Omega \rightarrow \mathbb{R}$ be a measurable function for $U \subseteq \mathbb{R}$ which satisfies
(a) $f \mu$-integrable over $\omega \in \Omega$ at $t_{0} \in U$,
(b) for μ-almost all $\omega \in \Omega$ we have: $t \rightarrow f(t, \omega)$ is differentiable (or absolutely continuous) in t.
(c) If $\frac{\partial}{\partial t} f$ is further "locally integrable in t_{0} ", i.e. there exists $a<b \in \mathbb{R}$, such that $t_{0} \in$ $[a, b] \subseteq U$ and

$$
\exists a<b \in \mathbb{R}: \quad t_{0} \in[a, b] \subseteq U, \quad \int_{a}^{b} \int_{\Omega}\left|\frac{d}{d t} f(t, \omega)\right| d \mu(\omega) d t<\infty,
$$

or $\frac{\partial}{\partial t} f \geq 0$ in the neighborhood $[a, b]$.
(d) In a similar local neighborhood $[a, b]$ of t_{0} assume that

$$
t \mapsto \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega)
$$

is continuous.
then swapping derivative in t_{0} and integration over ω is allowed

$$
\frac{\partial}{\partial t} \int f\left(t_{0}, \omega\right) d \mu(\omega)=\int \frac{\partial}{\partial t} f\left(t_{0}, \omega\right) d \mu(\omega) .
$$

(ii) We want to find an example for a function, where you can not swap integration with differentiation. So for a function $f(t, \omega)$ we need some t_{0} such that

$$
\frac{\partial}{\partial t} \int_{\Omega} f\left(t_{0}, \omega\right) d \omega \neq \int_{\Omega} \frac{\partial}{\partial t} f\left(t_{0}, \omega\right) d \omega
$$

For this consider $f(t, \omega)=t^{3} e^{-t^{2} \omega}$. Prove the inequality at $t_{0}=0$ and $\Omega=[0, \infty)$. Why is this not a contradiction to (i)?

Solution. We have

$$
\begin{aligned}
\int_{0}^{\infty} f(t, \omega) d \omega & =\int_{0}^{\infty} t^{3} e^{-t^{2} \omega} d \omega= \begin{cases}-\left.t e^{-t^{2} \omega}\right|_{\omega=0} ^{\omega=\infty} & t \neq 0 \\
0 & t=0\end{cases} \\
& =t
\end{aligned}
$$

So its derivative is constant

$$
\frac{\partial}{\partial t} \int_{0}^{\infty} f(t, \omega) d \omega=1
$$

In particular this is also the case at $t_{0}=0$. On the other hand we have

$$
\frac{\partial}{\partial t} f(t, \omega)=3 t^{2} e^{-t^{2} \omega}-2 t^{4} \omega e^{-t^{2} \omega}=t^{2} e^{-t^{2} \omega}\left(3-2 t^{2} \omega\right)
$$

In particular $\frac{\partial}{\partial t} f\left(t_{0}, \omega\right)=0$. Therefore

$$
\int_{0}^{\infty} \frac{\partial}{\partial t} f\left(t_{0}, \omega\right) d \omega=0 \neq 1=\frac{\partial}{\partial t} \int_{0}^{\infty} f\left(t_{0}, \omega\right) d \omega
$$

We also have for $t \neq 0$

$$
\begin{aligned}
\int_{0}^{\infty} \frac{\partial}{\partial t} f(t, \omega) d \omega & =-\left.3 e^{-t^{2} \omega}\right|_{\omega=0} ^{\omega=\infty}-2 t^{2} \int_{0}^{\infty} t^{2} \omega e^{-t^{2} \omega} d \omega \\
& =3-2 t^{2}[\left.\omega e^{-t^{2} \omega}\right|_{\omega=0} ^{\omega=\infty}-\int_{0}^{\infty} \underbrace{\left(\frac{d}{d \omega} \omega\right)}_{=1} e^{-t^{2} \omega} d \omega] \\
& =3-2 \int_{0}^{\infty} t^{2} e^{-t^{2} \omega} d \omega \\
& =1
\end{aligned}
$$

