
Optimization in Machine Learning Universität Mannheim
FSS 2023 Prof. Simon Weißmann, Felix Benning

Solution Sheet 4

For the exercise class on the 27.04.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 27.04.2023.

While there are 38 in total, you may consider all points above the standard 24 to be bonus points.

Exercise 1 (Lower Bounds). (13 Points)
In this exercise, we will bound the convergence rates of algorithms which pick their iterates xk+1 from

span[∇f(x0), . . . ,∇f(xk)] + x0.

We consider the function

fd(x) =
1

2
(x(1) − 1)2 +

1

2

d−1∑
i=1

(x(i) − x(i+1))2

(i) To understand our function fd better, we want to view it as a potential on a graph. For this
consider the undirected graph G = (V,E) with vertices

V = {1, . . . , d}

and edges
E = {(i, i+ 1) : 1 ≤ i ≤ d− 1}.

Draw a picture of this graph. (1 pt)

Solution. The graph is simply a chain

(ii) We now interpret x(i) as a quantity (e.g. of heat) at vertex i of our graph G. Our potential
fd decreases, if the quantities at connected vertices i and i + 1 are of similar size. I.e. if
(x(i) − x(i+1))2 is small. Additionally there is a pull for x(1) to be equal to 1. Use this intuition
to find the minimizer x∗ of fd. (1 pt)

Solution. The minimizer is x∗ = (1, . . . , 1)T ∈ Rd since fd(x∗) = 0 and fd(x) ≥ 0.

(iii) The matrix AG ∈ Rd×d with

AG
i,j =


degree of vertex i i = j

−1 (i, j) ∈ E or (j, i) ∈ E

0 else

is called the “Graph-Laplacian” of G. The degree of vertex i are the number of connecting
edges. Calculate AG for G and prove that

∇fd(x) = AGx+ (x(1) − 1)e1 = (AG + e1e
T
1 )x− e1. (1 pt)
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Solution. The Graph-Laplacian of G is given by

AG =



1 −1 0 · · · · · · 0

−1 2 −1
. . .

...

0 −1 2
. . . . . .

...
...

. . . . . . . . . −1 0
...

. . . −1 2 −1
0 · · · · · · 0 −1 1


Let i ̸= 1, d then

∂fd
∂xi

= [x(i) − x(i+1)]− [x(i−1) − x(i)] = 2x(i) − x(i−1) − x(i+1) = (AGx)i

similarly looking at the cases i = 1, d individually immediately reveals

∇fd(x) = AGx+ (x(1) − 1)e1.

(iv) Prove that the Hessian H = ∇2fd(x) is constant and positive definite to show that fd is convex.
Prove that the operator norm of H is smaller than 4. Argue that

gd(x) :=
L
4 fd(x)

is therefore L-smooth. (2 pts)

Solution. Taking the derivative of the gradient we calculated previously yields

H = ∇2fd(x) = AG + e1e
T
1 .

To show positive definiteness, let y be arbitrary

yTHy = (eT1 y)
2 + yTAGy = (y(1))2 +

d−1∑
i=1

(y(i) − y(i+1))2 ≥ 0.

To find the largest eigenvalue of H we want to calculate the operator norm. For this we use
(a− b)2 ≤ 2(a2 + b2) to get

⟨y,Hy⟩ ≤ (y(1))2 + 2
d−1∑
i=1

(y(i))2 + (y(i+1))2 ≤ 4
d∑

i=1

(y(i))2 = 4∥y∥2.

Thus we get
∥H∥ = sup

y:∥y∥=1
⟨y,Hy⟩ ≤ 4.

Since the operator norm coincides with the largest absolute eigenvalue for symmetric matrices,
this proves our claim. Finally L-smoothness of gd follows from

∥∇gd(x)−∇gd(y)∥ = L
4 ∥∇fd(x)−∇fd(y)∥ = L

4 ∥H(x− y)∥ ≤ L
4 ∥H∥︸ ︷︷ ︸
≤L

∥x− y∥.
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(v) Assume x0 = 0 and and that (xn)n∈N is chosen with the restriction

xn+1 ∈ Kn := span[∇gd(x0), . . . ,∇gd(xn)].

