Optimization in Machine Learning

HWS 2024

Universität Mannheim Prof. Simon Weißmann, Felix Benning

Solution Sheet 4

For the exercise class on the 07.11.2024 at 12:00.

Hand in your solutions by 10:15 in the lecture on Tuesday 05.11.2024.

While there are 38 in total, you may consider all points above the standard 24 to be bonus points.

Exercise 1 (Lower Bounds).

(13 Points)

In this exercise, we will bound the convergence rates of algorithms which pick their iterates x_{k+1} from

$$\operatorname{span}[\nabla f(x_0), \ldots, \nabla f(x_k)] + x_0.$$

We consider the function

$$f_d(x) = \frac{1}{2}(x^{(1)} - 1)^2 + \frac{1}{2}\sum_{i=1}^{d-1}(x^{(i)} - x^{(i+1)})^2$$

(i) To understand our function f_d better, we want to view it as a potential on a graph. For this consider the undirected graph G = (V, E) with vertices

$$V = \{1, \ldots, d\}$$

and edges

$$E = \{(i, i+1) : 1 \le i \le d-1\}.$$
(1 pt)

Draw a picture of this graph.

Solution. The graph is simply a chain

(ii) We now interpret $x^{(i)}$ as a quantity (e.g. of heat) at vertex *i* of our graph *G*. Our potential f_d decreases, if the quantities at connected vertices *i* and *i* + 1 are of similar size. I.e. if $(x^{(i)} - x^{(i+1)})^2$ is small. Additionally there is a pull for $x^{(1)}$ to be equal to 1. Use this intuition to find the minimizer x_* of f_d . (1 pt)

Solution. The minimizer is $x_* = (1, ..., 1)^T \in \mathbb{R}^d$ since $f_d(x_*) = 0$ and $f_d(x) \ge 0$. \Box

(iii) The matrix $A^G \in \mathbb{R}^{d \times d}$ with

$$A_{i,j}^G = \begin{cases} \text{degree of vertex } i & i = j \\ -1 & (i,j) \in E \text{ or } (j,i) \in E \\ 0 & \text{else} \end{cases}$$

is called the "Graph-Laplacian" of G. The degree of vertex i are the number of connecting edges. Calculate A^G for G and prove that

$$\nabla f_d(x) = A^G x + (x^{(1)} - 1)e_1 = (A^G + e_1 e_1^T)x - e_1.$$
(1 pt)

Solution. The Graph-Laplacian of G is given by

$$A^{G} = \begin{pmatrix} 1 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & -1 & 2 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & -1 & 0 \\ \vdots & & \ddots & -1 & 2 & -1 \\ 0 & \cdots & \cdots & 0 & -1 & 1 \end{pmatrix}$$

Let $i \neq 1, d$ then

$$\frac{\partial f_d}{\partial x_i} = [x^{(i)} - x^{(i+1)}] - [x^{(i-1)} - x^{(i)}] = 2x^{(i)} - x^{(i-1)} - x^{(i+1)} = (A^G x)_i$$

similarly looking at the cases i = 1, d individually immediately reveals

$$\nabla f_d(x) = A^G x + (x^{(1)} - 1)e_1.$$

(iv) Prove that the Hessian $H = \nabla^2 f_d(x)$ is constant and positive definite to show that f_d is convex. Prove that the operator norm of H is smaller than 4. Argue that

$$g_d(x) := \frac{L}{4} f_d(x)$$

is therefore L-smooth.

Solution. Taking the derivative of the gradient we calculated previously yields

$$H = \nabla^2 f_d(x) = A^G + e_1 e_1^T.$$

To show positive definiteness, let y be arbitrary

$$y^{T}Hy = (e_{1}^{T}y)^{2} + y^{T}A^{G}y = (y^{(1)})^{2} + \sum_{i=1}^{d-1} (y^{(i)} - y^{(i+1)})^{2} \ge 0.$$

To find the largest eigenvalue of H we want to calculate the operator norm. For this we use $(a-b)^2 \leq 2(a^2+b^2)$ to get

$$\langle y, Hy \rangle \le (y^{(1)})^2 + 2\sum_{i=1}^{d-1} (y^{(i)})^2 + (y^{(i+1)})^2 \le 4\sum_{i=1}^d (y^{(i)})^2 = 4||y||^2.$$

