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For the exercise class on the 11.05.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 11.05.2023.

Exercise 1 (Conditional Expectation). (2 Points)
Let (Ω,A,P) be a probability space, F a subalgebra of A and X , Y random vectors. Prove for
F-measurable X ∈ Rd that we have

E[⟨X,Y ⟩ | F ] = ⟨X,E[Y | F ]⟩

Exercise 2 (Convexity and Expectation). (2 Points)
Let Z be a random variable. Let f(x) := f(x, Z) be a random function (f(x, ω) = f(x, Z(ω)) if you
want) and its expectation

F (x) = E[f(x)]

Is f almost surely convex if and only if F is convex? Prove or disprove both directions.

Exercise 3 (Convergence of SGD on Strongly Convex Functions). (2 Points)
In the lecture we proved for L-smooth functions F and Xn generated by Algorithm 6 (SGD)

∥∇F (Xn)∥2 → 0 a.s.

If we additionally have strong convexity of F , prove ∥Xn − x∗∥ → 0 almost surely.

Exercise 4 (Swap Integration with Differentiation). (9 Points)

(i) What formal requirements on f : V ×Ω → R with U ⊆ R and measure µ on Ω are needed, for
the following argument using the fundamental theorem of calculus (FTC) to work?

∂

∂t

∫
Ω
f(t0, ω)dµ(ω)

linear
= lim

ϵ→0

∫
f(t0 + ϵ, ω)− f(t0, ω)

ϵ
dµ(ω)

FTC II
= lim

ϵ→0

∫
1

ϵ

∫ t0+ϵ

t0

∂

∂t
f(t, ω)dtdµ(ω)

Fubini
= lim

ϵ→0

1

ϵ

∫ t0+ϵ

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

def.+lin.
=

d

dy

∫ y

t0

∫
∂

∂t
f(t, ω)dµ(ω)dt

∣∣∣∣∣
y=t0

FTC I
=

∫
∂

∂t
f(t, ω)dµ(ω)dt.

Formulate the corresponding theorem. (5 pts)
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(ii) We want to find an example for a function, where you can not swap integration with differenti-
ation. So for a function f(t, ω) we need some t0 such that

∂

∂t

∫
Ω
f(t0, ω)dω ̸=

∫
Ω

∂

∂t
f(t0, ω)dω.

For this consider f(t, ω) = t3e−t2ω. Prove the inequality at t0 = 0 and Ω = [0,∞). Why is
this not a contradiction to (i)? (4 pts)

Hint. It is helpful to calculate the entire function

t 7→
∫ ∞

0

∂

∂t
f(t, ω)dω.

Exercise 5 (SGD on quadratic functions). (9 Points)
Throughout we use the notation for SGD

Xn+1 = Xn − αn∇fn+1(Xn)

using X0 = x0 ∈ Rd with sample errors ϵn = fn(x)− F (x) for stochastic gradients

fn(x) := f(x, Zn) = F (x) + ϵn

for sample data (Zn)n with Zn
iid∼ µ random vectors in Rd. Additionally we write for GD

xn+1 = xn − αnF (xn).

(i) Prove for any y0 and the recursion

yn+1 := yn − 1
n+1(yn − zn+1)

that yn is a running mean

yn =
1

n

n∑
k=1

zk =: z̄n, ∀n ∈ N (1 pt)

(ii) Let Z ∈ Rd be a random vector and consider the sample loss

f(x, Z) := 1
2∥x− Z∥2H

recall
= 1

2⟨x− Z,H(x− Z)⟩

Prove that
F (x) = E[f(x, Z)] = 1

2∥x− x∗∥2H + const.

with
x∗ = argmin

x
E[∥x− Z∥2H ].

What is x∗? What is the (in the L2 sense) optimal step size for SGD in the case H = I? (4 pts)

Hint. The mean is the minimum variance estimator for the expectation.
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Proof. We have

2E[f(x, Z)] = E∥x− Z∥2H = ∥x∥2H − 2E⟨x, Z⟩H + E∥Z∥2H
= ∥x∥2H − 2xTHE[Z] + ∥E[Z]∥2H + (E∥Z∥2H − ∥E[Z]∥2H)

= ∥x− E[Z]∥2H + (E∥Z∥2H − ∥E[Z]∥2H)︸ ︷︷ ︸
=const.

.

So x∗ = E[Z] does the job. We know that Z̄n is the minimum variance estimator of E[Z], so it
would be perfect if Xn = Z̄n. And with αn = 1

n+1 this is in fact possible if we recall

∇fn(x) = ∇x
1
2∥x− Zn∥2H = H(x− Zn) = (x− Zn+1).

Because then we get

Xn+1 = Xn − αn∇fn+1(Xn) = Xn − 1
n+1(Xn − Zn+1).

By the previous exercise, this is therefore the optimal step size.

(iii) Prove for this quadratic loss, that SGD can be written as GD plus accumulated error

Xn − x∗ = (xn − x∗)−
n−1∑
k=0

αk

(
n−1∏

i=k+1

(1− αiH)

)
ϵk+1. (2 pts)

(iv) Consider the previous setting with constant step sizes αn = α. Additionally we are going to
assume f is a quadratic loss with H = I. Prove

Xn = (1− α)nx0 +

n∑
k=1

α(1− α)n−kZk.

Compare the estimate Xn to the mean Z̄n. (2 pts)
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