Sheet 4

For the exercise class on the 27.04.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 27.04.2023.
While there are 38 in total, you may consider all points above the standard 24 to be bonus points.

Exercise 1 (Lower Bounds).

In this exercise, we will bound the convergence rates of algorithms which pick their iterates x_{k+1} from

$$
\operatorname{span}\left[\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{k}\right)\right]+x_{0}
$$

We consider the function

$$
f_{d}(x)=\frac{1}{2}\left(x^{(1)}-1\right)^{2}+\frac{1}{2} \sum_{i=1}^{d-1}\left(x^{(i)}-x^{(i+1)}\right)^{2}
$$

(i) To understand our function f_{d} better, we want to view it as a potential on a graph. For this consider the undirected graph $G=(V, E)$ with vertices

$$
V=\{1, \ldots, d\}
$$

and edges

$$
E=\{(i, i+1): 1 \leq i \leq d-1\} .
$$

Draw a picture of this graph.
(ii) We now interpret $x^{(i)}$ as a quantity (e.g. of heat) at vertex i of our graph G. Our potential f_{d} decreases, if the quantities at connected vertices i and $i+1$ are of similar size. I.e. if $\left(x^{(i)}-x^{(i+1)}\right)^{2}$ is small. Additionally there is a pull for $x^{(1)}$ to be equal to 1 . Use this intuition to find the minimizer x_{*} of f_{d}.
(iii) The matrix $A^{G} \in \mathbb{R}^{d \times d}$ with

$$
A_{i, j}^{G}= \begin{cases}\text { degree of vertex } i & i=j \\ -1 & (i, j) \in E \text { or }(j, i) \in E \\ 0 & \text { else }\end{cases}
$$

is called the "Graph-Laplacian" of G. The degree of vertex i are the number of connecting edges. Calculate A^{G} for G and prove that

$$
\begin{equation*}
\nabla f_{d}(x)=A^{G} x+\left(x^{(1)}-1\right) e_{1}=\left(A^{G}+e_{1} e_{1}^{T}\right) x-e_{1} \tag{1pt}
\end{equation*}
$$

(iv) Prove that the Hessian $H=\nabla f_{d}(x)$ is constant and positive definite to show that f_{d} is convex. Prove that the operator norm of H is smaller than 4. Argue that

$$
g_{d}(x):=\frac{L}{4} f_{d}(x)
$$

is therefore L-smooth.
(v) Assume $x_{0}=0$ and and that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is chosen with the restriction

$$
x_{n+1} \in \mathcal{K}_{n}:=\operatorname{span}\left[\nabla g_{d}\left(x_{0}\right), \ldots, \nabla g_{d}\left(x_{n}\right)\right] .
$$

To make notation easier we are going to identify \mathbb{R}^{d} with an isomorph subset of sequences

$$
\mathbb{R}^{d}:=\left\{x \in \ell^{2}: x^{(i)}=0 \quad \forall i>n\right\}
$$

then \mathbb{R}^{n} is a subset of \mathbb{R}^{d} for $n \leq d$. Prove inductively that

$$
\begin{equation*}
\mathcal{K}_{n} \subseteq \mathbb{R}^{n+1} \subseteq \mathbb{R}^{d} \tag{1pt}
\end{equation*}
$$

(vi) We now want to bound the convergence speed of x_{n} to x_{*}. For this we select $d=2 n+1$.

Note: We may choose a larger dimension d by defining $f_{2 n+1}$ on the subset $\mathbb{R}^{2 n+1}$ in \mathbb{R}^{d}. The important requirement is therefore $2 n+1 \leq d$. But without loss of generality we assume equality.
Use the knowledge we have collected so far to argue

$$
\begin{equation*}
\left\|x_{*}-x_{n}\right\|^{2} \geq d-n \geq \frac{1}{2}\left\|x_{*}-x_{0}\right\|^{2} . \tag{1pt}
\end{equation*}
$$

(vii) To prevent the convergence of the loss $g_{d}\left(x_{n}\right)$ to $g_{d}\left(x_{*}\right)$ we need a more sophisticated argument. For this consider

$$
\tilde{g}_{n}(x):=\frac{L}{4}\left[f_{n}(x)+\frac{1}{2}\left(x^{(n)}-0\right)^{2}\right] .
$$

Argue that on $\mathbb{R}^{n} \subset \mathbb{R}^{d}$ the functions \tilde{g}_{n} and g_{d} are identical. Use this observation to prove

$$
\begin{equation*}
g_{d}\left(x_{n}\right)-\inf _{x} g_{d}(x) \geq \inf _{x} \tilde{g}_{n}(x) . \tag{1pt}
\end{equation*}
$$