Thus we get

$$\|H\| = \sup_{y: \|y\| = 1} \langle y, Hy \rangle \le 4.$$

Since the operator norm coincides with the largest absolute eigenvalue for symmetric matrices, this proves our claim. Finally L-smoothness of g_d follows from

$$\|\nabla g_d(x) - \nabla g_d(y)\| = \frac{L}{4} \|\nabla f_d(x) - \nabla f_d(y)\| = \frac{L}{4} \|H(x-y)\| \le \underbrace{\frac{L}{4} \|H\|}_{\le L} \|x-y\|. \quad \Box$$

(2 pts)

(v) Assume $x_0 = 0$ and and that $(x_n)_{n \in \mathbb{N}}$ is chosen with the restriction

$$x_{n+1} \in \mathcal{K}_n := \operatorname{span}[\nabla g_d(x_0), \dots, \nabla g_d(x_n)].$$

To make notation easier we are going to identify \mathbb{R}^d with an isomorph subset of sequences

$$\mathbb{R}^d := \{ x \in \ell^2 : x^{(i)} = 0 \quad \forall i > n \}$$

then \mathbb{R}^n is a subset of \mathbb{R}^d for $n \leq d$. Prove inductively that

$$\mathcal{K}_n \subseteq \mathbb{R}^{n+1} \subseteq \mathbb{R}^d \tag{1 pt}$$

Solution. We have the induction start n = 0 by

$$g_d(x_0) = -\frac{L}{4}e_1 \in \mathbb{R}^1$$

Now assume

$$\mathcal{K}_{n-1} \subseteq \mathbb{R}^n$$

then by our selection process $x_n \in \mathbb{R}^n$. But then

$$\frac{4}{L}\nabla g_d(x_n) = \underbrace{A^G x_n}_{\in \mathbb{R}^{n+1}} + \underbrace{(x_n - 1)e_1}_{\in \mathbb{R}^1} \in \mathbb{R}^{n+1}.$$

We therefore have $\mathcal{K}_n = \operatorname{span}[\mathcal{K}_{n-1}, \nabla g_d(x_n)] \subseteq \mathbb{R}^{n+1}$.

Notice how the low connectedness of the graph G limits the spread of our quantity x_n . A higher connectedness would allow for information to travel much quicker.

(vi) We now want to bound the convergence speed of x_n to x_* . For this we select d = 2n + 1.

Note: We may choose a larger dimension d by defining f_{2n+1} on the subset \mathbb{R}^{2n+1} in \mathbb{R}^d . The important requirement is therefore $2n + 1 \leq d$. But without loss of generality we assume equality.

Use the knowledge we have collected so far to argue

$$\|x_* - x_n\|^2 \ge d - n \ge \frac{1}{2} \|x_* - x_0\|^2.$$
(1 pt)

Solution. Since $x_n \in \mathbb{R}^n$ we know that

$$\begin{aligned} \|x_* - x_n\|^2 &= \sum_{i=1}^d (x_*^{(i)} - x_n^{(i)})^2 \\ &\ge \sum_{i=n+1}^d (x_*^{(i)})^2 \\ &= d - n \stackrel{d=2n+1}{=} n + 1 = \frac{n+1}{2n+1} d \ge \frac{1}{2} d = \frac{1}{2} \sum_{i=1}^d 1^2 = \frac{1}{2} \|x_* - x_0\|^2. \end{aligned}$$

(vii) To prevent the convergence of the loss $g_d(x_n)$ to $g_d(x_*)$ we need a more sophisticated argument. For this consider

$$\tilde{g}_n(x) := \frac{L}{4} [f_n(x) + \frac{1}{2} (x^{(n)} - 0)^2].$$

Argue that on $\mathbb{R}^n \subset \mathbb{R}^d$ the functions \tilde{g}_n and g_d are identical. Use this observation to prove

$$g_d(x_n) - \inf_x g_d(x) \ge \inf_x \tilde{g}_n(x).$$
(1 pt)