To make notation easier we are going to identify Rd with an isomorph subset of sequences

Rd := {x ∈ ℓ2 : x(i) = 0 ∀i > n}

then Rn is a subset of Rd for n ≤ d. Prove inductively that

Kn ⊆ Rn+1 ⊆ Rd (1 pt)

Solution. We have the induction start n = 0 by

gd(x0) = −L
4 e1 ∈ R1.

Now assume
Kn−1 ⊆ Rn,

then by our selection process xn ∈ Rn. But then

4
L∇gd(xn) = AGxn︸ ︷︷ ︸

∈Rn+1

+(xn − 1)e1︸ ︷︷ ︸
∈R1

∈ Rn+1.

We therefore have Kn = span[Kn−1,∇gd(xn)] ⊆ Rn+1.

Notice how the low connectedness of the graph G limits the spread of our quantity xn. A higher
connectedness would allow for information to travel much quicker.

(vi) We now want to bound the convergence speed of xn to x∗. For this we select d = 2n+ 1.

Note: We may choose a larger dimension d by defining f2n+1 on the subset R2n+1 in Rd. The
important requirement is therefore 2n + 1 ≤ d. But without loss of generality we assume
equality.

Use the knowledge we have collected so far to argue

∥x∗ − xn∥2 ≥ d− n ≥ 1
2∥x∗ − x0∥2. (1 pt)

Solution. Since xn ∈ Rn we know that

∥x∗ − xn∥2 =
d∑

i=1

(x
(i)
∗ − x(i)n )2

≥
d∑

i=n+1

(x
(i)
∗ )2

= d− n
d=2n+1

= n+ 1 = n+1
2n+1d ≥ 1

2d =
1

2

d∑
i=1

12 = 1
2∥x∗ − x0∥2.
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(vii) To prevent the convergence of the loss gd(xn) to gd(x∗) we need a more sophisticated argument.
For this consider

g̃n(x) :=
L
4 [fn(x) +

1
2(x

(n) − 0)2].

Argue that on Rn ⊂ Rd the functions g̃n and gd are identical. Use this observation to prove

gd(xn)− inf
x
gd(x) ≥ inf

x
g̃n(x). (1 pt)

Solution. Let x ∈ Rn. Then using x(n+1) = 0 we have

g̃n(x) =
L

8

[
(x(1) − 1)2 +

n∑
i=1

(x(i) − x(i+1))
]
= gd(x)

using x(i) = 0 for all i > n for the second equality sign. Since xn ∈ Rn we therefore can
replace gd with gn at will to get

gd(xn)− inf
x
gd(x)︸ ︷︷ ︸
=0

= g̃n(xn) ≥ inf
x
g̃(x).

(viii) Our goal is now to calculate infx g̃n(x). Prove convexity of g̃n and prove that

x̂(i)n =

{
1− i

n+1 i ≤ n+ 1

0 i ≥ n+ 1

is its minimum. Then plug our solution into g̃n (or gd, since x̂n is in the subset Rn after all), to
obtain the lower bound

gd(xn)− inf
x
gd(x) ≥

L∥x0 − x∗∥2

8(n+ 1)d
≥ L∥x0 − x∗∥2

16(n+ 1)2
. (3 pts)

Solution. We have

∇g̃n(x) =
L

4
[AGnx+ (x(1) − 1)e1 + (x(n))en] =

L

4
(AGn + e1e

T
1 + ene

T
n )x− e1

where AGn is the Graph-Laplacian for fn. Then the Hessian is obviously positive definite

∇2g̃n(x) =
L

4
(AGn + e1e

T
1 + ene

T
n )

as we could apply the same arguments as for fn. So g̃n is convex. We now plug x̂n into ∇g̃n to
verify the first order condition, proving it is a minimum

4

L

∂g̃n
∂xi

(x̂n) = (AGn x̂n)i + (x̂(1)n − 1)︸ ︷︷ ︸
=− 1

n+1

δi1 + (x̂(n)n )︸ ︷︷ ︸
=

1
n+1

δin

= [x̂(i)n − x̂(i+1)
n ]︸ ︷︷ ︸

− 1
n+1

1i ̸=n − [x̂(i−1)
n − x̂(i)n ]︸ ︷︷ ︸

− 1
n+1

1i ̸=1 − 1
n+1δi1 +

1
n+1δin

= 0.
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We now know that

inf
x
g̃n(x) = g̃n(x̂n) =

L

8

[(
− 1

n+1

)2
+
(
1− n

n+1

)2
+

n−1∑
i=1

(
i+1
n+1 − i

n+1

)2]
=

L

8

n∑
i=0

(
1

n+1

)2
=

L

8(n+ 1)

d=∥x0−x∗∥2
=

L∥x0 − x∗∥2

8(n+ 1)d

≥ L∥x0 − x∗∥2

16(n+ 1)2

using d = 2n+ 1 again.

