Solution Sheet 4

For the exercise class on the 27.04.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 27.04.2023.
While there are 38 in total, you may consider all points above the standard 24 to be bonus points.
Exercise 1 (Lower Bounds).
(13 Points)
In this exercise, we will bound the convergence rates of algorithms which pick their iterates x_{k+1} from

$$
\operatorname{span}\left[\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k}\right)\right]+x_{0}
$$

We consider the function

$$
f_{d}(x)=\frac{1}{2}\left(x^{(1)}-1\right)^{2}+\frac{1}{2} \sum_{i=1}^{d-1}\left(x^{(i)}-x^{(i+1)}\right)^{2}
$$

(i) To understand our function f_{d} better, we want to view it as a potential on a graph. For this consider the undirected graph $G=(V, E)$ with vertices

$$
V=\{1, \ldots, d\}
$$

and edges

$$
E=\{(i, i+1): 1 \leq i \leq d-1\} .
$$

Draw a picture of this graph.
Solution. The graph is simply a chain

(ii) We now interpret $x^{(i)}$ as a quantity (e.g. of heat) at vertex i of our graph G. Our potential f_{d} decreases, if the quantities at connected vertices i and $i+1$ are of similar size. I.e. if $\left(x^{(i)}-x^{(i+1)}\right)^{2}$ is small. Additionally there is a pull for $x^{(1)}$ to be equal to 1 . Use this intuition to find the minimizer x_{*} of f_{d}.

Solution. The minimizer is $x_{*}=(1, \ldots, 1)^{T} \in \mathbb{R}^{d}$ since $f_{d}\left(x_{*}\right)=0$ and $f_{d}(x) \geq 0$.
(iii) The matrix $A^{G} \in \mathbb{R}^{d \times d}$ with

$$
A_{i, j}^{G}= \begin{cases}\text { degree of vertex } i & i=j \\ -1 & (i, j) \in E \text { or }(j, i) \in E \\ 0 & \text { else }\end{cases}
$$

is called the "Graph-Laplacian" of G. The degree of vertex i are the number of connecting edges. Calculate A^{G} for G and prove that

$$
\begin{equation*}
\nabla f_{d}(x)=A^{G} x+\left(x^{(1)}-1\right) e_{1}=\left(A^{G}+e_{1} e_{1}^{T}\right) x-e_{1} \tag{1pt}
\end{equation*}
$$

Solution. The Graph-Laplacian of G is given by

$$
A^{G}=\left(\begin{array}{cccccc}
1 & -1 & 0 & \cdots & \cdots & 0 \\
-1 & 2 & -1 & \ddots & & \vdots \\
0 & -1 & 2 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & -1 & 0 \\
\vdots & & \ddots & -1 & 2 & -1 \\
0 & \cdots & \cdots & 0 & -1 & 1
\end{array}\right)
$$

Let $i \neq 1, d$ then

$$
\frac{\partial f_{d}}{\partial x_{i}}=\left[x^{(i)}-x^{(i+1)}\right]-\left[x^{(i-1)}-x^{(i)}\right]=2 x^{(i)}-x^{(i-1)}-x^{(i+1)}=\left(A^{G} x\right)_{i}
$$

similarly looking at the cases $i=1, d$ individually immediately reveals

$$
\nabla f_{d}(x)=A^{G} x+\left(x^{(1)}-1\right) e_{1}
$$

(iv) Prove that the Hessian $H=\nabla^{2} f_{d}(x)$ is constant and positive definite to show that f_{d} is convex. Prove that the operator norm of H is smaller than 4. Argue that

$$
\begin{equation*}
g_{d}(x):=\frac{L}{4} f_{d}(x) \tag{2pts}
\end{equation*}
$$

is therefore L-smooth.

Solution. Taking the derivative of the gradient we calculated previously yields

$$
H=\nabla^{2} f_{d}(x)=A^{G}+e_{1} e_{1}^{T}
$$

To show positive definiteness, let y be arbitrary

$$
y^{T} H y=\left(e_{1}^{T} y\right)^{2}+y^{T} A^{G} y=\left(y^{(1)}\right)^{2}+\sum_{i=1}^{d-1}\left(y^{(i)}-y^{(i+1)}\right)^{2} \geq 0
$$

To find the largest eigenvalue of H we want to calculate the operator norm. For this we use $(a-b)^{2} \leq 2\left(a^{2}+b^{2}\right)$ to get

$$
\langle y, H y\rangle \leq\left(y^{(1)}\right)^{2}+2 \sum_{i=1}^{d-1}\left(y^{(i)}\right)^{2}+\left(y^{(i+1)}\right)^{2} \leq 4 \sum_{i=1}^{d}\left(y^{(i)}\right)^{2}=4\|y\|^{2}
$$