Solution. Let $x \in \mathbb{R}^n$. Then using $x^{(n+1)} = 0$ we have

$$\tilde{g}_n(x) = \frac{L}{8} \left[(x^{(1)} - 1)^2 + \sum_{i=1}^n (x^{(i)} - x^{(i+1)}) \right] = g_d(x)$$

using $x^{(i)} = 0$ for all i > n for the second equality sign. Since $x_n \in \mathbb{R}^n$ we therefore can replace g_d with g_n at will to get

$$g_d(x_n) - \underbrace{\inf_x g_d(x)}_{=0} = \tilde{g}_n(x_n) \ge \inf_x \tilde{g}(x).$$

(viii) Our goal is now to calculate $\inf_x \tilde{g}_n(x)$. Prove convexity of \tilde{g}_n and prove that

$$\hat{x}_{n}^{(i)} = \begin{cases} 1 - \frac{i}{n+1} & i \le n+1 \\ 0 & i \ge n+1 \end{cases}$$

is its minimum. Then plug our solution into \tilde{g}_n (or g_d , since \hat{x}_n is in the subset \mathbb{R}^n after all), to obtain the lower bound

$$g_d(x_n) - \inf_x g_d(x) \ge \frac{L \|x_0 - x_*\|^2}{8(n+1)d} \ge \frac{L \|x_0 - x_*\|^2}{16(n+1)^2}.$$
 (3 pts)

Solution. We have

$$\nabla \tilde{g}_n(x) = \frac{L}{4} [A^{G_n} x + (x^{(1)} - 1)e_1 + (x^{(n)})e_n] = \frac{L}{4} (A^{G_n} + e_1 e_1^T + e_n e_n^T)x - e_1$$

where A^{G_n} is the Graph-Laplacian for f_n . Then the Hessian is obviously positive definite

$$\nabla^2 \tilde{g}_n(x) = \frac{L}{4} (A^{G_n} + e_1 e_1^T + e_n e_n^T)$$

as we could apply the same arguments as for f_n . So \tilde{g}_n is convex. We now plug \hat{x}_n into $\nabla \tilde{g}_n$ to verify the first order condition, proving it is a minimum

$$\begin{aligned} \frac{4}{L} \frac{\partial \tilde{g}_n}{\partial x_i}(\hat{x}_n) &= (A^{G_n} \hat{x}_n)_i + \underbrace{(\hat{x}_n^{(1)} - 1)}_{= -\frac{1}{n+1}} \delta_{i1} + \underbrace{(\hat{x}_n^{(n)})}_{= -\frac{1}{n+1}} \delta_{in} \\ &= \underbrace{[\hat{x}_n^{(i)} - \hat{x}_n^{(i+1)}]}_{-\frac{1}{n+1}} \mathbb{1}_{i \neq n} - \underbrace{[\hat{x}_n^{(i-1)} - \hat{x}_n^{(i)}]}_{-\frac{1}{n+1}} \mathbb{1}_{i \neq 1} - \frac{1}{n+1} \delta_{i1} + \frac{1}{n+1} \delta_{in} \\ &= 0. \end{aligned}$$

We now know that

$$\inf_{x} \tilde{g}_{n}(x) = \tilde{g}_{n}(\hat{x}_{n}) = \frac{L}{8} \left[\left(-\frac{1}{n+1} \right)^{2} + \left(1 - \frac{n}{n+1} \right)^{2} + \sum_{i=1}^{n-1} \left(\frac{i+1}{n+1} - \frac{i}{n+1} \right)^{2} \right]$$
$$= \frac{L}{8} \sum_{i=0}^{n} \left(\frac{1}{n+1} \right)^{2} = \frac{L}{8(n+1)} \stackrel{d = ||x_{0} - x_{*}||^{2}}{=} \frac{L ||x_{0} - x_{*}||^{2}}{8(n+1)d}$$
$$\geq \frac{L ||x_{0} - x_{*}||^{2}}{16(n+1)^{2}}$$

using d = 2n + 1 again.

(ix) Argue that we only needed

$$x_n = x_0 + \sum_{k=0}^{n-1} A_k \nabla f(x_k)$$

with upper triangular matrices A_k to make these bounds work. Since adaptive methods (like Adam) use diagonal matrices A_k , they are therefore covered by these bounds. (1 pt)

Solution. We only needed $\mathcal{K}_n \subseteq \mathbb{R}^{n+1}$ which we proved by induction using only this fact about \mathcal{K}_{n-1} . Since upper triangular matrices do not change this fact, we may as well allow them. \Box

(x) Bask in our glory! For we have proven that ...? Summarize our results into a theorem. (1 pt)

Solution.

