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For the exercise class on the 27.04.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 27.04.2023.

While there are 38 in total, you may consider all points above the standard 24 to be bonus points.

Exercise 1 (Lower Bounds). (13 Points)
In this exercise, we will bound the convergence rates of algorithms which pick their iterates xk+1 from

span[∇f(x0), . . . ,∇f(xk)] + x0.

We consider the function

fd(x) =
1

2
(x(1) − 1)2 +

1

2

d−1∑
i=1

(x(i) − x(i+1))2

(i) To understand our function fd better, we want to view it as a potential on a graph. For this
consider the undirected graph G = (V,E) with vertices

V = {1, . . . , d}

and edges
E = {(i, i+ 1) : 1 ≤ i ≤ d− 1}.

Draw a picture of this graph. (1 pt)

(ii) We now interpret x(i) as a quantity (e.g. of heat) at vertex i of our graph G. Our potential
fd decreases, if the quantities at connected vertices i and i + 1 are of similar size. I.e. if
(x(i)− x(i+1))2 is small. Additionally there is a pull for x(1) to be equal to 1. Use this intuition
to find the minimizer x∗ of fd. (1 pt)

(iii) The matrix AG ∈ Rd×d with

AGi,j =


degree of vertex i i = j

−1 (i, j) ∈ E or (j, i) ∈ E
0 else

is called the “Graph-Laplacian” of G. The degree of vertex i are the number of connecting
edges. Calculate AG for G and prove that

∇fd(x) = AGx+ (x(1) − 1)e1 = (AG + e1e
T
1 )x− e1. (1 pt)

(iv) Prove that the Hessian H = ∇fd(x) is constant and positive definite to show that fd is convex.
Prove that the operator norm of H is smaller than 4. Argue that

gd(x) :=
L
4 fd(x)

is therefore L-smooth. (2 pts)
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(v) Assume x0 = 0 and and that (xn)n∈N is chosen with the restriction

xn+1 ∈ Kn := span[∇gd(x0), . . . ,∇gd(xn)].

To make notation easier we are going to identify Rd with an isomorph subset of sequences

Rd := {x ∈ `2 : x(i) = 0 ∀i > n}

then Rn is a subset of Rd for n ≤ d. Prove inductively that

Kn ⊆ Rn+1 ⊆ Rd (1 pt)

(vi) We now want to bound the convergence speed of xn to x∗. For this we select d = 2n+ 1.

Note: We may choose a larger dimension d by defining f2n+1 on the subset R2n+1 in Rd. The
important requirement is therefore 2n + 1 ≤ d. But without loss of generality we assume
equality.

Use the knowledge we have collected so far to argue

‖x∗ − xn‖2 ≥ d− n ≥ 1
2‖x∗ − x0‖

2. (1 pt)

(vii) To prevent the convergence of the loss gd(xn) to gd(x∗) we need a more sophisticated argument.
For this consider

g̃n(x) :=
L
4 [fn(x) +

1
2(x

(n) − 0)2].

Argue that on Rn ⊂ Rd the functions g̃n and gd are identical. Use this observation to prove

gd(xn)− inf
x
gd(x) ≥ inf

x
g̃n(x). (1 pt)

(viii) Our goal is now to calculate infx g̃n(x). Prove convexity of g̃n and prove that

x̂(i)n =

{
1− i

n+1 i ≤ n+ 1

0 i ≥ n+ 1

is its minimum. Then plug our solution into g̃n (or gd, since x̂n is in the subset Rn after all), to
obtain the lower bound

gd(xn)− inf
x
gd(x) ≥

L‖x0 − x∗‖2

8(n+ 1)d
≥ L‖x0 − x∗‖2

16(n+ 1)2
. (3 pts)

(ix) Argue that we only needed

xn = x0 +
n−1∑
k=0

Ak∇f(xk)

with upper triangular matrices Ak to make these bounds work. Since adaptive methods (like
Adam) use diagonal matrices Ak, they are therefore covered by these bounds. (1 pt)

(x) Bask in our glory! For we have proven that ...? Summarize our results into a theorem. (1 pt)
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(xi) (Bonus) If you wish, you may want to try and repeat those steps for

Gd(x) =
L− µ
L

gd(x) +
µ

2
‖x‖2

to prove an equivalent result for µ-strongly convex functions. Unfortunately finding x∗ is much
more difficult in this case. Letting d→∞ makes this problem tractable again with solution

x
(i)
∗ =

(√κ− 1√
κ+ 1

)i
.

Exercise 2 (Conjugate Gradient Descent). (12 Points)
Consider a quadratic function

f(x) = 1
2(x− x∗)

TH(x− x∗)

for some symmetric and positive definite H and consider the hilbert spaceH = (Rd, 〈·, ·〉H) with

〈x, y〉H = 〈x,Hy〉

(i) Prove that 〈·, ·〉H is a well-defined scalar product. Convince yourself that

f(x) = 1
2‖x− x∗‖

2
H . (1 pt)

(ii) Determine the derivative∇Hf(x) of f inH (1 pt)

Hint. Recall that∇Hf(x) is the unique vector satisfying

0 = lim
v→0

|f(x+ v)− f(x)− 〈∇Hf(x), v〉H |
‖v‖H

.