Thus we get

$$
\|H\|=\sup _{y:\|y\|=1}\langle y, H y\rangle \leq 4
$$

Since the operator norm coincides with the largest absolute eigenvalue for symmetric matrices, this proves our claim. Finally L-smoothness of g_{d} follows from

$$
\left\|\nabla g_{d}(x)-\nabla g_{d}(y)\right\|=\frac{L}{4}\left\|\nabla f_{d}(x)-\nabla f_{d}(y)\right\|=\frac{L}{4}\|H(x-y)\| \leq \underbrace{\frac{L}{4}\|H\|}_{\leq L}\|x-y\| .
$$

(v) Assume $x_{0}=0$ and and that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is chosen with the restriction

$$
x_{n+1} \in \mathcal{K}_{n}:=\operatorname{span}\left[\nabla g_{d}\left(x_{0}\right), \ldots, \nabla g_{d}\left(x_{n}\right)\right] .
$$

To make notation easier we are going to identify \mathbb{R}^{d} with an isomorph subset of sequences

$$
\mathbb{R}^{d}:=\left\{x \in \ell^{2}: x^{(i)}=0 \quad \forall i>n\right\}
$$

then \mathbb{R}^{n} is a subset of \mathbb{R}^{d} for $n \leq d$. Prove inductively that

$$
\begin{equation*}
\mathcal{K}_{n} \subseteq \mathbb{R}^{n+1} \subseteq \mathbb{R}^{d} \tag{1pt}
\end{equation*}
$$

Solution. We have the induction start $n=0$ by

$$
g_{d}\left(x_{0}\right)=-\frac{L}{4} e_{1} \in \mathbb{R}^{1}
$$

Now assume

$$
\mathcal{K}_{n-1} \subseteq \mathbb{R}^{n},
$$

then by our selection process $x_{n} \in \mathbb{R}^{n}$. But then

$$
\frac{4}{L} \nabla g_{d}\left(x_{n}\right)=\underbrace{A^{G} x_{n}}_{\in \mathbb{R}^{n+1}}+\underbrace{\left(x_{n}-1\right) e_{1}}_{\in \mathbb{R}^{1}} \in \mathbb{R}^{n+1} .
$$

We therefore have $\mathcal{K}_{n}=\operatorname{span}\left[\mathcal{K}_{n-1}, \nabla g_{d}\left(x_{n}\right)\right] \subseteq \mathbb{R}^{n+1}$.
Notice how the low connectedness of the graph G limits the spread of our quantity x_{n}. A higher connectedness would allow for information to travel much quicker.
(vi) We now want to bound the convergence speed of x_{n} to x_{*}. For this we select $d=2 n+1$.

Note: We may choose a larger dimension d by defining $f_{2 n+1}$ on the subset $\mathbb{R}^{2 n+1}$ in \mathbb{R}^{d}. The important requirement is therefore $2 n+1 \leq d$. But without loss of generality we assume equality.
Use the knowledge we have collected so far to argue

$$
\begin{equation*}
\left\|x_{*}-x_{n}\right\|^{2} \geq d-n \geq \frac{1}{2}\left\|x_{*}-x_{0}\right\|^{2} . \tag{1pt}
\end{equation*}
$$

Solution. Since $x_{n} \in \mathbb{R}^{n}$ we know that

$$
\begin{aligned}
\left\|x_{*}-x_{n}\right\|^{2} & =\sum_{i=1}^{d}\left(x_{*}^{(i)}-x_{n}^{(i)}\right)^{2} \\
& \geq \sum_{i=n+1}^{d}\left(x_{*}^{(i)}\right)^{2} \\
& =d-n \stackrel{d=2 n+1}{=} n+1=\frac{n+1}{2 n+1} d \geq \frac{1}{2} d=\frac{1}{2} \sum_{i=1}^{d} 1^{2}=\frac{1}{2}\left\|x_{*}-x_{0}\right\|^{2} .
\end{aligned}
$$

(vii) To prevent the convergence of the loss $g_{d}\left(x_{n}\right)$ to $g_{d}\left(x_{*}\right)$ we need a more sophisticated argument. For this consider

$$
\tilde{g}_{n}(x):=\frac{L}{4}\left[f_{n}(x)+\frac{1}{2}\left(x^{(n)}-0\right)^{2}\right] .
$$

Argue that on $\mathbb{R}^{n} \subset \mathbb{R}^{d}$ the functions \tilde{g}_{n} and g_{d} are identical. Use this observation to prove

$$
\begin{equation*}
g_{d}\left(x_{n}\right)-\inf _{x} g_{d}(x) \geq \inf _{x} \tilde{g}_{n}(x) . \tag{1pt}
\end{equation*}
$$