(viii) Our goal is now to calculate $\inf _{x} \tilde{g}_{n}(x)$. Prove convexity of \tilde{g}_{n} and prove that

$$
\hat{x}_{n}^{(i)}= \begin{cases}1-\frac{i}{n+1} & i \leq n+1 \\ 0 & i \geq n+1\end{cases}
$$

is its minimum. Then plug our solution into \tilde{g}_{n} (or g_{d}, since \hat{x}_{n} is in the subset \mathbb{R}^{n} after all), to obtain the lower bound

$$
\begin{equation*}
g_{d}\left(x_{n}\right)-\inf _{x} g_{d}(x) \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{8(n+1) d} \geq \frac{L\left\|x_{0}-x_{*}\right\|^{2}}{16(n+1)^{2}} . \tag{3pts}
\end{equation*}
$$

(ix) Argue that we only needed

$$
x_{n}=x_{0}+\sum_{k=0}^{n-1} A_{k} \nabla f\left(x_{k}\right)
$$

with upper triangular matrices A_{k} to make these bounds work. Since adaptive methods (like Adam) use diagonal matrices A_{k}, they are therefore covered by these bounds.
(x) Bask in our glory! For we have proven that ...? Summarize our results into a theorem. (1 pt)
(xi) (Bonus) If you wish, you may want to try and repeat those steps for

$$
G_{d}(x)=\frac{L-\mu}{L} g_{d}(x)+\frac{\mu}{2}\|x\|^{2}
$$

to prove an equivalent result for μ-strongly convex functions. Unfortunately finding x_{*} is much more difficult in this case. Letting $d \rightarrow \infty$ makes this problem tractable again with solution

$$
x_{*}^{(i)}=\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}
$$

Exercise 2 (Conjugate Gradient Descent).

(12 Points)

Consider a quadratic function

$$
f(x)=\frac{1}{2}\left(x-x_{*}\right)^{T} H\left(x-x_{*}\right)
$$

for some symmetric and positive definite H and consider the hilbert space $\mathcal{H}=\left(\mathbb{R}^{d},\langle\cdot, \cdot\rangle_{H}\right)$ with

$$
\langle x, y\rangle_{H}=\langle x, H y\rangle
$$

(i) Prove that $\langle\cdot, \cdot\rangle_{H}$ is a well-defined scalar product. Convince yourself that

$$
\begin{equation*}
f(x)=\frac{1}{2}\left\|x-x_{*}\right\|_{H}^{2} \tag{1pt}
\end{equation*}
$$

(ii) Determine the derivative $\nabla_{H} f(x)$ of f in \mathcal{H}

Hint. Recall that $\nabla_{H} f(x)$ is the unique vector satisfying

$$
0=\lim _{v \rightarrow 0} \frac{\left|f(x+v)-f(x)-\left\langle\nabla_{H} f(x), v\right\rangle_{H}\right|}{\|v\|_{H}}
$$

(iii) Since gradient descent in the space \mathcal{H} is therefore computationally the Newton method, we want to find a different method of optimization. Consider an arbitrary set of conjugate (H orthogonal) directions $\left(v_{1}, \ldots v_{d}\right)$, i.e. $\left\langle v_{i}, v_{j}\right\rangle_{H}=\delta_{i j}$, and for some starting point $x_{0} \in \mathbb{R}^{d}$ the following descent algorithm:

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha_{k} v_{k+1} \quad \text { with } \quad \alpha_{k}:=\underset{\alpha}{\operatorname{argmin}} f\left(x_{k}-\alpha v_{k+1}\right) . \tag{CD}
\end{equation*}
$$

Optimizing over α in this manner is known as "line-search". Using $y^{(i)}:=\left\langle y, v_{i}\right\rangle$ prove that

$$
\begin{equation*}
\left(x_{k}-x_{*}\right)=\sum_{i=k+1}^{d}\left(x_{0}-x_{*}\right)^{(i)} v_{i}=\underset{x}{\operatorname{argmin}}\left\{f(x): x \in x_{0}+\operatorname{span}\left[v_{1}, \ldots, v_{k}\right]\right\}-x_{*} . \tag{2pts}
\end{equation*}
$$

Deduce that conjugate descent (CD) converges in d steps.
(iv) If we had $v_{i}=\nabla f\left(x_{i-1}\right)$, then this algorithm would be optimal in the set of algorithms we considered in the previous exercise. Unfortunately the gradients $\nabla f\left(x_{i-1}\right)$ are generally not conjugate. So while we may select an arbitrary set of conjugate v_{i}, we cannot select the gradients directly.

