Prof. Simon Weißmann, Felix Benning

Sheet 5

For the exercise class on the 11.05.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 11.05.2023.
Exercise 1 (Conditional Expectation).
(2 Points)
Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, \mathcal{F} a subalgebra of \mathcal{A} and X, Y random vectors. Prove for \mathcal{F}-measurable $X \in \mathbb{R}^{d}$ that we have

$$
\mathbb{E}[\langle X, Y\rangle \mid \mathcal{F}]=\langle X, \mathbb{E}[Y \mid \mathcal{F}]\rangle
$$

Exercise 2 (Convexity and Expectation).
(2 Points)
Let Z be a random variable. Let $f(x):=f(x, Z)$ be a random function $(f(x, \omega)=f(x, Z(\omega))$ if you want) and its expectation

$$
F(x)=\mathbb{E}[f(x)]
$$

Is f almost surely convex if and only if F is convex? Prove or disprove both directions.
Exercise 3 (Convergence of SGD on Strongly Convex Functions).
In the lecture we proved for L-smooth functions F and X_{n} generated by Algorithm 6 (SGD)

$$
\left\|\nabla F\left(X_{n}\right)\right\|^{2} \rightarrow 0 \quad \text { a.s. }
$$

If we additionally have strong convexity of F, prove $\left\|X_{n}-x_{*}\right\| \rightarrow 0$ almost surely.
Exercise 4 (Swap Integration with Differentiation).
(9 Points)
(i) What formal requirements on $f: V \times \Omega \rightarrow \mathbb{R}$ with $U \subseteq \mathbb{R}$ and measure μ on Ω are needed, for the following argument using the fundamental theorem of calculus (FTC) to work?

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{\Omega} f\left(t_{0}, \omega\right) d \mu(\omega) & \stackrel{\text { linear }}{=} \lim _{\epsilon \rightarrow 0} \int \frac{f\left(t_{0}+\epsilon, \omega\right)-f\left(t_{0}, \omega\right)}{\epsilon} d \mu(\omega) \\
& \stackrel{\text { FTC II }}{=} \lim _{\epsilon \rightarrow 0} \int \frac{1}{\epsilon} \int_{t_{0}}^{t_{0}+\epsilon} \frac{\partial}{\partial t} f(t, \omega) d t d \mu(\omega) \\
& \stackrel{\text { Fubini }}{=} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{t_{0}}^{t_{0}+\epsilon} \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega) d t \\
& \left.\stackrel{\text { def.+lin. }}{=} \frac{d}{d y} \int_{t_{0}}^{y} \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega) d t\right|_{y=t_{0}} \\
& \stackrel{\text { FTC I }}{=} \int \frac{\partial}{\partial t} f(t, \omega) d \mu(\omega) d t .
\end{aligned}
$$

Formulate the corresponding theorem.
(ii) We want to find an example for a function, where you can not swap integration with differentiation. So for a function $f(t, \omega)$ we need some t_{0} such that

$$
\frac{\partial}{\partial t} \int_{\Omega} f\left(t_{0}, \omega\right) d \omega \neq \int_{\Omega} \frac{\partial}{\partial t} f\left(t_{0}, \omega\right) d \omega .
$$

For this consider $f(t, \omega)=t^{3} e^{-t^{2} \omega}$. Prove the inequality at $t_{0}=0$ and $\Omega=[0, \infty)$. Why is this not a contradiction to (i)?
(4 pts)
Hint. It is helpful to calculate the entire function

$$
t \mapsto \int_{0}^{\infty} \frac{\partial}{\partial t} f(t, \omega) d \omega .
$$