Solution. Let $x \in \mathbb{R}^{n}$. Then using $x^{(n+1)}=0$ we have

$$
\tilde{g}_{n}(x)=\frac{L}{8}\left[\left(x^{(1)}-1\right)^{2}+\sum_{i=1}^{n}\left(x^{(i)}-x^{(i+1)}\right)\right]=g_{d}(x)
$$

using $x^{(i)}=0$ for all $i>n$ for the second equality sign. Since $x_{n} \in \mathbb{R}^{n}$ we therefore can replace g_{d} with g_{n} at will to get

$$
g_{d}\left(x_{n}\right)-\underbrace{\inf _{x} g_{d}(x)}_{=0}=\tilde{g}_{n}\left(x_{n}\right) \geq \inf _{x} \tilde{g}(x) .
$$

(viii) Our goal is now to calculate $\inf _{x} \tilde{g}_{n}(x)$. Prove convexity of \tilde{g}_{n} and prove that

$$
\hat{x}_{n}^{(i)}= \begin{cases}1-\frac{i}{n+1} & i \leq n+1 \\ 0 & i \geq n+1\end{cases}
$$

is its minimum. Then plug our solution into \tilde{g}_{n} (or g_{d}, since \hat{x}_{n} is in the subset \mathbb{R}^{n} after all), to obtain the lower bound

$$
\begin{equation*}
g_{d}\left(x_{n}\right)-\inf _{x} g_{d}(x) \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{8(n+1) d} \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{16(n+1)^{2}} . \tag{3pts}
\end{equation*}
$$

Solution. We have

$$
\nabla \tilde{g}_{n}(x)=\frac{L}{4}\left[A^{G_{n}} x+\left(x^{(1)}-1\right) e_{1}+\left(x^{(n)}\right) e_{n}\right]=\frac{L}{4}\left(A^{G_{n}}+e_{1} e_{1}^{T}+e_{n} e_{n}^{T}\right) x-e_{1}
$$

where $A^{G_{n}}$ is the Graph-Laplacian for f_{n}. Then the Hessian is obviously positive definite

$$
\nabla^{2} \tilde{g}_{n}(x)=\frac{L}{4}\left(A^{G_{n}}+e_{1} e_{1}^{T}+e_{n} e_{n}^{T}\right)
$$

as we could apply the same arguments as for f_{n}. So \tilde{g}_{n} is convex. We now plug \hat{x}_{n} into $\nabla \tilde{g}_{n}$ to verify the first order condition, proving it is a minimum

$$
\begin{aligned}
\frac{4}{L} \frac{\partial \tilde{g}_{n}}{\partial x_{i}}\left(\hat{x}_{n}\right) & =\left(A^{G_{n}} \hat{x}_{n}\right)_{i}+\underbrace{\left(\hat{x}_{n}^{(1)}-1\right)}_{=-\frac{1}{n+1}} \delta_{i 1}+\underbrace{\left(\hat{x}_{n}^{(n)}\right)}_{=\frac{1}{n+1}} \delta_{i n} \\
& =\underbrace{\left[\hat{x}_{n}^{(i)}-\hat{x}_{n}^{(i+1)}\right]}_{-\frac{1}{n+1}} \mathbb{1}_{i \neq n}-\underbrace{\left[\hat{x}_{n}^{(i-1)}-\hat{x}_{n}^{(i)}\right]}_{-\frac{1}{n+1}} \mathbb{1}_{i \neq 1}-\frac{1}{n+1} \delta_{i 1}+\frac{1}{n+1} \delta_{i n} \\
& =0 .
\end{aligned}
$$

We now know that

$$
\begin{aligned}
\inf _{x} \tilde{g}_{n}(x) & =\tilde{g}_{n}\left(\hat{x}_{n}\right)=\frac{L}{8}\left[\left(-\frac{1}{n+1}\right)^{2}+\left(1-\frac{n}{n+1}\right)^{2}+\sum_{i=1}^{n-1}\left(\frac{i+1}{n+1}-\frac{i}{n+1}\right)^{2}\right] \\
& =\frac{L}{8} \sum_{i=0}^{n}\left(\frac{1}{n+1}\right)^{2}=\frac{L}{8(n+1)} \stackrel{d=\left\|x_{0}-x_{*}\right\|^{2}}{=} \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{8(n+1) d} \\
& \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{16(n+1)^{2}}
\end{aligned}
$$

using $d=2 n+1$ again.
(ix) Argue that we only needed

$$
x_{n}=x_{0}+\sum_{k=0}^{n-1} A_{k} \nabla f\left(x_{k}\right)
$$

with upper triangular matrices A_{k} to make these bounds work. Since adaptive methods (like Adam) use diagonal matrices A_{k}, they are therefore covered by these bounds.