(ix) Argue that we only needed

xn = x0 +
n−1∑
k=0

Ak∇f(xk)

with upper triangular matrices Ak to make these bounds work. Since adaptive methods (like
Adam) use diagonal matrices Ak, they are therefore covered by these bounds. (1 pt)

Solution. We only needed Kn ⊆ Rn+1 which we proved by induction using only this fact about
Kn−1. Since upper triangular matrices do not change this fact, we may as well allow them.

(x) Bask in our glory! For we have proven that ...? Summarize our results into a theorem. (1 pt)

Solution.

Theorem (Nesterov). Assume there exists upper triangular matrices Ak,n such that the se-
quence (xn)n∈N in Rd is selected by the rule

xn = x0 +
n−1∑
k=0

Ak,n∇f(xk)

for a convex, L-smooth f to minimize. Then up to n ≤ d−1
2 there exists a convex, L-smooth

function f such that

∥xn − x∗∥ ≥ 1√
2
∥x0 − x∗∥

f(xn)− inf
x
f(x) ≥ L∥x0 − x∗∥2

16(n+ 1)2

for f(x∗) = infx f(x).

(xi) (Bonus) If you wish, you may want to try and repeat those steps for

Gd(x) =
L− µ

L
gd(x) +

µ

2
∥x∥2

to prove an equivalent result for µ-strongly convex functions. Unfortunately finding x∗ is much
more difficult in this case. Letting d → ∞ makes this problem tractable again with solution

x
(i)
∗ =

(√κ− 1√
κ+ 1

)i
.
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Exercise 2 (Conjugate Gradient Descent). (12 Points)
Consider a quadratic function

f(x) = 1
2(x− x∗)

TH(x− x∗)

for some symmetric and positive definite H and consider the hilbert space H = (Rd, ⟨·, ·⟩H) with

⟨x, y⟩H = ⟨x,Hy⟩

(i) Prove that ⟨·, ·⟩H is a well-defined scalar product. Convince yourself that

f(x) = 1
2∥x− x∗∥2H . (1 pt)

Solution. Bilinearity is trivial, the positive-definiteness follows from this property of H . We
have

f(x) = 1
2⟨x− x∗, H(x− x∗)⟩ = 1

2⟨x− x∗, (x− x∗)⟩H = 1
2∥x− x∗∥2H .

(ii) Determine the derivative ∇Hf(x) of f in H (1 pt)

Solution. We need

0
!
= lim

v→0

|f(x+ v)− f(x)− ⟨∇Hf(x), v⟩H |
∥v∥H

= lim
v→0

|f(x+ v)− f(x)− ⟨H∇Hf(x), v⟩|
∥v∥

∥v∥
∥v∥H︸ ︷︷ ︸
≥c

.

We can bound the fraction of norms by a constant c > 0 from below due to equivalence of all
norms in Rd. This lower bound on the second fraction forces the first fraction to converge to
zero. But this implies that

∇f(x) = H∇Hf(x)

by the definition (and uniqueness) of ∇f(x). Thus the gradient we are looking for is

∇Hf(x) = H−1∇f(x).

(iii) Since gradient descent in the space H is therefore computationally the Newton method, we
want to find a different method of optimization. Consider an arbitrary set of conjugate (H-
orthogonal) directions (v1, . . . vd), i.e. ⟨vi, vj⟩H = δij , and for some starting point x0 ∈ Rd the
following descent algorithm:

xk+1 = xk − αkvk+1 with αk := argmin
α

f(xk − αvk+1). (CD)

Optimizing over α in this manner is known as “line-search”. Using y(i) := ⟨y, vi⟩ prove that

(xk − x∗) =

d∑
i=k+1

(x0 − x∗)
(i)vi = argmin

x
{f(x) : x ∈ x0 + span[v1, . . . , vk]} − x∗.