Theorem (Nesterov). Assume there exists upper triangular matrices $A_{k,n}$ such that the sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R}^d is selected by the rule

$$x_n = x_0 + \sum_{k=0}^{n-1} A_{k,n} \nabla f(x_k)$$

for a convex, L-smooth f to minimize. Then up to $n \leq \frac{d-1}{2}$ there exists a convex, L-smooth function f such that

$$||x_n - x_*|| \ge \frac{1}{\sqrt{2}} ||x_0 - x_*||$$
$$f(x_n) - \inf_x f(x) \ge \frac{L||x_0 - x_*||^2}{16(n+1)^2}$$

for $f(x_*) = \inf_x f(x)$.

(xi) (Bonus) If you wish, you may want to try and repeat those steps for

$$G_d(x) = \frac{L - \mu}{L} g_d(x) + \frac{\mu}{2} ||x||^2$$

to prove an equivalent result for μ -strongly convex functions. Unfortunately finding x_* is much more difficult in this case. Letting $d \to \infty$ makes this problem tractable again with solution

$$x_*^{(i)} = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^i$$

Exercise 2 (Conjugate Gradient Descent).

Consider a quadratic function

$$f(x) = \frac{1}{2}(x - x_*)^T H(x - x_*)$$

for some symmetric and positive definite H and consider the hilbert space $\mathcal{H} = (\mathbb{R}^d, \langle \cdot, \cdot \rangle_H)$ with

$$\langle x, y \rangle_H = \langle x, Hy \rangle$$

(i) Prove that $\langle \cdot, \cdot \rangle_H$ is a well-defined scalar product. Convince yourself that

$$f(x) = \frac{1}{2} \|x - x_*\|_H^2.$$
(1 pt)

Solution. Bilinearity is trivial, the positive-definiteness follows from this property of H. We have

$$f(x) = \frac{1}{2} \langle x - x_*, H(x - x_*) \rangle = \frac{1}{2} \langle x - x_*, (x - x_*) \rangle_H = \frac{1}{2} ||x - x_*||_H^2.$$

(ii) Determine the derivative $\nabla_H f(x)$ of f in \mathcal{H}

Solution. We need

$$0 \stackrel{!}{=} \lim_{v \to 0} \frac{|f(x+v) - f(x) - \langle \nabla_H f(x), v \rangle_H|}{\|v\|_H} \\ = \lim_{v \to 0} \frac{|f(x+v) - f(x) - \langle H \nabla_H f(x), v \rangle|}{\|v\|} \underbrace{\frac{\|v\|}{\|v\|_H}}_{\ge c}.$$

We can bound the fraction of norms by a constant c > 0 from below due to equivalence of all norms in \mathbb{R}^d . This lower bound on the second fraction forces the first fraction to converge to zero. But this implies that

$$\nabla f(x) = H \nabla_H f(x)$$

by the definition (and uniqueness) of $\nabla f(x)$. Thus the gradient we are looking for is

$$\nabla_H f(x) = H^{-1} \nabla f(x).$$

(iii) Since gradient descent in the space \mathcal{H} is therefore computationally the Newton method, we want to find a different method of optimization. Consider an arbitrary set of conjugate (*H*-orthogonal) directions $(v_1, \ldots v_d)$, i.e. $\langle v_i, v_j \rangle_H = \delta_{ij}$, and for some starting point $x_0 \in \mathbb{R}^d$ the following descent algorithm:

$$x_{k+1} = x_k - \alpha_k v_{k+1}$$
 with $\alpha_k := \operatorname*{argmin}_{\alpha} f(x_k - \alpha v_{k+1}).$ (CD)

Optimizing over α in this manner is known as "line-search". Using $y^{(i)} := \langle y, v_i \rangle$ prove that

$$(x_k - x_*) = \sum_{i=k+1}^d (x_0 - x_*)^{(i)} v_i = \underset{x}{\operatorname{argmin}} \{f(x) : x \in x_0 + \operatorname{span}[v_1, \dots, v_k]\} - x_*.$$

Deduce that conjugate descent (CD) converges in d steps.