So in total

$$
\int_{0}^{\infty} \frac{\partial}{\partial t} f(t, \omega) d \omega= \begin{cases}0 & t=0 \\ 1 & t \neq 0\end{cases}
$$

In particular

$$
t \mapsto \int_{0}^{\infty} \frac{\partial}{\partial t} f(t, \omega) d \omega
$$

is not continuous. But this was a requirement for (i) so this is not a contradiction.
Exercise 5 (SGD on quadratic functions).
(9 Points)
Throughout we use the notation for SGD

$$
X_{n+1}=X_{n}-\alpha_{n} \nabla f_{n+1}\left(X_{n}\right)
$$

using $X_{0}=x_{0} \in \mathbb{R}^{d}$ with sample errors $\epsilon_{n}=\nabla f_{n}(x)-\nabla F(x)$ for stochastic gradients

$$
f_{n}(x):=f\left(x, Z_{n}\right)
$$

for sample data $\left(Z_{n}\right)_{n}$ with $Z_{n} \stackrel{i i d}{\sim} \mu$ random vectors in \mathbb{R}^{d}. Additionally we write for GD

$$
x_{n+1}=x_{n}-\alpha_{n} F\left(x_{n}\right)
$$

(i) Prove for any y_{0} and the recursion

$$
y_{n+1}:=y_{n}-\frac{1}{n+1}\left(y_{n}-z_{n+1}\right)
$$

that y_{n} is a running mean

$$
\begin{equation*}
y_{n}=\frac{1}{n} \sum_{k=1}^{n} z_{k}=: \bar{z}_{n}, \quad \forall n \in \mathbb{N} \tag{1pt}
\end{equation*}
$$

Solution. This is simply induction with induction start

$$
y_{1}=x_{0}-\left(y_{0}-z_{1}\right)=z_{1}
$$

and induction step

$$
y_{n+1}=\left(1-\frac{1}{n+1}\right) \frac{1}{n} \sum_{k=1}^{n} z_{n}+\frac{1}{n+1} z_{n+1}=\frac{1}{n+1} \sum_{k=1}^{n+1} z_{k} .
$$

(ii) Let $Z \in \mathbb{R}^{d}$ be a random vector and consider the sample loss

$$
f(x, Z):=\frac{1}{2}\|x-Z\|_{H}^{2} \stackrel{\text { recall }}{=} \frac{1}{2}\langle x-Z, H(x-Z)\rangle
$$

Prove that

$$
F(x)=\mathbb{E}[f(x, Z)]=\frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2}+\text { const. }
$$

with

$$
x_{*}=\underset{x}{\operatorname{argmin}} \mathbb{E}\left[\|x-Z\|_{H}^{2}\right] .
$$

What is x_{*} ? What is the (in the L^{2} sense) optimal step size for SGD in the case $H=\mathbb{I}$? (4 pts)

Solution. We have

$$
\begin{aligned}
2 \mathbb{E}[f(x, Z)]=\mathbb{E}\|x-Z\|_{H}^{2} & =\|x\|_{H}^{2}-2 \mathbb{E}\langle x, Z\rangle_{H}+\mathbb{E}\|Z\|_{H}^{2} \\
& =\|x\|_{H}^{2}-2 x^{T} H \mathbb{E}[Z]+\|\mathbb{E}[Z]\|_{H}^{2}+\left(\mathbb{E}\|Z\|_{H}^{2}-\|\mathbb{E}[Z]\|_{H}^{2}\right) \\
& =\|x-\mathbb{E}[Z]\|_{H}^{2}+\underbrace{\left(\mathbb{E}\|Z\|_{H}^{2}-\|\mathbb{E}[Z]\|_{H}^{2}\right)}_{=\text {cons. }} .
\end{aligned}
$$