Instead we are going to do the next best thing and inductively select v_{k+1} such that

$$
\mathcal{K}_{k}:=\operatorname{span}\left[\nabla f\left(x_{0}\right), \ldots \nabla f\left(x_{k}\right)\right]=\operatorname{span}\left[v_{1}, \ldots, v_{k+1}\right]
$$

using the Gram-Schmidt procedure to make v_{k+1} conjugate to v_{1}, \ldots, v_{k}. Since Gram-Schmidt is still computationally too expensive for our tastes, you please inductively prove

$$
\begin{equation*}
\mathcal{K}_{k}=\operatorname{span}\left[H^{1}\left(x_{0}-x_{*}\right), \ldots, H^{k+1}\left(x_{0}-x_{*}\right)\right] . \tag{2pts}
\end{equation*}
$$

assuming \mathcal{K}_{k} is $(k+1)$-dimensional. I.e. \mathcal{K}_{k} is a " H-Krylov subspace".
(v) Argue that $\nabla f\left(x_{k+1}\right)$ is orthogonal to every vector in \mathcal{K}_{k} and inductively deduce either

$$
\nabla f\left(x_{k+1}\right)=0
$$

which implies $x_{k+1}=x_{*}$, or \mathcal{K}_{k+1} has full rank. Deduce from the H-Krylov-subspace property, that $\nabla f\left(x_{k+1}\right)$ is already H-orthogonal to \mathcal{K}_{k-1}.

Hint. $x_{k+1}=\operatorname{argmin}_{x}\left\{f(x): x \in \mathcal{K}_{k}+x_{0}\right\}$.
(vi) Collect the ideas we have gathered to prove the recursively defined

$$
\begin{equation*}
v_{k+1}=\nabla f\left(x_{k}\right)-\frac{\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}}{\left\|v_{k}\right\|_{H}^{2}} v_{k} \tag{1pt}
\end{equation*}
$$

are H-conjugate and have the same span as the gradients up to $\nabla f\left(x_{k}\right)$.
(vii) To make our procedure truly computable, we want to show

$$
\begin{equation*}
\frac{\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{H}}{\left\|v_{k}\right\|_{H}^{2}}=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} . \tag{2pts}
\end{equation*}
$$

Hint. Proving

$$
\nabla f\left(x_{k}\right)=\nabla f\left(x_{k-1}\right)-\alpha_{k-1} H v_{k}
$$

should allow you to conclude $\left\langle\nabla f\left(x_{k}\right), v_{k}\right\rangle_{h}=-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\alpha_{k-1}}$. Then it makes sense to calculate

$$
\alpha_{k-1}=-\frac{\left\langle\nabla f\left(x_{k-1}\right), v_{k}\right\rangle}{\left\|v_{k}\right\|_{H}^{2}}
$$

by solving its optimization problem. Finally you may want to consider $v_{k}=\nabla f\left(x_{k-1}\right)-c v_{k-1}$ and $v_{k-1} \in \mathcal{K}_{k-2}$.
(viii) Summarize everything into a pseudo-algorithm for conjugate gradient descent (CGD) and compare it to heavy-ball momentum with

$$
\begin{equation*}
\beta_{k}=\frac{\alpha_{k}\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\alpha_{k-1}\left\|\nabla f\left(x_{k-1}\right)\right\|^{2}} \tag{1pt}
\end{equation*}
$$

using identical α_{k} as CGD.
Exercise 3 (Momentum).
In this exercise, we take a closer look at heavy-ball momentum

$$
x_{k+1}=x_{k}+\beta_{k}\left(x_{k}-x_{k-1}\right)+\alpha_{k} \nabla f\left(x_{k}\right)
$$

(i) Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)= \begin{cases}25 x & x<1 \\ x+24 & 1<x<2 \\ 25 x-24 & 2<x\end{cases}
$$

Prove that f is μ-strongly convex with $\mu=1, L$-smooth with $L=25$ and has a minimum in zero.
(ii) Recall, we required for convergence of HBM

$$
1>\beta \geq \max \left\{(1-\sqrt{\alpha \mu})^{2},(1-\sqrt{\alpha L})^{2}\right\} .
$$

Calculate the optimal α and β to minimize the rate $\sqrt{\beta}$.
(iii) Prove, using heavy ball momentum on f with the optimal parameters results in the recursion

$$
x_{k+1}=\frac{13}{9} x_{k}-\frac{4}{9} x_{k-1}-\frac{1}{9} \nabla f\left(x_{k}\right) .
$$

(iv) We want to find a cycle of points $p \rightarrow q \rightarrow r \rightarrow p$, such that for $x_{0}=p$ we have

$$
x_{3 k}=p \quad x_{3 k+1}=q \quad x_{3 k+2}=r \quad \forall k \in \mathbb{N}_{0} .
$$

Assume $p<1, q<1$ and $r>2$ and use the heavy-ball recursion to create linear equations for p, q, r. Solve this linear equation. What does this mean for convergence?
(v) Implement Heavy-Ball momentum, Nesterov's momentum and CGDhttps://classroom. github.com/a/f3PnRxTs.