(2 pts)

(12 Points)

(1 pt)

Solution. We proceed by induction. The induction start with k = 0 is obvious. Let us now consider x_{k+1} . By its definition we have

$$2f(x_{k+1}) = \min_{\alpha} 2f(x_k - \alpha v_{k+1})$$

= $\min_{\alpha} ||x_k - \alpha v_{k+1}||_H$
= $\min_{\alpha} \left\| \sum_{i=1}^d (x_k - x_*)^{(i)} v_i - \alpha v_{k+1} \right\|_H$
= $\min_{\alpha} [(x_k - x_*)^{(k+1)} - \alpha]^2 ||v_{k+1}||_H^2 + \sum_{i=k+2}^d [(x_k - x_*)^{(i)}]^2 ||v_i||_H^2$
= $\sum_{i=k+2}^d [(x_k - x_*)^{(i)}]^2.$

the minimizer is therefore $\alpha_k = (x_k - x_*)^{(k+1)}$. This removes the v_{k+1} component leaving us with the components v_{k+2} and up. Note that $(x_k - x_*)^{(i)} = (x_0 - x_*)^{(i)}$ for all $i \ge k+1$ by induction. Similarly we can see that this is a minimum in the span of v_1, \ldots, v_{k+1} , as we have removed those components completely and

$$f(x) = \|x - x_*\|_H^2 = \sum_{i=1}^d [(x - x_*)^{(i)}]^2.$$

Since we can not touch the other components due to H-orthogonality, this is the best we can do.

(iv) If we had $v_i = \nabla f(x_{i-1})$, then this algorithm would be optimal in the set of algorithms we considered in the previous exercise. Unfortunately the gradients $\nabla f(x_{i-1})$ are generally not conjugate. So while we may select an arbitrary set of conjugate v_i , we cannot select the gradients directly.

Instead we are going to do the next best thing and inductively select v_{k+1} such that

$$\mathcal{K}_k := \operatorname{span}[\nabla f(x_0), \dots \nabla f(x_k)] = \operatorname{span}[v_1, \dots, v_{k+1}]$$

using the Gram-Schmidt procedure to make v_{k+1} conjugate to v_1, \ldots, v_k . Since Gram-Schmidt is still computationally too expensive for our tastes, you please inductively prove

$$\mathcal{K}_k = \text{span}[H^1(x_0 - x_*), \dots, H^{k+1}(x_0 - x_*)].$$

assuming \mathcal{K}_k is (k+1)-dimensional. I.e. \mathcal{K}_k is a "*H*-Krylov subspace". (2 pts)

Solution. The induction start k = 0 follows directly from

$$\nabla f(x_0) = H(x_0 - x_*)$$

and the definition of \mathcal{K}_0 . Assume we have the claim for k-1, then

$$\nabla f(x_k) = H(x_k - x_*) = H(x_{k-1} - \alpha_{k-1}v_k - x_*) = \underbrace{H(x_{k-1} - x_*)}_{=\nabla f(x_{k-1}) \in \mathcal{K}_{k-1}} - \alpha_{k-1}H \underbrace{v_k}_{\in \mathcal{K}_{k-1}}$$

As $\mathcal{K}_{k-1} = \operatorname{span}[H^1(x_0 - x_*), \dots, H^k(x_0 - x_*)]$ by the induction hypothesis, we therefore have

$$\nabla f(x_k) \in \text{span}[H^1(x_0 - x_*), \dots, H^{k+1}(x_0 - x_*)]$$

Since $\nabla f(x_0), \ldots, \nabla f(x_{k-1}) \in \mathcal{K}_{k-1}$ they are by the induction hypothesis also in the span

$$\mathcal{K}_k = \operatorname{span}[\nabla f(x_0), \dots, \nabla f(x_k)] \subseteq \operatorname{span}[H^1(x_0 - x_*), \dots, H^{k+1}(x_0 - x_*)].$$

Since the space on the left is k + 1 dimensional, we have equality.

