
Optimization in Machine Learning Universität Mannheim
FSS 2023 Prof. Simon Weißmann, Felix Benning

Solution Sheet 3

For the exercise class on the 30.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 30.03.2023.

Exercise 1 (Convergence Speed). (3 Points)
Proof that

(i) if we have

lim sup
k→∞

e(xk+1)

e(xk)
= 0,

then e(xk) converges super-linearly. (1 pt)

Solution. We define cn := supk≥n
e(xk+1)
e(xk)

. Then

lim
n→∞

cn = lim sup
k→∞

e(xk+1)

e(xk)
= 0

and by definition
e(xk+1) ≤ cke(xk).

Thus we have super-linear convergence.

(ii) If for c ∈ (0, 1) we have

lim sup
k→∞

e(xk+1)

e(xk)
< c,

then e(xk) converges linearly with rate c. (1 pt)

Solution. We again define cn := supk≥n
e(xk+1)
e(xk)

lim
n→∞

cn = lim sup
k→∞

e(xk+1)

e(xk)
< c

thus there exists N ≥ 0 such that for all n ≥ N we have cn ≤ c and therefore for all n ≥ N

e(xn+1) ≤ cne(xn) ≤ ce(xn).

(iii) If for c ∈ (0, 1) we have

lim sup
k→∞

e(xk+1)

e(xk)2
< c,

then e(xk) converges super-linearly with rate c. (1 pt)
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Solution. We similarly define cn := supk≥n
e(xk+1)
e(xk)2

and again get limn→∞ cn < c. Thus there
exists N ≥ 0 such that for all n ≥ K we have cn ≤ c and therefore for all n ≥ N

e(xn+1) ≤ cne(xn)
2 ≤ ce(xn)

2.

Exercise 2 (Sub-gradients). (4 Points)
Let f, g : Rd → R be convex functions.

(i) Prove that ∂f(x) is a convex set for any x ∈ Rd. (1 pt)

Solution. Let g1, g2 ∈ ∂f(x). Then for any λ ∈ [0, 1] and any y ∈ Rd

f(y) = λf(y) + (1− λ)f(y)

g1,g2∈∂f(x)
≥ λ

(
f(x) + ⟨g1, y − x⟩

)
+ (1− λ)

(
f(x) + ⟨g2, y − x⟩

)
= f(x) +

〈
λg1 + (1− λ)g2, y − x

〉
thus λg1 + (1− λ)g2 ∈ ∂f(x) by definition.

(ii) Prove for a > 0, ∂(af) = a∂f (1 pt)

Solution. We only need to prove “⊇”. Using f̃ = af with ã = 1
a the other inclusion immedi-

ately follows.

Let agx ∈ a∂f(x) with gx ∈ ∂f(x). We need to show that agx ∈ ∂(af)(x). But this follows
immediately

a︸︷︷︸
>0

f(y)
gx∈∂f(x)

≥ a
(
f(x) + ⟨gx, y − x⟩

)
= (af)(x) + ⟨agx, y − x⟩.

(iii) Prove that ∂(f1 + f2) ⊇ ∂f1 + ∂f2 (1 pt)

Solution. Let gi ∈ ∂fi(x) for i = 1, 2. Then we have that g1 + g2 ∈ ∂(f1 + f2) because

(f1 + f2)(y) ≥
(
f1(x) + ⟨g1, y − x⟩

)
+
(
f2(x) + ⟨g2, y − x⟩

)
= (f1 + f2)(x) + ⟨g1 + g2, y − x⟩.

(iv) For h(x) = f(Ax+ b) prove ∂h(x) ⊇ AT∂f(Ax+ b). Prove equality for invertible A. (1 pt)

Solution. Let gx ∈ ∂f(x) i.e. gAx+b ∈ ∂f(Ax+ b). Then AT gAx+b ∈ ∂h(x) because

h(y) = f(Ay + b) ≥ f(Ax+ b) + ⟨gAx+b, (Ay + b)− (Ax+ b)⟩
= h(x) + ⟨AT gAx+b, y − x⟩.