Solution. We only needed $\mathcal{K}_{n} \subseteq \mathbb{R}^{n+1}$ which we proved by induction using only this fact about \mathcal{K}_{n-1}. Since upper triangular matrices do not change this fact, we may as well allow them.
(x) Bask in our glory! For we have proven that ...? Summarize our results into a theorem. (1 pt)

Solution.

Theorem (Nesterov). Assume there exists upper triangular matrices $A_{k, n}$ such that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{d} is selected by the rule

$$
x_{n}=x_{0}+\sum_{k=0}^{n-1} A_{k, n} \nabla f\left(x_{k}\right)
$$

for a convex, L-smooth f to minimize. Then up to $n \leq \frac{d-1}{2}$ there exists a convex, L-smooth function f such that

$$
\begin{aligned}
\left\|x_{n}-x_{*}\right\| & \geq \frac{1}{\sqrt{2}}\left\|x_{0}-x_{*}\right\| \\
f\left(x_{n}\right)-\inf _{x} f(x) & \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{16(n+1)^{2}}
\end{aligned}
$$

for $f\left(x_{*}\right)=\inf _{x} f(x)$.
(xi) (Bonus) If you wish, you may want to try and repeat those steps for

$$
G_{d}(x)=\frac{L-\mu}{L} g_{d}(x)+\frac{\mu}{2}\|x\|^{2}
$$

to prove an equivalent result for μ-strongly convex functions. Unfortunately finding x_{*} is much more difficult in this case. Letting $d \rightarrow \infty$ makes this problem tractable again with solution

$$
x_{*}^{(i)}=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i} .
$$

Exercise 2 (Conjugate Gradient Descent).
(12 Points)
Consider a quadratic function

$$
f(x)=\frac{1}{2}\left(x-x_{*}\right)^{T} H\left(x-x_{*}\right)
$$

for some symmetric and positive definite H and consider the hilbert space $\mathcal{H}=\left(\mathbb{R}^{d},\langle\cdot, \cdot\rangle_{H}\right)$ with

$$
\langle x, y\rangle_{H}=\langle x, H y\rangle
$$

(i) Prove that $\langle\cdot, \cdot\rangle_{H}$ is a well-defined scalar product. Convince yourself that

$$
\begin{equation*}
f(x)=\frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2} . \tag{1pt}
\end{equation*}
$$

Solution. Bilinearity is trivial, the positive-definiteness follows from this property of H. We have

$$
f(x)=\frac{1}{2}\left\langle x-x_{*}, H\left(x-x_{*}\right)\right\rangle=\frac{1}{2}\left\langle x-x_{*},\left(x-x_{*}\right)\right\rangle_{H}=\frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2} .
$$

(ii) Determine the derivative $\nabla_{H} f(x)$ of f in \mathcal{H}

Solution. We need

$$
\begin{aligned}
& 0 \stackrel{!}{=} \lim _{v \rightarrow 0} \frac{\left|f(x+v)-f(x)-\left\langle\nabla_{H} f(x), v\right\rangle_{H}\right|}{\|v\|_{H}} \\
&=\lim _{v \rightarrow 0} \frac{\left|f(x+v)-f(x)-\left\langle H \nabla_{H} f(x), v\right\rangle\right|}{\|v\|} \\
& \underbrace{\frac{\|v\|}{\|v\|_{H}}}_{\geq c} .
\end{aligned}
$$

We can bound the fraction of norms by a constant $c>0$ from below due to equivalence of all norms in \mathbb{R}^{d}. This lower bound on the second fraction forces the first fraction to converge to zero. But this implies that

$$
\nabla f(x)=H \nabla_{H} f(x)
$$

by the definition (and uniqueness) of $\nabla f(x)$. Thus the gradient we are looking for is

$$
\nabla_{H} f(x)=H^{-1} \nabla f(x) .
$$

(iii) Since gradient descent in the space \mathcal{H} is therefore computationally the Newton method, we want to find a different method of optimization. Consider an arbitrary set of conjugate (H orthogonal) directions $\left(v_{1}, \ldots v_{d}\right)$, i.e. $\left\langle v_{i}, v_{j}\right\rangle_{H}=\delta_{i j}$, and for some starting point $x_{0} \in \mathbb{R}^{d}$ the following descent algorithm:

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha_{k} v_{k+1} \quad \text { with } \quad \alpha_{k}:=\underset{\alpha}{\operatorname{argmin}} f\left(x_{k}-\alpha v_{k+1}\right) . \tag{CD}
\end{equation*}
$$

Optimizing over α in this manner is known as "line-search". Using $y^{(i)}:=\left\langle y, v_{i}\right\rangle$ prove that

$$
\left(x_{k}-x_{*}\right)=\sum_{i=k+1}^{d}\left(x_{0}-x_{*}\right)^{(i)} v_{i}=\underset{x}{\operatorname{argmin}}\left\{f(x): x \in x_{0}+\operatorname{span}\left[v_{1}, \ldots, v_{k}\right]\right\}-x_{*} .
$$

Deduce that conjugate descent (CD) converges in d steps.