(v) Argue that $\nabla f(x_{k+1})$ is orthogonal to every vector in \mathcal{K}_k and inductively deduce either

$$\nabla f(x_{k+1}) = 0$$

which implies $x_{k+1} = x_*$, or \mathcal{K}_{k+1} has full rank. Deduce from the *H*-Krylov-subspace property, that $\nabla f(x_{k+1})$ is already *H*-orthogonal to \mathcal{K}_{k-1} . (2 pts)

Solution. By the selection process of x_{k+1} , we have

$$x_{k+1} = \operatorname*{argmin}_{x} \{ f(x) : x \in \mathcal{K}_k + x_0 \}.$$

assume $\nabla f(x_{k+1})$ were not orthogonal to \mathcal{K}_k . Then there would exist $v \in \mathcal{K}_k$ such that

$$\langle \nabla f(x_{k+1}), v \rangle > 0$$

By the Taylor approximation we therefore have

$$f(x_{k+1} - \delta v) = f(x_{k+1}) - \delta \underbrace{\langle \nabla f(x_{k+1}), v \rangle}_{>0} + O(\delta^2)$$

so there exists a small $\delta > 0$ such that $f(x_{k+1} - \delta v) < f(x_{k+1})$. But this is a contradiction since x_{k+1} was optimal.

 $\nabla f(x_{k+1})$ is therefore orthogonal to \mathcal{K}_k . So if it is not zero, \mathcal{K}_{k+1} has (as the span of both) full rank. $\nabla f(x_{k+1})$ being orthogonal to \mathcal{K}_k also implies it is orthogonal to $H\mathcal{K}_{k-1}$, since that is a subspace of \mathcal{K}_k by the Krylov property. But this implies $\nabla f(x_{k+1})$ is *H*-orthogonal to \mathcal{K}_{k-1} .

(vi) Collect the ideas we have gathered to prove the recursively defined

$$v_{k+1} = \nabla f(x_k) - \frac{\langle \nabla f(x_k), v_k \rangle_H}{\|v_k\|_H^2} v_k$$

are *H*-conjugate and have the same span as the gradients up to $\nabla f(x_k)$. (1 pt)

Solution. These v_k are the same v_k we would obtain using Gram-Schmidt on the gradients. In fact this is Gram-Schmidt together with the fact that $\nabla f(x_k)$ is already *H*-orthogonal to the $v_1, \ldots, v_{k-1} \in \mathcal{K}_{k-2}$. So only the last summand remains.

(vii) To make our procedure truly computable, we want to show

$$\frac{\langle \nabla f(x_k), v_k \rangle_H}{\|v_k\|_H^2} = -\frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2}.$$
 (2 pts)

Solution. We have

$$\nabla f(x_k) = H(\overbrace{x_{k-1} - \alpha_{k-1}v_k}^{x_k} - x_*) = \nabla f(x_{k-1}) - \alpha_{k-1}Hv_k.$$

This implies $v_k = \frac{1}{\alpha_{k-1}} H^{-1} [\nabla f(x_{k-1}) - \nabla f(x_k)]$ and therefore

$$\langle \nabla f(x_k), v_k \rangle_H = \frac{1}{\alpha_{k-1}} \langle \nabla f(x_k), [\nabla f(x_{k-1}) - \nabla f(x_k)] \rangle = -\frac{\|\nabla f(x_k)\|^2}{\alpha_{k-1}}$$

where we have used $\langle \nabla f(x_k), \nabla f(x_{k-1}) \rangle = 0$, which follows from $\nabla f(x_{k-1}) \in \mathcal{K}_{k-1}$ and $\nabla f(x_k) \perp \mathcal{K}_{k-1}$.

Now we need to find α_{k-1} . But the first order condition

$$0 \stackrel{!}{=} \frac{d}{d\alpha} f(x_{k-1} - \alpha v_k)$$

= $-\langle \nabla f(x_{k-1} - \alpha v_k), v_k \rangle$
= $-\langle H(x_{k-1} - x_* - \alpha v_k), v_k \rangle$
= $-\langle \nabla f(x_{k-1}), v_k \rangle + \alpha \|v_k\|_{H^1}^2$

implies

$$\alpha_{k-1} = \frac{\langle \nabla f(x_{k-1}), v_k \rangle}{\|v_k\|_H^2}$$

Before we put things together, note that by definition of v_k

$$\langle \nabla f(x_{k-1}), v_k \rangle = \langle \nabla f(x_{k-1}), \nabla f(x_{k-1}) - cv_{k-1} \rangle = \| \nabla f(x_{k-1}) \|^2,$$