(iii) Since gradient descent in the space H is therefore computationally the Newton method, we
want to find a different method of optimization. Consider an arbitrary set of conjugate (H-
orthogonal) directions (v1, . . . vd), i.e. 〈vi, vj〉H = δij , and for some starting point x0 ∈ Rd the
following descent algorithm:

xk+1 = xk − αkvk+1 with αk := argmin
α

f(xk − αvk+1). (CD)

Optimizing over α in this manner is known as “line-search”. Using y(i) := 〈y, vi〉 prove that

(xk − x∗) =
d∑

i=k+1

(x0 − x∗)(i)vi = argmin
x
{f(x) : x ∈ x0 + span[v1, . . . , vk]} − x∗.

Deduce that conjugate descent (CD) converges in d steps. (2 pts)

(iv) If we had vi = ∇f(xi−1), then this algorithm would be optimal in the set of algorithms we
considered in the previous exercise. Unfortunately the gradients ∇f(xi−1) are generally not
conjugate. So while we may select an arbitrary set of conjugate vi, we cannot select the gradi-
ents directly.

Instead we are going to do the next best thing and inductively select vk+1 such that

Kk := span[∇f(x0), . . .∇f(xk)] = span[v1, . . . , vk+1]
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using the Gram-Schmidt procedure to make vk+1 conjugate to v1, . . . , vk. Since Gram-Schmidt
is still computationally too expensive for our tastes, you please inductively prove

Kk = span[H1(x0 − x∗), . . . ,Hk+1(x0 − x∗)].

assuming Kk is (k + 1)-dimensional. I.e. Kk is a “H-Krylov subspace”. (2 pts)

(v) Argue that∇f(xk+1) is orthogonal to every vector in Kk and inductively deduce either

∇f(xk+1) = 0

which implies xk+1 = x∗, or Kk+1 has full rank. Deduce from the H-Krylov-subspace prop-
erty, that∇f(xk+1) is already H-orthogonal to Kk−1. (2 pts)

Hint. xk+1 = argminx{f(x) : x ∈ Kk + x0}.

(vi) Collect the ideas we have gathered to prove the recursively defined

vk+1 = ∇f(xk)−
〈∇f(xk), vk〉H
‖vk‖2H

vk

are H-conjugate and have the same span as the gradients up to∇f(xk). (1 pt)

(vii) To make our procedure truly computable, we want to show

〈∇f(xk), vk〉H
‖vk‖2H

= − ‖∇f(xk)‖
2

‖∇f(xk−1)‖2
. (2 pts)

Hint. Proving
∇f(xk) = ∇f(xk−1)− αk−1Hvk

should allow you to conclude 〈∇f(xk), vk〉h = −‖∇f(xk)‖
2

αk−1
. Then it makes sense to calculate

αk−1 = −
〈∇f(xk−1), vk〉
‖vk‖2H

by solving its optimization problem. Finally you may want to consider vk = ∇f(xk−1)−cvk−1
and vk−1 ∈ Kk−2.

(viii) Summarize everything into a pseudo-algorithm for conjugate gradient descent (CGD) and com-
pare it to heavy-ball momentum with

βk =
αk‖∇f(xk)‖2

αk−1‖∇f(xk−1)‖2

using identical αk as CGD. (1 pt)

Exercise 3 (Momentum). (13 Points)
In this exercise, we take a closer look at heavy-ball momentum

xk+1 = xk + βk(xk − xk−1) + αk∇f(xk)
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(i) Find a continuous function f : R→ R such that

f ′(x) =


25x x < 1

x+ 24 1 < x < 2

25x− 24 2 < x.

Prove that f is µ-strongly convex with µ = 1, L-smooth with L = 25 and has a minimum in
zero. (2 pts)

(ii) Recall, we required for convergence of HBM

1 > β ≥ max{(1−√αµ)2, (1−
√
αL)2}.

Calculate the optimal α and β to minimize the rate
√
β. (1 pt)

(iii) Prove, using heavy ball momentum on f with the optimal parameters results in the recur-
sion (1 pt)

xk+1 =
13
9 xk −

4
9xk−1 −

1
9∇f(xk).

(iv) We want to find a cycle of points p→ q → r → p, such that for x0 = p we have

x3k = p x3k+1 = q x3k+2 = r ∀k ∈ N0.

Assume p < 1, q < 1 and r > 2 and use the heavy-ball recursion to create linear equations for
p, q, r. Solve this linear equation. What does this mean for convergence? (3 pts)

(v) Implement Heavy-Ball momentum, Nesterov’s momentum and CGD https://classroom.
github.com/a/f3PnRxTs. (6 pts)
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