Deduce that conjugate descent (CD) converges in d steps. (2 pts)
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Solution. We proceed by induction. The induction start with k = 0 is obvious. Let us now
consider xk+1. By its definition we have

2f(xk+1) = min
α

2f(xk − αvk+1)

= min
α

∥xk − αvk+1∥H

= min
α

∥∥∥ d∑
i=1

(xk − x∗)
(i)vi − αvk+1

∥∥∥
H

= min
α

[(xk − x∗)
(k+1) − α]2∥vk+1∥2H +

d∑
i=k+2

[(xk − x∗)
(i)]2∥vi∥2H

=

d∑
i=k+2

[(xk − x∗)
(i)]2.

the minimizer is therefore αk = (xk − x∗)
(k+1). This removes the vk+1 component leaving us

with the components vk+2 and up. Note that (xk − x∗)
(i) = (x0 − x∗)

(i) for all i ≥ k + 1 by
induction. Similarly we can see that this is a minimum in the span of v1, . . . , vk+1, as we have
removed those components completely and

f(x) = ∥x− x∗∥2H =
d∑

i=1

[(x− x∗)
(i)]2.

Since we can not touch the other components due to H-orthogonality, this is the best we can
do.

(iv) If we had vi = ∇f(xi−1), then this algorithm would be optimal in the set of algorithms we
considered in the previous exercise. Unfortunately the gradients ∇f(xi−1) are generally not
conjugate. So while we may select an arbitrary set of conjugate vi, we cannot select the gradi-
ents directly.

Instead we are going to do the next best thing and inductively select vk+1 such that

Kk := span[∇f(x0), . . .∇f(xk)] = span[v1, . . . , vk+1]

using the Gram-Schmidt procedure to make vk+1 conjugate to v1, . . . , vk. Since Gram-Schmidt
is still computationally too expensive for our tastes, you please inductively prove

Kk = span[H1(x0 − x∗), . . . ,H
k+1(x0 − x∗)].

assuming Kk is (k + 1)-dimensional. I.e. Kk is a “H-Krylov subspace”. (2 pts)

Solution. The induction start k = 0 follows directly from

∇f(x0) = H(x0 − x∗)

and the definition of K0. Assume we have the claim for k − 1, then

∇f(xk) = H(xk − x∗) = H(xk−1 − αk−1vk − x∗) = H(xk−1 − x∗)︸ ︷︷ ︸
=∇f(xk−1)∈Kk−1

−αk−1H vk︸︷︷︸
∈Kk−1

.
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As Kk−1 = span[H1(x0 − x∗), . . . ,H
k(x0 − x∗)] by the induction hypothesis, we therefore

have
∇f(xk) ∈ span[H1(x0 − x∗), . . . ,H

k+1(x0 − x∗)].

Since ∇f(x0), . . . ,∇f(xk−1) ∈ Kk−1 they are by the induction hypothesis also in the span

Kk = span[∇f(x0), . . . ,∇f(xk)] ⊆ span[H1(x0 − x∗), . . . ,H
k+1(x0 − x∗)].

Since the space on the left is k + 1 dimensional, we have equality.

(v) Argue that ∇f(xk+1) is orthogonal to every vector in Kk and inductively deduce either

∇f(xk+1) = 0

which implies xk+1 = x∗, or Kk+1 has full rank. Deduce from the H-Krylov-subspace prop-
erty, that ∇f(xk+1) is already H-orthogonal to Kk−1. (2 pts)

Solution. By the selection process of xk+1, we have

xk+1 = argmin
x

{f(x) : x ∈ Kk + x0}.

assume ∇f(xk+1) were not orthogonal to Kk. Then there would exist v ∈ Kk such that

⟨∇f(xk+1), v⟩ > 0

By the Taylor approximation we therefore have

f(xk+1 − δv) = f(xk+1)− δ ⟨∇f(xk+1), v⟩︸ ︷︷ ︸
>0

+O(δ2)

so there exists a small δ > 0 such that f(xk+1 − δv) < f(xk+1). But this is a contradiction
since xk+1 was optimal.

