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For the exercise class on the 11.05.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 11.05.2023.

Exercise 1 (Conditional Expectation). (2 Points)

Let (2, A, P) be a probability space, F a subalgebra of A and X, Y random vectors. Prove for
F-measurable X € R? that we have

E[(X,Y) [ F] = (X, E[Y [ F])

Exercise 2 (Convexity and Expectation). (2 Points)

Let Z be a random variable. Let f(z) := f(z, Z) be arandom function (f(z,w) = f(x, Z(w)) if you
want) and its expectation

F(z) = E[f(x)]

Is f almost surely convex if and only if F' is convex? Prove or disprove both directions.

Exercise 3 (Convergence of SGD on Strongly Convex Functions). (2 Points)

In the lecture we proved for L-smooth functions F' and X, generated by Algorithm 6 (SGD)
IVF(X,)||? =0 as.

If we additionally have strong convexity of F', prove || X,, — x.|| — 0 almost surely.

Exercise 4 (Swap Integration with Differentiation). (9 Points)

(i) What formal requirements on f : V' x 2 — R with U C R and measure p on 2 are needed, for
the following argument using the fundamental theorem of calculus (FTC) to work?
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Formulate the corresponding theorem. (5 pts)



(i) We want to find an example for a function, where you can not swap integration with differenti-
ation. So for a function f(t,w) we need some t( such that
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For this consider f(t,w) = t3%¢~""“. Prove the inequality at o = 0 and © = [0, 00). Why is
this not a contradiction to (4 pts)

Hint. It is helpful to calculate the entire function
9
t— —f(t,w)dw.
| g
Exercise 5 (SGD on quadratic functions). (9 Points)
Throughout we use the notation for SGD
Xn+1 =X, - anvfn—l—l(Xn)
using Xo = z¢ € R? with sample errors €, = f,,(x) — F(x) for stochastic gradients
fulx) = f(x,Z,) = F(z) + €,
for sample data (Z,,),, with Z,, i  random vectors in RA. Additionally we write for GD
Tpt1 = T — o F(zy).
(i) Prove for any ¥ and the recursion
Yn+1 ‘= Yn — %_H(yn — Zn+1)

that y,, is a running mean
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(ii) Let Z € R? be a random vector and consider the sample loss
fe. 2) = gl = 2|} "2 §e ~ 2. H(x ~ 2))

Prove that
F(z) =E[f(z, Z)] = ||z — .||3 + const.
with
z, = argmin E[||z — Z||%].
x

What is 2,.? What is the (in the L? sense) optimal step size for SGD in the case H = I? (4 pts)

Hint. The mean is the minimum variance estimator for the expectation.



Proof. We have
2E(f(x, Z)] = Ellz — Z|} = |l2ll}; — 2E(z, Z)n +El|Z|%
= ||zl — 22" HE[Z] + ||E[Z][|% + (B Z]1% — |E[Z]]1%)
= |lo —E[Z]|} + (E| 2|5 ~ IIE[Z]|F) -

=const.

So z,. = E[Z] does the job. We know that Zy is the minimum variance estimator of E[Z], so it
would be perfect if X,, = Z,,. And with v, = -~ this is in fact possible if we recall

Vin(z) = vm%Hx - Zn”%{ =H(x — Zy) = (¥ — Zn+1).
Because then we get

Xn+1 = Xn - anvfn—i—l(Xn) = Xn - %H(Xn - Zn—i—l)-

By the previous exercise, this is therefore the optimal step size. O

(ii1) Prove for this quadratic loss, that SGD can be written as GD plus accumulated error

n—1
Xp — 2w = (zp — T) Zak< H 1—0@H)>ek+1. (2 pts)

i=k+1

(iv) Consider the previous setting with constant step sizes o, = «. Additionally we are going to
assume f is a quadratic loss with H = I. Prove

Xpn=01-a) :1:0+Z - ”ka

Compare the estimate X, to the mean Zn. (2 pts)



