Solution Sheet 3

For the exercise class on the 30.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 30.03.2023.

Exercise 1 (Convergence Speed).

(3 Points)
Proof that
(i) if we have

$$
\limsup _{k \rightarrow \infty} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}=0,
$$

then $e\left(x_{k}\right)$ converges super-linearly.
Solution. We define $c_{n}:=\sup _{k \geq n} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}$. Then

$$
\lim _{n \rightarrow \infty} c_{n}=\limsup _{k \rightarrow \infty} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}=0
$$

and by definition

$$
e\left(x_{k+1}\right) \leq c_{k} e\left(x_{k}\right)
$$

Thus we have super-linear convergence.
(ii) If for $c \in(0,1)$ we have

$$
\limsup _{k \rightarrow \infty} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}<c,
$$

then $e\left(x_{k}\right)$ converges linearly with rate c.

Solution. We again define $c_{n}:=\sup _{k \geq n} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}$

$$
\lim _{n \rightarrow \infty} c_{n}=\limsup _{k \rightarrow \infty} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)}<c
$$

thus there exists $N \geq 0$ such that for all $n \geq N$ we have $c_{n} \leq c$ and therefore for all $n \geq N$

$$
e\left(x_{n+1}\right) \leq c_{n} e\left(x_{n}\right) \leq c e\left(x_{n}\right) .
$$

(iii) If for $c \in(0,1)$ we have

$$
\limsup _{k \rightarrow \infty} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)^{2}}<c,
$$

then $e\left(x_{k}\right)$ converges super-linearly with rate c.

Solution. We similarly define $c_{n}:=\sup _{k \geq n} \frac{e\left(x_{k+1}\right)}{e\left(x_{k}\right)^{2}}$ and again get $\lim _{n \rightarrow \infty} c_{n}<c$. Thus there exists $N \geq 0$ such that for all $n \geq K$ we have $c_{n} \leq c$ and therefore for all $n \geq N$

$$
e\left(x_{n+1}\right) \leq c_{n} e\left(x_{n}\right)^{2} \leq c e\left(x_{n}\right)^{2}
$$

Exercise 2 (Sub-gradients).
(4 Points)
Let $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be convex functions.
(i) Prove that $\partial f(x)$ is a convex set for any $x \in \mathbb{R}^{d}$.

Solution. Let $g_{1}, g_{2} \in \partial f(x)$. Then for any $\lambda \in[0,1]$ and any $y \in \mathbb{R}^{d}$

$$
\begin{aligned}
& f(y)=\lambda f(y)+(1-\lambda) f(y) \\
& g_{1}, g_{2} \in \partial f(x) \\
& \geq \\
&=f\left(f(x)+\left\langle g_{1}, y-x\right\rangle\right)+(1-\lambda)\left(f(x)+\left\langle g_{2}, y-x\right\rangle\right) \\
&=\left\langle g_{1}+(1-\lambda) g_{2}, y-x\right\rangle
\end{aligned}
$$

thus $\lambda g_{1}+(1-\lambda) g_{2} \in \partial f(x)$ by definition.
(ii) Prove for $a>0, \partial(a f)=a \partial f$

Solution. We only need to prove " \supseteq ". Using $\tilde{f}=a f$ with $\tilde{a}=\frac{1}{a}$ the other inclusion immediately follows.
Let $a g_{x} \in a \partial f(x)$ with $g_{x} \in \partial f(x)$. We need to show that $a g_{x} \in \partial(a f)(x)$. But this follows immediately

$$
\underbrace{a}_{>0} f(y) \stackrel{g_{x} \in \partial f(x)}{\geq} a\left(f(x)+\left\langle g_{x}, y-x\right\rangle\right)=(a f)(x)+\left\langle a g_{x}, y-x\right\rangle
$$

(iii) Prove that $\partial\left(f_{1}+f_{2}\right) \supseteq \partial f_{1}+\partial f_{2}$

Solution. Let $g_{i} \in \partial f_{i}(x)$ for $i=1,2$. Then we have that $g_{1}+g_{2} \in \partial\left(f_{1}+f_{2}\right)$ because

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(y) & \geq\left(f_{1}(x)+\left\langle g_{1}, y-x\right\rangle\right)+\left(f_{2}(x)+\left\langle g_{2}, y-x\right\rangle\right) \\
& =\left(f_{1}+f_{2}\right)(x)+\left\langle g_{1}+g_{2}, y-x\right\rangle
\end{aligned}
$$