Solution. We proceed by induction. The induction start with $k=0$ is obvious. Let us now consider x_{k+1}. By its definition we have

$$
\begin{aligned}
2 f\left(x_{k+1}\right) & =\min _{\alpha} 2 f\left(x_{k}-\alpha v_{k+1}\right) \\
& =\min _{\alpha}\left\|x_{k}-\alpha v_{k+1}\right\|_{H} \\
& =\min _{\alpha}\left\|\sum_{i=1}^{d}\left(x_{k}-x_{*}\right)^{(i)} v_{i}-\alpha v_{k+1}\right\|_{H} \\
& =\min _{\alpha}\left[\left(x_{k}-x_{*}\right)^{(k+1)}-\alpha\right]^{2}\left\|v_{k+1}\right\|_{H}^{2}+\sum_{i=k+2}^{d}\left[\left(x_{k}-x_{*}\right)^{(i)}\right]^{2}\left\|v_{i}\right\|_{H}^{2} \\
& =\sum_{i=k+2}^{d}\left[\left(x_{k}-x_{*}\right)^{(i)}\right]^{2}
\end{aligned}
$$

the minimizer is therefore $\alpha_{k}=\left(x_{k}-x_{*}\right)^{(k+1)}$. This removes the v_{k+1} component leaving us with the components v_{k+2} and up. Note that $\left(x_{k}-x_{*}\right)^{(i)}=\left(x_{0}-x_{*}\right)^{(i)}$ for all $i \geq k+1$ by induction. Similarly we can see that this is a minimum in the span of v_{1}, \ldots, v_{k+1}, as we have removed those components completely and

$$
f(x)=\left\|x-x_{*}\right\|_{H}^{2}=\sum_{i=1}^{d}\left[\left(x-x_{*}\right)^{(i)}\right]^{2}
$$

Since we can not touch the other components due to H-orthogonality, this is the best we can do.
(iv) If we had $v_{i}=\nabla f\left(x_{i-1}\right)$, then this algorithm would be optimal in the set of algorithms we considered in the previous exercise. Unfortunately the gradients $\nabla f\left(x_{i-1}\right)$ are generally not conjugate. So while we may select an arbitrary set of conjugate v_{i}, we cannot select the gradients directly.

Instead we are going to do the next best thing and inductively select v_{k+1} such that

$$
\mathcal{K}_{k}:=\operatorname{span}\left[\nabla f\left(x_{0}\right), \ldots \nabla f\left(x_{k}\right)\right]=\operatorname{span}\left[v_{1}, \ldots, v_{k+1}\right]
$$

using the Gram-Schmidt procedure to make v_{k+1} conjugate to v_{1}, \ldots, v_{k}. Since Gram-Schmidt is still computationally too expensive for our tastes, you please inductively prove

$$
\begin{equation*}
\mathcal{K}_{k}=\operatorname{span}\left[H^{1}\left(x_{0}-x_{*}\right), \ldots, H^{k+1}\left(x_{0}-x_{*}\right)\right] \tag{2pts}
\end{equation*}
$$

assuming \mathcal{K}_{k} is $(k+1)$-dimensional. I.e. \mathcal{K}_{k} is a " H-Krylov subspace".
Solution. The induction start $k=0$ follows directly from

$$
\nabla f\left(x_{0}\right)=H\left(x_{0}-x_{*}\right)
$$

and the definition of \mathcal{K}_{0}. Assume we have the claim for $k-1$, then

$$
\nabla f\left(x_{k}\right)=H\left(x_{k}-x_{*}\right)=H\left(x_{k-1}-\alpha_{k-1} v_{k}-x_{*}\right)=\underbrace{H\left(x_{k-1}-x_{*}\right)}_{=\nabla f\left(x_{k-1}\right) \in \mathcal{K}_{k-1}}-\alpha_{k-1} H \underbrace{v_{k}}_{\in \mathcal{K}_{k-1}} .
$$

As $\mathcal{K}_{k-1}=\operatorname{span}\left[H^{1}\left(x_{0}-x_{*}\right), \ldots, H^{k}\left(x_{0}-x_{*}\right)\right]$ by the induction hypothesis, we therefore have

$$
\nabla f\left(x_{k}\right) \in \operatorname{span}\left[H^{1}\left(x_{0}-x_{*}\right), \ldots, H^{k+1}\left(x_{0}-x_{*}\right)\right] .
$$

