Optimization in Machine Learning Universitit Mannheim
HWS 2024 Prof. Simon Weilmann, Felix Benning

Solution Sheet 3

For the exercise class on the 17.10.2023 at 12:00.
Hand in your solutions by 10:15 in the lecture on Tuesday 15.10.2024.

Exercise 1 (Convergence Speed). (3 Points)
Proof that
(1) if we have
lim sup M =0,
koo €(Tk)
then e(z) converges super-linearly. (1 pt)

(ii)

(ii1)

Solution. We define c,, := supj>,, e(;;:)l) Then

e(Tk41)

lim ¢, = limsup =0
n—00 k—o0 e(xk‘)
and by definition
e(rrr1) < cpe(z).
Thus we have super-linear convergence. O
If for ¢ € (0,1) we have
lim sup M <ec,
k—o0 e($k)
then e(xy) converges linearly with rate c. (1 pt)
Solution. We again define ¢, := supy>, e(egz’;:)l)
lim ¢, = limsup M <c
n—00 k—o0 e(xk)

thus there exists N > 0 such that for all n > N we have ¢,, < ¢ and therefore for all n > N

e(pt1) < cpe(zy) < ce(xy). O
If for ¢ € (0,1) we have
lim sup €(L+12) <ec,
k—o0 e(xk’)
then e(xy) converges super-linearly with rate c. (1 pt)



Solution. We similarly define c,, := SUDj >, %}55) and again get lim,,_,, ¢, < c. Thus there

exists N > 0 such that for all n > K we have ¢,, < c¢ and therefore for all n > N
e(zni1) < cne(zn)? < ce(z,)? O

Exercise 2 (Sub-gradients). (2 Points)
Let f, g : R — R be convex functions.

(i) Prove that 9f(z) is a convex set for any = € R, (1 pt)

Solution. Let g1, g2 € Of(x). Then for any A € [0, 1] and any y € RY

f) =Afy) + A=A f(y)
MA@ + oy - 0) + - N (@) + (- )
= f(z) + <>\g1 + (1= XN)g2,y — w>

thus Ag1 + (1 — X)g2 € Of(x) by definition. O
(ii) For h(z) = f(Az + b) prove Oh(x) D ATOf(Ax + b). Prove equality for invertible A. (1 pt)

Solution. Let g, € Of(x)i.e. gagyy € Of (Ax 4+ b). Then AT g4,y € Oh(x) because

h(y) = f(Ay +b) > f(Az +b) + (gaz+b, (Ay +b) — (Az + D))
= h(z) + <ATgAx+b, y—x).

If Ais invertible, we have f(x) = h(A~'z— A~'b) so by the previous statement with A = A~!
and b= —A"1b, we get the other direction. O

Exercise 3 (Lasso). (6 Points)
Let
f(@) = llz =yl + Az

for 2 € R? be the Lagrangian form of the least squares LASSO method.

(i) Compute a sub-gradient of f. (2 pts)

Solution. Using 0(g + A\h)(x) 2 dg(x) + AOh(z), we only need to determine the subgradient
of g(x) := 3|z — yI|* and

d
hz) = [l =) |il.
i=1
But Vg(z) = x — y as g is differentiable. And since it is also convex, we have

dg(x) = {Vy(z)}.



Now the subgradient of h;(x) = |z;| is given by sgn(z;)e;, where sgn(0) € [—1,1] can be
selected arbitrarily, because

hi(z) + (sgn(xi)ei, y — x) = |x;| + sgn(w;)y; — sgn(x;)x; = sgn(x;)y;
| ]
x;

sgn(z;)€[—1,1]
< lyil = hi(y).

So again

d
Oh(z) 2 Z@hi(x) > (sgn(zy), . ..,sgn(z,))t =: s(x).
i=1

So putting everything together we have

Of(x) >z —y + As(x). O

(ii) Prove that f is convex. (1pt)
Solution. As its sets of sub-gradients is nowhere empty, it is convex. O

(iii) Find a global minimum of f. (1pt)

Solution. By the lecture it is sufficient to find a point x such that 0 € Jf(z). By the previous
exercise we therefore want to solve

0;$—y+)\5($)

entry-wise this implies

y¢+)\ z; <0

|
r; =y — Asgn(w;) = Sy — A[-1,1] 2, =0
yi—)\ x; >0

Yi+ A yi+A<0
=<0 Yi € [, A
Yi— A Yi—A>0
it A oy < —A
=<0 yi € [\, ]
Yi—A Y > A

(iv) Implement f as a sub-type of ”DifferentiableFunction” (even though it is not) by returning
a single sub-gradient and apply gradient descent to verify the global minimum https://
classroom.github.com/a/Bm7FMbl2 (2 pts).