So $x_{*}=\mathbb{E}[Z]$ does the job. We know that \bar{Z}_{n} is the minimum variance estimator of $\mathbb{E}[Z]$, so it would be perfect if $X_{n}=\bar{Z}_{n}$. And with $\alpha_{n}=\frac{1}{n+1}$ this is in fact possible if we recall

$$
\nabla f_{n}(x)=\nabla_{x} \frac{1}{2}\left\|x-Z_{n}\right\|_{H}^{2}=H\left(x-Z_{n}\right)=\left(x-Z_{n+1}\right) .
$$

Because then we get

$$
X_{n+1}=X_{n}-\alpha_{n} \nabla f_{n+1}\left(X_{n}\right)=X_{n}-\frac{1}{n+1}\left(X_{n}-Z_{n+1}\right) .
$$

By the previous exercise, this is therefore the optimal step size.
(iii) Prove for this quadratic loss, that SGD can be written as GD plus accumulated error

$$
\begin{equation*}
X_{n}-x_{*}=\left(x_{n}-x_{*}\right)-\sum_{k=0}^{n-1} \alpha_{k}\left(\prod_{i=k+1}^{n-1}\left(1-\alpha_{i} H\right)\right) \epsilon_{k+1} . \tag{2pts}
\end{equation*}
$$

Solution. Recall

$$
\nabla F(x)=\nabla_{x} \frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2}=H\left(x-x_{*}\right) .
$$

Then by induction with induction start $n=0$ (clear) and induction step

$$
\begin{aligned}
X_{n+1}-x_{*} & =X_{n}-\alpha_{n}\left(\nabla F\left(X_{n}\right)+\epsilon_{n+1}\right)-x_{*} \\
& =X_{n}-x_{*}-\alpha_{n} H\left(X_{n}-x_{*}\right)-\alpha_{n} \epsilon_{n+1} \\
& =\left(1-\alpha_{n} H\right)\left(X_{n}-x_{*}\right)-\alpha_{n} \epsilon_{n+1} \\
& \stackrel{\text { ind. }}{=}\left(1-\alpha_{n} H\right)\left(x_{n}-x_{*}\right)-\left(1-\alpha_{n} H\right) \sum_{k=0}^{n-1} \alpha_{k}\left(\prod_{i=k+1}^{n-1}\left(1-\alpha_{i} H\right)\right) \epsilon_{k+1}-\alpha_{n} \epsilon_{n+1} \\
& =\left(x_{n+1}-x_{*}\right)-\sum_{k=0}^{n-1} \alpha_{k}\left(\prod_{i=k+1}^{n}\left(1-\alpha_{i} H\right)\right) \epsilon_{k+1}-\alpha_{n} \epsilon_{n+1} \\
& =\left(x_{n+1}-x_{*}\right)-\sum_{k=0}^{n} \alpha_{k}\left(\prod_{i=k+1}^{n}\left(1-\alpha_{i} H\right)\right) \epsilon_{k+1}
\end{aligned}
$$

(iv) Consider the previous setting with constant step sizes $\alpha_{n}=\alpha$. Additionally we are going to assume f is a quadratic loss with $H=\mathbb{I}$. Prove

$$
\begin{equation*}
X_{n}=(1-\alpha)^{n} x_{0}+\sum_{k=1}^{n} \alpha(1-\alpha)^{n-k} Z_{k} \tag{2pts}
\end{equation*}
$$

Compare the estimate X_{n} to the mean \bar{Z}_{n}.

Solution. Proof by induction with induction start $X_{0}=x_{0}$ and induction step

$$
\begin{aligned}
X_{n+1} & =X_{n}-\alpha \nabla f_{n+1}\left(X_{n}\right) \\
& =X_{n}-\alpha\left[X_{n}-Z_{n+1}\right]=(1-\alpha) X_{n}-\alpha Z_{n+1} \\
& \stackrel{\text { ind. }}{=}(1-\alpha)\left((1-\alpha)^{n} x_{0}+\sum_{k=1}^{n} \alpha(1-\alpha)^{n-k} Z_{k}\right)-\alpha Z_{n+1} \\
& =(1-\alpha)^{n+1} x_{0}+\sum_{k=1}^{n+1} \alpha(1-\alpha)^{n+1-k} Z_{k}
\end{aligned}
$$