Since $\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k-1}\right) \in \mathcal{K}_{k-1}$ they are by the induction hypothesis also in the span

$$
\mathcal{K}_{k}=\operatorname{span}\left[\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k}\right)\right] \subseteq \operatorname{span}\left[H^{1}\left(x_{0}-x_{*}\right), \ldots, H^{k+1}\left(x_{0}-x_{*}\right)\right] .
$$

Since the space on the left is $k+1$ dimensional, we have equality.
(v) Argue that $\nabla f\left(x_{k+1}\right)$ is orthogonal to every vector in \mathcal{K}_{k} and inductively deduce either

$$
\nabla f\left(x_{k+1}\right)=0
$$

which implies $x_{k+1}=x_{*}$, or \mathcal{K}_{k+1} has full rank. Deduce from the H-Krylov-subspace property, that $\nabla f\left(x_{k+1}\right)$ is already H-orthogonal to \mathcal{K}_{k-1}.

Solution. By the selection process of x_{k+1}, we have

$$
x_{k+1}=\underset{x}{\operatorname{argmin}}\left\{f(x): x \in \mathcal{K}_{k}+x_{0}\right\} .
$$

assume $\nabla f\left(x_{k+1}\right)$ were not orthogonal to \mathcal{K}_{k}. Then there would exist $v \in \mathcal{K}_{k}$ such that

$$
\left\langle\nabla f\left(x_{k+1}\right), v\right\rangle>0
$$

By the Taylor approximation we therefore have

$$
f\left(x_{k+1}-\delta v\right)=f\left(x_{k+1}\right)-\delta \underbrace{\left\langle\nabla f\left(x_{k+1}\right), v\right\rangle}_{>0}+O\left(\delta^{2}\right)
$$

so there exists a small $\delta>0$ such that $f\left(x_{k+1}-\delta v\right)<f\left(x_{k+1}\right)$. But this is a contradiction since x_{k+1} was optimal.
$\nabla f\left(x_{k+1}\right)$ is therefore orthogonal to \mathcal{K}_{k}. So if it is not zero, \mathcal{K}_{k+1} has (as the span of both) full rank. $\nabla f\left(x_{k+1}\right)$ being orthogonal to \mathcal{K}_{k} also implies it is orthogonal to $H \mathcal{K}_{k-1}$, since that is a subspace of \mathcal{K}_{k} by the Krylov property. But this implies $\nabla f\left(x_{k+1}\right)$ is H-orthogonal to \mathcal{K}_{k-1}.
(vi) Collect the ideas we have gathered to prove the recursively defined

$$
\begin{equation*}
v_{k+1}=\nabla f\left(x_{k}\right)-\frac{\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}}{\left\|v_{k}\right\|_{H}^{2}} v_{k} \tag{1pt}
\end{equation*}
$$

are H-conjugate and have the same span as the gradients up to $\nabla f\left(x_{k}\right)$.
Solution. These v_{k} are the same v_{k} we would obtain using Gram-Schmidt on the gradients. In fact this is Gram-Schmidt together with the fact that $\nabla f\left(x_{k}\right)$ is already H-orthogonal to the $v_{1}, \ldots, v_{k-1} \in \mathcal{K}_{k-2}$. So only the last summand remains.
(vii) To make our procedure truly computable, we want to show

$$
\begin{equation*}
\frac{\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}}{\left\|v_{k}\right\|_{H}^{2}}=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} . \tag{2pts}
\end{equation*}
$$

Solution. We have

$$
\nabla f\left(x_{k}\right)=H(\overbrace{x_{k-1}-\alpha_{k-1} v_{k}}^{x_{k}}-x_{*})=\nabla f\left(x_{k-1}\right)-\alpha_{k-1} H v_{k} .
$$

This implies $v_{k}=\frac{1}{\alpha_{k-1}} H^{-1}\left[\nabla f\left(x_{k-1}\right)-\nabla f\left(x_{k}\right)\right]$ and therefore

$$
\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}=\frac{1}{\alpha_{k-1}}\left\langle\nabla f\left(x_{k}\right),\left[\nabla f\left(x_{k-1}\right)-\nabla f\left(x_{k}\right)\right]\right\rangle=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\alpha_{k-1}},
$$

where we have used $\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k-1}\right)\right\rangle=0$, which follows from $\nabla f\left(x_{k-1}\right) \in \mathcal{K}_{k-1}$ and $\nabla f\left(x_{k}\right) \perp \mathcal{K}_{k-1}$.