(iv) For $h(x)=f(A x+b)$ prove $\partial h(x) \supseteq A^{T} \partial f(A x+b)$. Prove equality for invertible A. (1 pt) Solution. Let $g_{x} \in \partial f(x)$ i.e. $g_{A x+b} \in \partial f(A x+b)$. Then $A^{T} g_{A x+b} \in \partial h(x)$ because

$$
\begin{aligned}
h(y)=f(A y+b) & \geq f(A x+b)+\left\langle g_{A x+b},(A y+b)-(A x+b)\right\rangle \\
& =h(x)+\left\langle A^{T} g_{A x+b}, y-x\right\rangle
\end{aligned}
$$

If A is invertible, we have $f(x)=h\left(A^{-1} x-A^{-1} b\right)$ so by the previous statement with $\tilde{A}=A^{-1}$ and $\tilde{b}=-A^{-1} b$, we get the other direction.

Let

$$
f(x)=\frac{1}{2}\|x-y\|^{2}+\lambda\|x\|_{1}
$$

for $x \in \mathbb{R}^{d}$ be the Lagrangian form of the least squares LASSO method.
(i) Compute a sub-gradient of f.

Solution. Using $\partial(g+\lambda h)(x) \supseteq \partial g(x)+\lambda \partial h(x)$, we only need to determine the subgradient of $g(x):=\frac{1}{2}\|x-y\|^{2}$ and

$$
h(x):=\|x\|_{1}=\sum_{i=1}^{d}\left|x_{i}\right| .
$$

But $\nabla g(x)=x-y$ as g is differentiable. And since it is also convex, we have

$$
\partial g(x)=\{\nabla g(x)\} .
$$

Now the subgradient of $h_{i}(x)=\left|x_{i}\right|$ is given by $\operatorname{sgn}\left(x_{i}\right) e_{i}$, where $\operatorname{sgn}(0) \in[-1,1]$ can be selected arbitrarily, because

$$
\left.\begin{gathered}
h_{i}(x)+\left\langle\operatorname{sgn}\left(x_{i}\right) e_{i}, y-x\right\rangle=\left|x_{i}\right|+\operatorname{sgn}\left(x_{i}\right) y_{i}-\underbrace{\operatorname{sgn}\left(x_{i}\right) x_{i}}_{\left|x_{i}\right|}=\operatorname{sgn}\left(x_{i}\right) y_{i} \\
\operatorname{sgn}\left(x_{i}\right) \in[-1,1] \\
\leq
\end{gathered} y_{i} \right\rvert\,=h_{i}(y) .
$$

So again

$$
\partial h(x) \supseteq \sum_{i=1}^{d} \partial h_{i}(x) \ni\left(\operatorname{sgn}\left(x_{1}\right), \ldots, \operatorname{sgn}\left(x_{n}\right)\right)^{T}=: s(x) .
$$

So putting everything together we have

$$
\partial f(x) \ni x-y+\lambda s(x) .
$$

(ii) Prove that f is convex.

Solution. As its sets of sub-gradients is nowhere empty, it is convex.
(iii) Find a global minimum of f.

Solution. By the lecture it is sufficient to find a point x such that $0 \in \partial f(x)$. By the previous exercise we therefore want to solve

$$
0 \stackrel{!}{=} x-y+\lambda s(x)
$$

entry-wise this implies

$$
\left.\left.\begin{array}{rl}
x_{i} \stackrel{!}{=} y_{i}-\lambda \operatorname{sgn}\left(x_{i}\right)= \begin{cases}y_{i}+\lambda \\
y_{i}-\lambda[-1,1] & x_{i}<0 \\
y_{i}-\lambda\end{cases} & x_{i}>0
\end{array}\right\} \begin{array}{ll}
y_{i}+\lambda & y_{i}+\lambda<0 \\
0 & y_{i} \in[-\lambda, \lambda] \\
y_{i}-\lambda & y_{i}-\lambda>0
\end{array}\right] \begin{array}{ll}
y_{i}+\lambda & y_{i}<-\lambda \\
0 & y_{i} \in[-\lambda, \lambda] \\
y_{i}-\lambda & y_{i}>\lambda .
\end{array}
$$

(iv) Implement f as a sub-type of "DifferentiableFunction" (even though it is not) by returning a single sub-gradient and apply gradient descent to verify the global minimum https:// classroom.github.com/a/XqNuifmO

Exercise 4 (Momentum Matrix).