If A is invertible, we have f(x) = h(A−1x−A−1b) so by the previous statement with Ã = A−1

and b̃ = −A−1b, we get the other direction.
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Exercise 3 (Lasso). (6 Points)
Let

f(x) = 1
2∥x− y∥2 + λ∥x∥1

for x ∈ Rd be the Lagrangian form of the least squares LASSO method.

(i) Compute a sub-gradient of f . (2 pts)

Solution. Using ∂(g + λh)(x) ⊇ ∂g(x) + λ∂h(x), we only need to determine the subgradient
of g(x) := 1

2∥x− y∥2 and

h(x) := ∥x∥1 =
d∑

i=1

|xi|.

But ∇g(x) = x− y as g is differentiable. And since it is also convex, we have

∂g(x) = {∇g(x)}.

Now the subgradient of hi(x) = |xi| is given by sgn(xi)ei, where sgn(0) ∈ [−1, 1] can be
selected arbitrarily, because

hi(x) + ⟨sgn(xi)ei, y − x⟩ = |xi|+ sgn(xi)yi − sgn(xi)xi︸ ︷︷ ︸
|xi|

= sgn(xi)yi

sgn(xi)∈[−1,1]

≤ |yi| = hi(y).

So again

∂h(x) ⊇
d∑

i=1

∂hi(x) ∋ (sgn(x1), . . . , sgn(xn))
T =: s(x).

So putting everything together we have

∂f(x) ∋ x− y + λs(x).

(ii) Prove that f is convex. (1 pt)

Solution. As its sets of sub-gradients is nowhere empty, it is convex.

(iii) Find a global minimum of f . (1 pt)

Solution. By the lecture it is sufficient to find a point x such that 0 ∈ ∂f(x). By the previous
exercise we therefore want to solve

0
!
= x− y + λs(x)
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entry-wise this implies

xi
!
= yi − λ sgn(xi) =


yi + λ xi < 0

yi − λ[−1, 1] xi = 0

yi − λ xi > 0

=


yi + λ yi + λ < 0

0 yi ∈ [−λ, λ]

yi − λ yi − λ > 0

=


yi + λ yi < −λ

0 yi ∈ [−λ, λ]

yi − λ yi > λ.

(iv) Implement f as a sub-type of ”DifferentiableFunction” (even though it is not) by returning
a single sub-gradient and apply gradient descent to verify the global minimum https://
classroom.github.com/a/XqNuifmO (2 pts).

Exercise 4 (Momentum Matrix). (2 Points)
let D = diag(λ1, . . . , λd), α, β > 0 and define

T =

(
(1 + β)I− αD −βI

I 0

)
∈ R2d×2d

Prove there exists a regular S ∈ R2d×2d such that

S−1TS = T̂ =

T1

. . .
Td


with

Ti =

(
1 + β − αλi −β

1 0

)
∈ R2×2.

Solution. We simply define for the standard basis ei ∈ Rd

S =

(
e1 0 . . . ed 0
0 e1 . . . 0 ed

)
∈ R2d×2d

in particular ST = S−1.

Exercise 5 (PL-Inequality). (5 Points)
Assume f : Rd → R is L-smooth and satisfies the Polyak-Łojasiewicz inequality

∥∇f(x)∥2 ≥ 2c(f(x)− f∗) (PL)

for some c > 0 and all x ∈ Rd with f∗ = minx f(x) > −∞.
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(i) Prove that gradient descent with fixed step size αk = 1
L converges linearly in the sense

f(xk)− f∗ ≤ (1− c
L)

k(f(x0)− f∗). (1 pt)

Solution. By L-smoothness and the descent lemma, we have

f(xk+1) ≤ f(xk)− 1
2L∥∇f(xk)∥2

(PL)
≤ f(xk)− c

L(f(xk)− f∗).