Exercise 5 (SGD on quadratic functions).
Throughout we use the notation for SGD

$$
X_{n+1}=X_{n}-\alpha_{n} \nabla f_{n+1}\left(X_{n}\right)
$$

using $X_{0}=x_{0} \in \mathbb{R}^{d}$ with sample errors $\epsilon_{n}=f_{n}(x)-F(x)$ for stochastic gradients

$$
f_{n}(x):=f\left(x, Z_{n}\right)=F(x)+\epsilon_{n}
$$

for sample data $\left(Z_{n}\right)_{n}$ with $Z_{n} \stackrel{\text { iid }}{\sim} \mu$ random vectors in \mathbb{R}^{d}. Additionally we write for GD

$$
x_{n+1}=x_{n}-\alpha_{n} F\left(x_{n}\right) .
$$

(i) Prove for any y_{0} and the recursion

$$
y_{n+1}:=y_{n}-\frac{1}{n+1}\left(y_{n}-z_{n+1}\right)
$$

that y_{n} is a running mean

$$
\begin{equation*}
y_{n}=\frac{1}{n} \sum_{k=1}^{n} z_{k}=: \bar{z}_{n}, \quad \forall n \in \mathbb{N} \tag{1pt}
\end{equation*}
$$

(ii) Let $Z \in \mathbb{R}^{d}$ be a random vector and consider the sample loss

$$
f(x, Z):=\frac{1}{2}\|x-Z\|_{H}^{2} \stackrel{\text { recall }}{=} \frac{1}{2}\langle x-Z, H(x-Z)\rangle
$$

Prove that

$$
F(x)=\mathbb{E}[f(x, Z)]=\frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2}+\text { const. }
$$

with

$$
x_{*}=\underset{x}{\operatorname{argmin}} \mathbb{E}\left[\|x-Z\|_{H}^{2}\right] .
$$

What is x_{*} ? What is the (in the L^{2} sense) optimal step size for SGD in the case $H=\mathbb{I}$? (4 pts)
Hint. The mean is the minimum variance estimator for the expectation.

Proof. We have

$$
\begin{aligned}
2 \mathbb{E}[f(x, Z)]=\mathbb{E}\|x-Z\|_{H}^{2} & =\|x\|_{H}^{2}-2 \mathbb{E}\langle x, Z\rangle_{H}+\mathbb{E}\|Z\|_{H}^{2} \\
& =\|x\|_{H}^{2}-2 x^{T} H \mathbb{E}[Z]+\|\mathbb{E}[Z]\|_{H}^{2}+\left(\mathbb{E}\|Z\|_{H}^{2}-\|\mathbb{E}[Z]\|_{H}^{2}\right) \\
& =\|x-\mathbb{E}[Z]\|_{H}^{2}+\underbrace{\left(\mathbb{E}\|Z\|_{H}^{2}-\|\mathbb{E}[Z]\|_{H}^{2}\right)}_{=\text {cons. }} .
\end{aligned}
$$

So $x_{*}=\mathbb{E}[Z]$ does the job. We know that \bar{Z}_{n} is the minimum variance estimator of $\mathbb{E}[Z]$, so it would be perfect if $X_{n}=\bar{Z}_{n}$. And with $\alpha_{n}=\frac{1}{n+1}$ this is in fact possible if we recall

$$
\nabla f_{n}(x)=\nabla_{x} \frac{1}{2}\left\|x-Z_{n}\right\|_{H}^{2}=H\left(x-Z_{n}\right)=\left(x-Z_{n+1}\right) .
$$

Because then we get

$$
X_{n+1}=X_{n}-\alpha_{n} \nabla f_{n+1}\left(X_{n}\right)=X_{n}-\frac{1}{n+1}\left(X_{n}-Z_{n+1}\right) .
$$

By the previous exercise, this is therefore the optimal step size.
(iii) Prove for this quadratic loss, that SGD can be written as GD plus accumulated error

$$
\begin{equation*}
X_{n}-x_{*}=\left(x_{n}-x_{*}\right)-\sum_{k=0}^{n-1} \alpha_{k}\left(\prod_{i=k+1}^{n-1}\left(1-\alpha_{i} H\right)\right) \epsilon_{k+1} . \tag{2pts}
\end{equation*}
$$

(iv) Consider the previous setting with constant step sizes $\alpha_{n}=\alpha$. Additionally we are going to assume f is a quadratic loss with $H=\mathbb{I}$. Prove

$$
\begin{equation*}
X_{n}=(1-\alpha)^{n} x_{0}+\sum_{k=1}^{n} \alpha(1-\alpha)^{n-k} Z_{k} \tag{2pts}
\end{equation*}
$$

Compare the estimate X_{n} to the mean \bar{Z}_{n}.