(2 Points) let $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right), \alpha, \beta>0$ and define

$$
T=\left(\begin{array}{cc}
(1+\beta) \mathbb{I}-\alpha D & -\beta \mathbb{I} \\
\mathbb{I} & \mathbf{0}
\end{array}\right) \in \mathbb{R}^{2 d \times 2 d}
$$

Prove there exists a regular $S \in \mathbb{R}^{2 d \times 2 d}$ such that

$$
S^{-1} T S=\hat{T}=\left(\begin{array}{ccc}
T_{1} & & \\
& \ddots & \\
& & T_{d}
\end{array}\right)
$$

with

$$
T_{i}=\left(\begin{array}{cc}
1+\beta-\alpha \lambda_{i} & -\beta \\
1 & 0
\end{array}\right) \in \mathbb{R}^{2 \times 2}
$$

Solution. We simply define for the standard basis $e_{i} \in \mathbb{R}^{d}$

$$
S=\left(\begin{array}{ccccc}
e_{1} & 0 & \ldots & e_{d} & 0 \\
0 & e_{1} & \ldots & 0 & e_{d}
\end{array}\right) \in \mathbb{R}^{2 d \times 2 d}
$$

in particular $S^{T}=S^{-1}$.
Exercise 5 (PL-Inequality).
(5 Points)
Assume $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth and satisfies the Polyak-Łojasiewicz inequality

$$
\begin{equation*}
\|\nabla f(x)\|^{2} \geq 2 c\left(f(x)-f_{*}\right) \tag{PL}
\end{equation*}
$$

for some $c>0$ and all $x \in \mathbb{R}^{d}$ with $f_{*}=\min _{x} f(x)>-\infty$.
(i) Prove that gradient descent with fixed step size $\alpha_{k}=\frac{1}{L}$ converges linearly in the sense

$$
\begin{equation*}
f\left(x_{k}\right)-f_{*} \leq\left(1-\frac{c}{L}\right)^{k}\left(f\left(x_{0}\right)-f_{*}\right) . \tag{1pt}
\end{equation*}
$$

Solution. By L-smoothness and the descent lemma, we have

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|^{2} \stackrel{\text { PLI }}{\leq} f\left(x_{k}\right)-\frac{c}{L}\left(f\left(x_{k}\right)-f_{*}\right) .
$$

Subtracting f_{*} from both sides, we get

$$
f\left(x_{k+1}\right)-f_{*} \leq\left(1-\frac{c}{L}\right)\left(f\left(x_{k}\right)-f_{*}\right)
$$

(ii) Prove that μ-strong-convexity and L-smoothness imply the PL-inequality.

Solution. Recall by the solution of sheet 1, exercise 6 (iii), and strong convexity we have

$$
\begin{aligned}
& \mu\|x-y\|^{2} \leq D_{f}^{(B)}(x, y)+D_{f}^{(B)}(y, x) \\
&=\langle\nabla f(x)-\nabla f(y), x-y\rangle \\
& \text { C.S. } \\
& \leq \nabla f(x)-\nabla f(y)\| \| x-y \|
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\mu\|x-y\| \leq\|\nabla f(x)-\nabla f(y)\| . \tag{1}
\end{equation*}
$$

Finally we know by L-smoothness and $\nabla f\left(x_{*}\right)=0$ where x_{*} is the minimum

$$
f(x)-f\left(x_{*}\right) \stackrel{\nabla f\left(x_{*}\right)=0}{=} D_{f}^{(B)}\left(x, x_{*}\right) \stackrel{L \text {-smooth }}{\leq} \frac{L}{2}\left\|x-x_{*}\right\|^{2} \stackrel{\text { (1) }}{\leq} \frac{L}{2 \mu}\|\nabla f(x)-\underbrace{\nabla f\left(x_{*}\right)}_{=0}\|^{2}
$$

(iii) Use a graphing calculator to find c such that $f(x)=x^{2}+3 \sin ^{2}(x)$ satisfies the PL-condition (argue why $x \rightarrow \infty$ is not a problem) and prove it is not convex.