Now we need to find α_{k-1}. But the first order condition

$$
\begin{aligned}
0 & \stackrel{!}{=} \frac{d}{d \alpha} f\left(x_{k-1}-\alpha v_{k}\right) \\
& =-\left\langle\nabla f\left(x_{k-1}-\alpha v_{k}\right), v_{k}\right\rangle \\
& =-\left\langle H\left(x_{k-1}-x_{*}-\alpha v_{k}\right), v_{k}\right\rangle \\
& =-\left\langle\nabla f\left(x_{k-1}\right), v_{k}\right\rangle+\alpha\left\|v_{k}\right\|_{H}^{2} .
\end{aligned}
$$

implies

$$
\alpha_{k-1}=\frac{\left\langle\nabla f\left(x_{k-1}\right), v_{k}\right\rangle}{\left\|v_{k}\right\|_{H}^{2}} .
$$

Before we put things together, note that by definition of v_{k}

$$
\left\langle\nabla f\left(x_{k-1}\right), v_{k}\right\rangle=\left\langle\nabla f\left(x_{k-1}\right), \nabla f\left(x_{k-1}\right)-c v_{k-1}\right\rangle=\left\|\nabla f\left(x_{k-1}\right)\right\|^{2},
$$

since $\nabla f\left(x_{k-1}\right)$ is orthogonal to $v_{k-1} \in \mathcal{K}_{k-2}$. From this we get

$$
\alpha_{k-1}=\frac{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}}{\left\|v_{k}\right\|_{H}^{2}}
$$

So we finally get

$$
\frac{\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}}{\left\|v_{k}\right\|_{H}^{2}}=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|v_{k}\right\|_{H}^{2}} \frac{\left\|v_{k}\right\|_{H}^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}}=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} .
$$

(viii) Summarize everything into a pseudo-algorithm for conjugate gradient descent (CGD) and compare it to heavy-ball momentum with

$$
\beta_{k}=\frac{\alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\alpha_{k-1}\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}}
$$

using identical α_{k} as CGD.

Solution. We set $v_{1}=\nabla f\left(x_{0}\right)$ or later

$$
v_{k+1}=\nabla f\left(x_{k}\right)+\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} v_{k}
$$

determine the step-size

$$
\alpha_{k}=\underset{\alpha}{\operatorname{argmin}} f\left(x_{k}-\alpha v_{k+1}\right)
$$

and finally make our step

$$
x_{k+1}=x_{k}-\alpha_{k} v_{k+1}
$$

Using the fact $v_{k}=\frac{x_{k-1}-x_{k}}{\alpha_{k-1}}$ and inserting v_{k+1} into the last equation, we notice

$$
\begin{aligned}
x_{k+1} & =x_{k}-\alpha_{k}\left[\nabla f\left(x_{k}\right)+\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} \frac{x_{k-1}-x_{k}}{\alpha_{k-1}}\right] \\
& =x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)+\underbrace{\frac{\alpha_{k}}{\alpha_{k-1}} \frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}}}_{=\beta_{k}}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

that CGD is identical to HBM with certain parameters α_{k}, β_{k}.

Exercise 3 (Momentum).

In this exercise, we take a closer look at heavy-ball momentum

$$
x_{k+1}=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right)+\alpha_{k} \nabla f\left(x_{k}\right)
$$

(i) Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)= \begin{cases}25 x & x<1 \\ x+24 & 1<x<2 \\ 25 x-24 & 2<x\end{cases}
$$

Prove that f is μ-strongly convex with $\mu=1, L$-smooth with $L=25$ and has a minimum in zero.
(2 pts)

Solution. We define

$$
f(x)= \begin{cases}\frac{25}{2} x^{2} & x \leq 1 \\ \frac{1}{2} x^{2}+24 x-12 & 1<x<2 \\ \frac{25}{2} x^{2}-24 x+36 & 2 \leq x\end{cases}
$$

note that it is continuous in 1 and 2 and therefore everywhere, and that it has the correct derivative. Further note that

$$
f^{\prime \prime}(x)= \begin{cases}1 & 1<x<2 \\ 25 & \text { else }\end{cases}
$$

is the derivative of $f^{\prime}(x)$ in the following sense:

$$
f^{\prime}(x)=\int_{0}^{x} f^{\prime \prime}(t) d t
$$

which follows from differentiability of f^{\prime} on its segments with the fundamental theorem of calculus and continuity between segments. Thus we have

$$
\begin{aligned}
f(y) & =f(x)+\int_{x}^{y} f^{\prime}(t) d t=f(x)+f^{\prime}(x)(y-x)+\int_{x}^{y} f^{\prime}(t)-f^{\prime}(x) d t \\
& =f(x)+f^{\prime}(x)(y-x)+\int_{x}^{y} \int_{x}^{t} f^{\prime \prime}(s) d s d t .
\end{aligned}
$$

For the Bregman divergence this implies

$$
\frac{1}{2}\|y-x\|^{2} \leq D_{f}^{(B)}(y, x)=\int_{x}^{y} \int_{x}^{t} f^{\prime \prime}(s) d s d t \leq \frac{25}{2}\|y-x\|^{2}
$$

thus f is $\mu=1$-strongly convex and $L=25$-smooth.
(ii) Recall, we required for convergence of HBM

$$
\begin{equation*}
1>\beta \geq \max \left\{(1-\sqrt{\alpha \mu})^{2},(1-\sqrt{\alpha L})^{2}\right\} \tag{1pt}
\end{equation*}
$$