https://classroom.github.com/a/Bm7FMb12
https://classroom.github.com/a/Bm7FMb12

Exercise 4 (Momentum Matrix). (2 Points)

let D = diag(A1, ..., Aq), @, > 0 and define

_(A+PI—aD —pl x
T—( ]:[ O>€R2d 2d

Prove there exists a regular S € R?#*2¢ such that

Ty
STITS =T =
Ty

with

(1 +B8—aN —f 22
Tz—< 1 0>6R )

Solution. We simply define for the standard basis e; € R¢

g = (66 601 €0d 60d) c R2dx2d
in particular ST = S~1, U
Exercise 5 (PL-Inequality). (6 Points)
Assume f : R? — R is L-smooth and satisfies the Polyak-Eojasiewicz inequality
IVf(@)|? = 2¢(f(2) = fi) (PL)
for some ¢ > 0 and all z € R? with f, = min, f(z) > —oc.
(i) Prove that gradient descent with fixed step size ay, = % converges linearly in the sense
Flar) = fo < (1= £)"(f (20) = f2). (2 pts)
Solution. By L-smoothness and the descent lemma, we have
Flonn) < Flaw) — IV F DI S Flaw) - $(F ) - £o)
Subtracting f, from both sides, we get
fare) = fo < (L= 2)(f (@) = fo) O
(ii) Prove that p-strong-convexity and L-smoothness imply the PL-inequality. (2 pts)



Solution. Recall by the solution of sheet 1, exercise 6 (iii), and strong convexity we have

pllz — y)1? < D (@,y) + DY (y,x)

=(Vf(x)-Vfy),z—y)
2 IVF@) - V) - vl

0

and therefore
pllz =yl <IVf(z) = VIl ¢))

Finally we know by L-smoothness and V f(z,) = 0 where x, is the minimum

Vf(&)z L-smooth [, ”2 @

Fa) = fe) ¥ E T D ) T Dla =P 2 IV S@) - Do) O

=0

(iii) Use a graphing calculator to find ¢ such that f(z) = 22 4 3sin?(x) satisfies the PL-condition
(argue why x — o0 is not a problem) and prove it is not convex. (2 pts)

Solution. For ¢ = % we have the PL-condition

= Untitled Graph desmos

+ L £ L - 25

f(x) = (x2 +3 sin2(x))

VO w2
3,“/ | 20

21(x)

As f'(x) = 2(z + 3sin(x) cos(x)) and therefore

|z[>
f'(z)? = 4(x + 3sin(z) cos(x))? > ’ 4(|z| — 3)*
—_———

€[-1,1]

5



the 22 dominates for large x, so if we make ¢ small enough we can ensure the inequality for
large x.

f is not convex because

O

Exercise 6 (Weak PL-Inequality). (5 Points)
Assume f : R? — R is L-smooth and satisfies the “weak PL inequality”

V()| = 2¢(f(x) = f)

for some ¢ > 0 and all z € R? with f, = min, f(z) > —o0.

(i) Let ap € [0, %] for some ¢ > 0 and assume for the sequence (a,)necn that it is positive and
satisfies a diminishing contraction

0 <apt1 <(1—qayp)ay Vn > 0.

Prove the convergence rate

1 1
a < . 2 pts
"“ng+1/ag ~ (n+1)q 2 pts)
Solution. Divide the reordered contraction
an > any1 + qa;,
by anan+1 to obtain
1 1 an 1
> —+q > —+q
an+41 an Gn41 Gn
>1
which leads to
n—1
1 1 1 1
— - — = - — 2>ng.
an a0 L app ag
Reordering we obtain our claim
T
an < — < . O
ng + oo (n+1)q
(ii) Prove that f is bounded. More specifically e(x) := f(x) — fi < ﬁ for all z. (1 pt)

Solution. Using Sheet 1 Exercise 1 (i), we get

fo < f(@) = 5 IV f ()]



(iii)

and therefore
||2 weak PL

e(x) = 53¢V f(x)
Dividing both sides by e(z) we obtain

1> %e(w)

and thus
e(z) < % O
For gradient descent z,+1 — x, = —a,,V f(z,,) with constant step size aj, = % prove the
convergence rate
L
— i < —. 2 pts

Solution. Using L-smoothness, we have

F@er) < f@r) + (Vf(k), tper — 2i) + S llongr — 2l
< flaw) — an(l = Sag) |V f ()|

-~

>4c2e(ay,)?

L
2L

If we subtract f, from both sides and apply our weak PL inequality we get

2 2
e(wpr1) < elzy) — Sre(zr)? = (1 *fe(zy))e(zr)
with g = % and e(xg) < % = % by we can apply to obtain our claim. O