Solution. For $c=\frac{1}{6}$ we have the PL-condition

As $f^{\prime}(x)=2(x+3 \sin (x) \cos (x))$ and therefore

$$
f^{\prime}(x)^{2}=4(x+3 \underbrace{\sin (x) \cos (x)}_{\in[-1,1]})^{2} \stackrel{|x| \geq 3}{\geq} 4(|x|-3)^{2}
$$

the x^{2} dominates for large x, so if we make c small enough we can ensure the inequality for large x.
f is not convex because

$$
f\left(\frac{1}{2} \pi+\frac{1}{2} 0\right)=\frac{\pi^{2}}{4}+3>\frac{1}{2} \pi^{2}=\frac{1}{2} f(\pi)+\frac{1}{2} f(0) .
$$

Exercise 6 (Weak PL-Inequality).
(4 Points)
Assume $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth and satisfies the "weak PL inequality"

$$
\|\nabla f(x)\| \geq 2 c\left(f(x)-f_{*}\right)
$$

for some $c>0$ and all $x \in \mathbb{R}^{d}$ with $f_{*}=\min _{x} f(x)>-\infty$.
(i) Let $a_{0} \in\left[0, \frac{1}{q}\right]$ for some $q>0$ and assume for the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ that it is positive and satisfies a diminishing contraction

$$
0 \leq a_{n+1} \leq\left(1-q a_{n}\right) a_{n} \quad \forall n \geq 0 .
$$

Prove the convergence rate

$$
\begin{equation*}
a_{n} \leq \frac{1}{n q+1 / a_{0}} \leq \frac{1}{(n+1) q} . \tag{1pt}
\end{equation*}
$$

Solution. Divide the reordered contraction

$$
a_{n} \geq a_{n+1}+q a_{n}^{2}
$$

by $a_{n} a_{n+1}$ to obtain

$$
\frac{1}{a_{n+1}} \geq \frac{1}{a_{n}}+q \underbrace{\frac{a_{n}}{a_{n+1}}}_{\geq 1} \geq \frac{1}{a_{n}}+q
$$

which leads to

$$
\frac{1}{a_{n}}-\frac{1}{a_{0}}=\sum_{k=0}^{n-1} \frac{1}{a_{k+1}}-\frac{1}{a_{k}} \geq n q .
$$

Reordering we obtain our claim

$$
\begin{equation*}
a_{n} \leq \frac{1}{n q+\frac{1}{a_{0}}} \stackrel{a_{0} \leq \frac{1}{q}}{\leq} \frac{1}{(n+1) q} \tag{1pt}
\end{equation*}
$$

(ii) Prove that f is bounded. More specifically $e(x):=f(x)-f_{*} \leq \frac{L}{2 c^{2}}$ for all x.

Solution. Using Sheet 1 Exercise 1 (i), we get

$$
f_{*} \leq f(x)-\frac{1}{2 L}\|\nabla f(x)\|^{2}
$$

and therefore

$$
e(x) \geq \frac{1}{2 L}\|\nabla f(x)\|^{2} \stackrel{\text { weak PL }}{\geq} \frac{4 c^{2}}{2 L} e(x)^{2} .
$$

Dividing both sides by $e(x)$ we obtain

$$
1 \geq \frac{2 c^{2}}{L} e(x)
$$

and thus

$$
e(x) \leq \frac{L}{2 c^{2}}
$$

(iii) For gradient descent $x_{n+1}-x_{n}=-\alpha_{n} \nabla f\left(x_{n}\right)$ with constant step size $\alpha_{k}=\frac{1}{L}$ prove the convergence rate

$$
\begin{equation*}
f\left(x_{n}\right)-f_{*} \leq \frac{L}{2 c^{2}(n+1)} . \tag{2pts}
\end{equation*}
$$

Solution. Using L-smoothness, we have

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \leq f\left(x_{k}\right)-\underbrace{\alpha_{k}\left(1-\frac{L}{2} \alpha_{k}\right.}_{=\frac{1}{2 L}}) \underbrace{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}_{\geq 4 c^{2} e\left(x_{k}\right)^{2}}
\end{aligned}
$$

If we subtract f_{*} from both sides and apply our weak PL inequality we get

$$
e\left(x_{k+1}\right) \leq e\left(x_{k}\right)-\frac{4 c^{2}}{2 L} e\left(x_{k}\right)^{2}=\left(1-\frac{2 c^{2}}{L} e\left(x_{k}\right)\right) e\left(x_{k}\right)
$$

with $q=\frac{2 c^{2}}{L}$ and $e\left(x_{0}\right) \leq \frac{L}{2 c^{2}}=\frac{1}{q}$ by (ii), we can apply (i) to obtain our claim.