Calculate the optimal α and β to minimize the rate $\sqrt{\beta}$.
Solution. To minimize $\sqrt{\beta}$, we first set

$$
\beta=\max \left\{(1-\sqrt{\alpha \mu})^{2},(1-\sqrt{\alpha L})^{2}\right\}
$$

and then proceed to minimize this over α. Which results in

$$
\begin{aligned}
\alpha^{*} & =\underset{\alpha}{\operatorname{argmin}} \max \left\{(1-\sqrt{\alpha \mu})^{2},(1-\sqrt{\alpha L})^{2}\right\} \\
& =\underset{\alpha}{\operatorname{argmin}} \max \{|1-\sqrt{\alpha \mu}|,|1-\sqrt{\alpha L}|\} \\
& =\underset{\alpha}{\operatorname{argmin}} \max \{(1-\sqrt{\alpha \mu}),-(1-\sqrt{\alpha \mu}),(1-\sqrt{\alpha L}),-(1-\sqrt{\alpha L})\} \\
& =\underset{\alpha}{\operatorname{argmin}} \max \{(1-\sqrt{\alpha \mu}),-(1-\sqrt{\alpha L})\}
\end{aligned}
$$

which is monotonously falling for

$$
1-\sqrt{\alpha \mu}>\sqrt{\alpha L}-1
$$

and monotonously increasing otherwise. Therefore its minimum is at equality. Thus

$$
1-\sqrt{\alpha^{*} \mu}=\sqrt{\alpha^{*} L}-1 \Longleftrightarrow 2=\sqrt{\alpha^{*}}(\sqrt{\mu}+\sqrt{L}) \Longleftrightarrow \alpha^{*}=\frac{4}{(\sqrt{\mu}+\sqrt{L})^{2}} .
$$

This results in

$$
\beta^{*}=\left(1-\frac{2}{1+\sqrt{L / \mu}}\right)^{2}
$$

(iii) Prove, using heavy ball momentum on f with the optimal parameters results in the recursion

$$
x_{k+1}=\frac{13}{9} x_{k}-\frac{4}{9} x_{k-1}-\frac{1}{9} \nabla f\left(x_{k}\right) .
$$

Solution. Using our previous results about optimal rates we have for f

$$
\alpha^{*}=\frac{4}{(1+5)^{2}}=\frac{1}{9} \quad \beta^{*}=\left(1-\frac{2}{1+5}\right)^{2}=\frac{4}{9} .
$$

Thus

$$
x_{k+1}=\underbrace{x_{k}+\frac{4}{9}\left(x_{k}-x_{k-1}\right)}_{=\frac{13}{9} x_{k}-\frac{4}{9} x_{k-1}}+\frac{1}{9} \nabla f\left(x_{k}\right) .
$$

(iv) We want to find a cycle of points $p \rightarrow q \rightarrow r \rightarrow p$, such that for $x_{0}=p$ we have

$$
x_{3 k}=p \quad x_{3 k+1}=q \quad x_{3 k+2}=r \quad \forall k \in \mathbb{N}_{0} .
$$

Assume $p<1, q<1$ and $r>2$ and use the heavy-ball recursion to create linear equations for p, q, r. Solve this linear equation. What does this mean for convergence?

Solution. We have

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\frac{4}{9} & \frac{13}{9} \\
\frac{13}{9} & 0 & -\frac{4}{9} \\
-\frac{4}{9} & \frac{13}{9} & 0
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)-\frac{1}{9}\left(\begin{array}{c}
\nabla f(r) \\
\nabla f(p) \\
\nabla f(q)
\end{array}\right)
$$

Multiplying both sides by 9 , using $\nabla f(r)=25 r-24$ and $\nabla f(p)=25 p$ and similarly q and reordering, we get

$$
\left(\begin{array}{ccc}
9 & 4 & 12 \\
12 & 9 & 4 \\
4 & 12 & 9
\end{array}\right)\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{c}
24 \\
0 \\
0
\end{array}\right)
$$

solving this system of equations results in

$$
p=\frac{792}{1225} \approx 0.65, \quad q=-\frac{2208}{1225} \approx-1.80, \quad r=\frac{2592}{1225} \approx 2.12 .
$$

As we have managed to find a cycle of points, HBM does not converge to the minimum at zero in this case. Note: it is also possible to show that this cycle is attractive if you start in an epsilon environment away from these points.
(v) Implement Heavy-Ball momentum, Nesterov's momentum and CGD https://classroom. github.com/a/f3PnRxTs.