since $\nabla f(x_{k-1})$ is orthogonal to $v_{k-1} \in \mathcal{K}_{k-2}$. From this we get

$$\alpha_{k-1} = \frac{\|\nabla f(x_{k-1})\|^2}{\|v_k\|_H^2},$$

So we finally get

$$\frac{\langle \nabla f(x_k), v_k \rangle_H}{\|v_k\|_H^2} = -\frac{\|\nabla f(x_k)\|^2}{\|v_k\|_H^2} \frac{\|v_k\|_H^2}{\|\nabla f(x_{k-1})\|^2} = -\frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2}.$$

(viii) Summarize everything into a pseudo-algorithm for conjugate gradient descent (CGD) and compare it to heavy-ball momentum with

$$\beta_k = \frac{\alpha_k \|\nabla f(x_k)\|^2}{\alpha_{k-1} \|\nabla f(x_{k-1})\|^2}$$

using identical α_k as CGD.

(1 pt)

Solution. We set $v_1 = \nabla f(x_0)$ or later

$$v_{k+1} = \nabla f(x_k) + \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2} v_k$$

determine the step-size

$$\alpha_k = \operatorname*{argmin}_{\alpha} f(x_k - \alpha v_{k+1})$$

and finally make our step

$$x_{k+1} = x_k - \alpha_k v_{k+1}.$$

Using the fact $v_k = \frac{x_{k-1}-x_k}{\alpha_{k-1}}$ and inserting v_{k+1} into the last equation, we notice

$$x_{k+1} = x_k - \alpha_k \Big[\nabla f(x_k) + \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2} \frac{x_{k-1} - x_k}{\alpha_{k-1}} \Big]$$

= $x_k - \alpha_k \nabla f(x_k) + \underbrace{\frac{\alpha_k}{\alpha_{k-1}} \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2}}_{=\beta_k} (x_k - x_{k-1})$

that CGD is identical to HBM with certain parameters α_k , β_k .

Exercise 3 (Momentum).

In this exercise, we take a closer look at heavy-ball momentum

$$x_{k+1} = x_k + \beta_k (x_k - x_{k-1}) + \alpha_k \nabla f(x_k)$$

(i) Find a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \begin{cases} 25x & x < 1\\ x + 24 & 1 < x < 2\\ 25x - 24 & 2 < x. \end{cases}$$

Prove that f is μ -strongly convex with $\mu = 1$, L-smooth with L = 25 and has a minimum in zero. (2 pts)

Solution. We define

$$f(x) = \begin{cases} \frac{25}{2}x^2 & x \le 1\\ \frac{1}{2}x^2 + 24x - 12 & 1 < x < 2\\ \frac{25}{2}x^2 - 24x + 36 & 2 \le x, \end{cases}$$

note that it is continuous in 1 and 2 and therefore everywhere, and that it has the correct derivative. Further note that

$$f''(x) = \begin{cases} 1 & 1 < x < 2\\ 25 & \text{else} \end{cases}$$

is the derivative of f'(x) in the following sense:

$$f'(x) = \int_0^x f''(t)dt,$$

(13 Points)

which follows from differentiability of f' on its segments with the fundamental theorem of calculus and continuity between segments. Thus we have

$$f(y) = f(x) + \int_{x}^{y} f'(t)dt = f(x) + f'(x)(y - x) + \int_{x}^{y} f'(t) - f'(x)dt$$
$$= f(x) + f'(x)(y - x) + \int_{x}^{y} \int_{x}^{t} f''(s)dsdt.$$

For the Bregman divergence this implies

$$\frac{1}{2}||y-x||^2 \le D_f^{(B)}(y,x) = \int_x^y \int_x^t f''(s)dsdt \le \frac{25}{2}||y-x||^2,$$

thus f is $\mu = 1$ -strongly convex and L = 25-smooth.

(ii) Recall, we required for convergence of HBM

$$1 > \beta \ge \max\{(1 - \sqrt{\alpha \mu})^2, (1 - \sqrt{\alpha L})^2\}.$$

Calculate the optimal α and β to minimize the rate $\sqrt{\beta}$.