∇f(xk+1) is therefore orthogonal to Kk. So if it is not zero, Kk+1 has (as the span of both)
full rank. ∇f(xk+1) being orthogonal to Kk also implies it is orthogonal to HKk−1, since that
is a subspace of Kk by the Krylov property. But this implies ∇f(xk+1) is H-orthogonal to
Kk−1.

(vi) Collect the ideas we have gathered to prove the recursively defined

vk+1 = ∇f(xk)−
⟨∇f(xk), vk⟩H

∥vk∥2H
vk

are H-conjugate and have the same span as the gradients up to ∇f(xk). (1 pt)

Solution. These vk are the same vk we would obtain using Gram-Schmidt on the gradients. In
fact this is Gram-Schmidt together with the fact that ∇f(xk) is already H-orthogonal to the
v1, . . . , vk−1 ∈ Kk−2. So only the last summand remains.
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(vii) To make our procedure truly computable, we want to show

⟨∇f(xk), vk⟩H
∥vk∥2H

= − ∥∇f(xk)∥2

∥∇f(xk−1)∥2
. (2 pts)

Solution. We have

∇f(xk) = H(

xk︷ ︸︸ ︷
xk−1 − αk−1vk −x∗) = ∇f(xk−1)− αk−1Hvk.

This implies vk = 1
αk−1

H−1[∇f(xk−1)−∇f(xk)] and therefore

⟨∇f(xk), vk⟩H = 1
αk−1

⟨∇f(xk), [∇f(xk−1)−∇f(xk)]⟩ = −∥∇f(xk)∥2

αk−1
,

where we have used ⟨∇f(xk),∇f(xk−1)⟩ = 0, which follows from ∇f(xk−1) ∈ Kk−1 and
∇f(xk) ⊥ Kk−1.

Now we need to find αk−1. But the first order condition

0
!
=

d

dα
f(xk−1 − αvk)

= −⟨∇f(xk−1 − αvk), vk⟩
= −⟨H(xk−1 − x∗ − αvk), vk⟩
= −⟨∇f(xk−1), vk⟩+ α∥vk∥2H .

implies

αk−1 =
⟨∇f(xk−1), vk⟩

∥vk∥2H
.

Before we put things together, note that by definition of vk

⟨∇f(xk−1), vk⟩ = ⟨∇f(xk−1),∇f(xk−1)− cvk−1⟩ = ∥∇f(xk−1)∥2,

since ∇f(xk−1) is orthogonal to vk−1 ∈ Kk−2. From this we get

αk−1 =
∥∇f(xk−1)∥2

∥vk∥2H
,

So we finally get

⟨∇f(xk), vk⟩H
∥vk∥2H

= −∥∇f(xk)∥2

∥vk∥2H
∥vk∥2H

∥∇f(xk−1)∥2
= − ∥∇f(xk)∥2

∥∇f(xk−1)∥2
.

(viii) Summarize everything into a pseudo-algorithm for conjugate gradient descent (CGD) and com-
pare it to heavy-ball momentum with

βk =
αk∥∇f(xk)∥2

αk−1∥∇f(xk−1)∥2

using identical αk as CGD. (1 pt)
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Solution. We set v1 = ∇f(x0) or later

vk+1 = ∇f(xk) +
∥∇f(xk)∥2

∥∇f(xk−1)∥2
vk

determine the step-size
αk = argmin

α
f(xk − αvk+1)

and finally make our step
xk+1 = xk − αkvk+1.

Using the fact vk =
xk−1−xk

αk−1
and inserting vk+1 into the last equation, we notice

xk+1 = xk − αk

[
∇f(xk) +

∥∇f(xk)∥2

∥∇f(xk−1)∥2
xk−1 − xk

αk−1

]
= xk − αk∇f(xk) +

αk

αk−1

∥∇f(xk)∥2

∥∇f(xk−1)∥2︸ ︷︷ ︸
=βk

(xk − xk−1)

that CGD is identical to HBM with certain parameters αk, βk.

Exercise 3 (Momentum). (13 Points)
In this exercise, we take a closer look at heavy-ball momentum

xk+1 = xk + βk(xk − xk−1) + αk∇f(xk)

(i) Find a continuous function f : R → R such that

f ′(x) =


25x x < 1

x+ 24 1 < x < 2

25x− 24 2 < x.