Subtracting f∗ from both sides, we get

f(xk+1)− f∗ ≤ (1− c
L)(f(xk)− f∗)

(ii) Prove that µ-strong-convexity and L-smoothness imply the PL-inequality. (2 pts)

Solution. Recall by the solution of sheet 1, exercise 6 (iii), and strong convexity we have

µ∥x− y∥2 ≤ D
(B)
f (x, y) +D

(B)
f (y, x)

= ⟨∇f(x)−∇f(y), x− y⟩
C.S.
≤ ∥∇f(x)−∇f(y)∥∥x− y∥

and therefore
µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥. (1)

Finally we know by L-smoothness and ∇f(x∗) = 0 where x∗ is the minimum

f(x)− f(x∗)
∇f(x∗)=0

= D
(B)
f (x, x∗)

L-smooth
≤ L

2
∥x− x∗∥2

(1)
≤ L

2µ
∥∇f(x)−∇f(x∗)︸ ︷︷ ︸

=0

∥2.

(iii) Use a graphing calculator to find c such that f(x) = x2 + 3 sin2(x) satisfies the PL-condition
(argue why x → ∞ is not a problem) and prove it is not convex. (2 pts)

Solution. For c = 1
6 we have the PL-condition
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As f ′(x) = 2(x+ 3 sin(x) cos(x)) and therefore

f ′(x)2 = 4(x+ 3 sin(x) cos(x)︸ ︷︷ ︸
∈[−1,1]

)2
|x|≥3

≥ 4(|x| − 3)2

the x2 dominates for large x, so if we make c small enough we can ensure the inequality for
large x.

f is not convex because

f(12π + 1
20) =

π2

4
+ 3 > 1

2π
2 = 1

2f(π) +
1
2f(0).

Exercise 6 (Weak PL-Inequality). (4 Points)
Assume f : Rd → R is L-smooth and satisfies the “weak PL inequality”

∥∇f(x)∥ ≥ 2c(f(x)− f∗)

for some c > 0 and all x ∈ Rd with f∗ = minx f(x) > −∞.

(i) Let a0 ∈ [0, 1q ] for some q > 0 and assume for the sequence (an)n∈N that it is positive and
satisfies a diminishing contraction

0 ≤ an+1 ≤ (1− qan)an ∀n ≥ 0.
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Prove the convergence rate

an ≤ 1

nq + 1/a0
≤ 1

(n+ 1)q
. (1 pt)

Solution. Divide the reordered contraction

an ≥ an+1 + qa2n

by anan+1 to obtain
1

an+1
≥ 1

an
+ q

an
an+1︸ ︷︷ ︸
≥1

≥ 1

an
+ q

which leads to
1

an
− 1

a0
=

n−1∑
k=0

1

ak+1
− 1

ak
≥ nq.

Reordering we obtain our claim

an ≤ 1

nq + 1
a0

a0≤1
q

≤ 1

(n+ 1)q
.

(ii) Prove that f is bounded. More specifically e(x) := f(x)− f∗ ≤ L
2c2

for all x. (1 pt)

Solution. Using Sheet 1 Exercise 1 (i), we get

f∗ ≤ f(x)− 1
2L∥∇f(x)∥2

and therefore

e(x) ≥ 1
2L∥∇f(x)∥2

weak PL
≥ 4c2

2L e(x)2.

Dividing both sides by e(x) we obtain

1 ≥ 2c2

L e(x)

and thus
e(x) ≤ L

2c2
.

(iii) For gradient descent xn+1 − xn = −αn∇f(xn) with constant step size αk = 1
L prove the

convergence rate

f(xn)− f∗ ≤
L

2c2(n+ 1)
. (2 pts)

Solution. Using L-smoothness, we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L
2 ∥xk+1 − xk∥2

≤ f(xk)− αk(1− L
2αk)︸ ︷︷ ︸

=
1
2L

∥∇f(xk)∥2︸ ︷︷ ︸
≥4c2e(xk)2

If we subtract f∗ from both sides and apply our weak PL inequality we get

e(xk+1) ≤ e(xk)− 4c2

2L e(xk)
2 = (1− 2c2

L e(xk))e(xk)

with q = 2c2

L and e(x0) ≤ L
2c2

= 1
q by (ii), we can apply (i) to obtain our claim.
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