Solution. To minimize $\sqrt{\beta}$, we first set

$$\beta = \max\{(1 - \sqrt{\alpha \mu})^2, (1 - \sqrt{\alpha L})^2\}$$

and then proceed to minimize this over α . Which results in

$$\begin{aligned} \alpha^* &= \operatorname*{argmin}_{\alpha} \max\{(1 - \sqrt{\alpha\mu})^2, (1 - \sqrt{\alpha L})^2\} \\ &= \operatorname*{argmin}_{\alpha} \max\{|1 - \sqrt{\alpha\mu}|, |1 - \sqrt{\alpha L}|\} \\ &= \operatorname*{argmin}_{\alpha} \max\{(1 - \sqrt{\alpha\mu}), -(1 - \sqrt{\alpha\mu}), (1 - \sqrt{\alpha L}), -(1 - \sqrt{\alpha L})\} \\ &= \operatorname*{argmin}_{\alpha} \max\{(1 - \sqrt{\alpha\mu}), -(1 - \sqrt{\alpha L})\} \end{aligned}$$

which is monotonously falling for

$$1 - \sqrt{\alpha \mu} > \sqrt{\alpha L} - 1$$

and monotonously increasing otherwise. Therefore its minimum is at equality. Thus

$$1 - \sqrt{\alpha^* \mu} = \sqrt{\alpha^* L} - 1 \iff 2 = \sqrt{\alpha^*} (\sqrt{\mu} + \sqrt{L}) \iff \alpha^* = \frac{4}{(\sqrt{\mu} + \sqrt{L})^2}.$$

This results in

$$\beta^* = \left(1 - \frac{2}{1 + \sqrt{L/\mu}}\right)^2.$$

(iii) Prove, using heavy ball momentum on f with the optimal parameters results in the recursion (1 pt)

$$x_{k+1} = \frac{13}{9}x_k - \frac{4}{9}x_{k-1} - \frac{1}{9}\nabla f(x_k).$$

(1 pt)

Solution. Using our previous results about optimal rates we have for f

$$\alpha^* = \frac{4}{(1+5)^2} = \frac{1}{9} \qquad \beta^* = (1 - \frac{2}{1+5})^2 = \frac{4}{9}.$$

Thus

$$x_{k+1} = \underbrace{x_k + \frac{4}{9}(x_k - x_{k-1})}_{=\frac{13}{9}x_k - \frac{4}{9}x_{k-1}} + \frac{1}{9}\nabla f(x_k).$$

(iv) We want to find a cycle of points $p \rightarrow q \rightarrow r \rightarrow p$, such that for $x_0 = p$ we have

$$x_{3k} = p \quad x_{3k+1} = q \quad x_{3k+2} = r \qquad \forall k \in \mathbb{N}_0.$$

Assume p < 1, q < 1 and r > 2 and use the heavy-ball recursion to create linear equations for p, q, r. Solve this linear equation. What does this mean for convergence? (3 pts)

Solution. We have

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 0 & -\frac{4}{9} & \frac{13}{9} \\ \frac{13}{9} & 0 & -\frac{4}{9} \\ -\frac{4}{9} & \frac{13}{9} & 0 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \end{pmatrix} - \frac{1}{9} \begin{pmatrix} \nabla f(r) \\ \nabla f(p) \\ \nabla f(q) \end{pmatrix}$$

Multiplying both sides by 9, using $\nabla f(r) = 25r - 24$ and $\nabla f(p) = 25p$ and similarly q and reordering, we get

$$\begin{pmatrix} 9 & 4 & 12 \\ 12 & 9 & 4 \\ 4 & 12 & 9 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 24 \\ 0 \\ 0 \end{pmatrix}$$

solving this system of equations results in

$$p = \frac{792}{1225} \approx 0.65, \quad q = -\frac{2208}{1225} \approx -1.80, \quad r = \frac{2592}{1225} \approx 2.12.$$

As we have managed to find a cycle of points, HBM does not converge to the minimum at zero in this case. Note: it is also possible to show that this cycle is attractive if you start in an epsilon environment away from these points. \Box

 (v) Implement Heavy-Ball momentum, Nesterov's momentum and CGD https://classroom. github.com/a/DX1L27T4.
 (6 pts)