Prove that f is µ-strongly convex with µ = 1, L-smooth with L = 25 and has a minimum in
zero. (2 pts)

Solution. We define

f(x) =


25
2 x

2 x ≤ 1
1
2x

2 + 24x− 12 1 < x < 2
25
2 x

2 − 24x+ 36 2 ≤ x,

note that it is continuous in 1 and 2 and therefore everywhere, and that it has the correct deriva-
tive. Further note that

f ′′(x) =

{
1 1 < x < 2

25 else

is the derivative of f ′(x) in the following sense:

f ′(x) =

∫ x

0
f ′′(t)dt,
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which follows from differentiability of f ′ on its segments with the fundamental theorem of
calculus and continuity between segments. Thus we have

f(y) = f(x) +

∫ y

x
f ′(t)dt = f(x) + f ′(x)(y − x) +

∫ y

x
f ′(t)− f ′(x)dt

= f(x) + f ′(x)(y − x) +

∫ y

x

∫ t

x
f ′′(s)dsdt.

For the Bregman divergence this implies

1
2∥y − x∥2 ≤ D

(B)
f (y, x) =

∫ y

x

∫ t

x
f ′′(s)dsdt ≤ 25

2 ∥y − x∥2,

thus f is µ = 1-strongly convex and L = 25-smooth.

(ii) Recall, we required for convergence of HBM

1 > β ≥ max{(1−√
αµ)2, (1−

√
αL)2}.

Calculate the optimal α and β to minimize the rate
√
β. (1 pt)

Solution. To minimize
√
β, we first set

β = max{(1−√
αµ)2, (1−

√
αL)2}

and then proceed to minimize this over α. Which results in

α∗ = argmin
α

max{(1−√
αµ)2, (1−

√
αL)2}

= argmin
α

max{|1−√
αµ|, |1−

√
αL|}

= argmin
α

max{(1−√
αµ),−(1−√

αµ), (1−
√
αL),−(1−

√
αL)}

= argmin
α

max{(1−√
αµ),−(1−

√
αL)}

which is monotonously falling for

1−√
αµ >

√
αL− 1

and monotonously increasing otherwise. Therefore its minimum is at equality. Thus

1−
√
α∗µ =

√
α∗L− 1 ⇐⇒ 2 =

√
α∗(

√
µ+

√
L) ⇐⇒ α∗ =

4

(
√
µ+

√
L)2

.

This results in
β∗ =

(
1− 2

1 +
√
L/µ

)2
.

(iii) Prove, using heavy ball momentum on f with the optimal parameters results in the recur-
sion (1 pt)

xk+1 =
13
9 xk −

4
9xk−1 − 1

9∇f(xk).
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Solution. Using our previous results about optimal rates we have for f

α∗ =
4

(1 + 5)2
=

1

9
β∗ = (1− 2

1+5)
2 =

4

9
.

Thus
xk+1 = xk +

4
9(xk − xk−1)︸ ︷︷ ︸

=
13
9 xk−

4
9xk−1

+1
9∇f(xk).

(iv) We want to find a cycle of points p → q → r → p, such that for x0 = p we have

x3k = p x3k+1 = q x3k+2 = r ∀k ∈ N0.

Assume p < 1, q < 1 and r > 2 and use the heavy-ball recursion to create linear equations for
p, q, r. Solve this linear equation. What does this mean for convergence? (3 pts)

Solution. We have p
q
r

 =

 0 −4
9

13
9

13
9 0 −4

9
−4

9
13
9 0

p
q
r

− 1

9

∇f(r)
∇f(p)
∇f(q)


Multiplying both sides by 9, using ∇f(r) = 25r − 24 and ∇f(p) = 25p and similarly q and
reordering, we get  9 4 12

12 9 4
4 12 9

p
q
r

 =

24
0
0


solving this system of equations results in

p = 792
1225 ≈ 0.65, q = −2208

1225 ≈ −1.80, r = 2592
1225 ≈ 2.12.

As we have managed to find a cycle of points, HBM does not converge to the minimum at zero
in this case. Note: it is also possible to show that this cycle is attractive if you start in an epsilon
environment away from these points.

(v) Implement Heavy-Ball momentum, Nesterov’s momentum and CGD https://classroom.
github.com/a/f3PnRxTs. (6 pts)
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