Optimization in Machine Learning Universitit Mannheim
FSS 2023 Prof. Simon Weilmann, Felix Benning

Solution Sheet 3

For the exercise class on the 30.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 30.03.2023.

Exercise 1 (Convergence Speed). (3 Points)
Proof that
(1) if we have
lim sup M =0,
koo €(Tk)
then e(z) converges super-linearly. (1 pt)

(ii)

(ii1)

Solution. We define c,, := supj>,, e(;;:)l) Then

e(Tk41)

lim ¢, = limsup =0
n—00 k—o0 e(xk‘)
and by definition
e(rrr1) < cpe(z).
Thus we have super-linear convergence. O
If for ¢ € (0,1) we have
lim sup M <ec,
k—o0 e($k)
then e(xy) converges linearly with rate c. (1 pt)
Solution. We again define ¢, := supy>, e(egz’;:)l)
lim ¢, = limsup M <c
n—00 k—o0 e(xk)

thus there exists N > 0 such that for all n > N we have ¢,, < ¢ and therefore for all n > N

e(pt1) < cpe(zy) < ce(xy). O
If for ¢ € (0,1) we have
lim sup €(L+12) <ec,
k—o0 e(xk’)
then e(xy) converges super-linearly with rate c. (1 pt)



Solution. We similarly define c,, := SUDj >, %}55) and again get lim,,_,, ¢, < c. Thus there

exists N > 0 such that for all n > K we have ¢,, < c¢ and therefore for all n > N
e(zni1) < cne(xn)? < ce(z,)? O

Exercise 2 (Sub-gradients). (4 Points)
Let f, g : R — R be convex functions.

(i) Prove that Of () is a convex set for any z € R%. (1 pt)

Solution. Let g1, gs € f(x). Then for any A € [0,1] and any y € R?
fy) =Afy) + A=) f(y)
g1,92€0f ()
> A(f@) oy =) + (1= N (f@) + g2y — )
= f(z) + <>\gl + (1= A)g2,y — ﬂf>
thus Ag1 + (1 — X)g2 € 9f(x) by definition. O

(ii) Prove fora > 0, d(af) = adf (1 pt)

Solution. We only need to prove “O”. Using f=af witha = % the other inclusion immedi-
ately follows.

Let ag, € adf(x) with g, € 0f(x). We need to show that ag, € d(af)(x). But this follows

immediately
9= €0 f (x)
Gt = (@) + ey — ) = (af)(@) + (age,y — 7). =
>0
(iii) Prove that O(f1 + f2) 2 df1 + 0f (1 pt)

Solution. Let g; € Of;(x) for i = 1,2. Then we have that g1 + g2 € O(f1 + f2) because

(i + 1)) 2 (@) + (g9 = 2)) + (fole) + g2,y - @)
= (fi+ f2)(@) + (91 + g2,y — @). O

(iv) For h(z) = f(Az + b) prove Oh(x) D ATOf(Ax + b). Prove equality for invertible A. (1 pt)

Solution. Let g, € Of(x)ie. gagsy € Of (Ax +b). Then AT g4,y € Oh(x) because

h(y) = f(Ay +b) > f(Az +b) + (gaz+b, (Ay +b) — (Az + D))
= h(z) + (AT gazss, y — ).

If Ais invertible, we have f(x) = h(A~'z— A~'b) so by the previous statement with A = A~!
and b = —A~'b, we get the other direction. O



Exercise 3 (Lasso). (6 Points)
Let
f@) =gl =yl + Az

for 2 € R? be the Lagrangian form of the least squares LASSO method.

(i) Compute a sub-gradient of f. (2 pts)

Solution. Using 0(g + Ah)(x) 2 dg(x) + AOh(z), we only need to determine the subgradient
of g(a) = 2 — y|* and

h(e) = |1zl = Z\m

But Vg(z) = x — y as g is differentiable. And since it is also convex, we have

dg(x) = {Vy(x)}.

Now the subgradient of h;(x) = |z;| is given by sgn(x;)e;, where sgn(0) € [—1,1] can be
selected arbitrarily, because

hi(z) + (sgn(x;)e;, y — x) = |x;| + sgn(z;)y; — sgn(x;)x; = sgn(x;)y;
|5
T

segn(z;)€[—1,1]

< lyil = hi(y).

So again
)2 Zah S (sgn(@1), ... sen(an))” = s(x).

So putting everything together we have

Of(z) >z —y+ As(x). O

(ii) Prove that f is convex. (1 pt)
Solution. As its sets of sub-gradients is nowhere empty, it is convex. O

(iii) Find a global minimum of f. (1pt)

Solution. By the lecture it is sufficient to find a point x such that 0 € Jf(x). By the previous
exercise we therefore want to solve

Oéx—y—i—)\s(:c)



entry-wise this implies

y¢+/\ z; <0

|
v =y — Asgn(w;) = Sy — A[-1,1] 2, =0
yi—)\ z; >0

Yi+ A v +A<O0
=<0 in[—A,)\]
Yi— A Yi—A>0

Yi+ Ay < —A
=<0 Yi € [, A ]
Yi—A Yy > A

(iv) Implement f as a sub-type of DifferentiableFunction” (even though it is not) by returning
a single sub-gradient and apply gradient descent to verify the global minimum https://
classroom.github.com/a/XgNuifmO (2 pts).

Exercise 4 (Momentum Matrix). (2 Points)
let D = diag(\1, ..., Aq), @, 8 > 0 and define

(A +p)I—-aD —pI y
T—( I O>€R2d 2d

Prove there exists a regular S € R??*24 guch that

Th
ST =T =
Ty
with
T = (1 +ﬂ1— A —05> c R2%2.

Solution. We simply define for the standard basis ¢; € R¢

o €1 O €q 0 2dx2d
S_<O € ... 0 €d>€R

in particular S7 = S, O

Exercise 5 (PL-Inequality). (5 Points)
Assume f : R? — R is L-smooth and satisfies the Polyak-Eojasiewicz inequality

IVf(@)|* > 2¢(f(x) — fo) (PL)

for some ¢ > 0 and all z € R? with f, = min, f(z) > —o0.


https://classroom.github.com/a/XqNuifmO
https://classroom.github.com/a/XqNuifmO

(i) Prove that gradient descent with fixed step size ay, = % converges linearly in the sense
Flar) = fo < (1= §)*(f(x0) = fo). (1 pt)
Solution. By L-smoothness and the descent lemma, we have

Flarer) < flzw) = eIV £ (@) @ flae) = £ (F(@r) = f+)-

Subtracting f, from both sides, we get
f@pg) = fo < (L= £)(f(zw) = fo) O
(ii) Prove that p-strong-convexity and L-smoothness imply the PL-inequality. (2 pts)

Solution. Recall by the solution of sheet 1, exercise 6 (iii), and strong convexity we have

pllz — y)1? < D (@,y) + DY (y,x)

=(Vf(x)-Vfy),z—y)
2 IVH@) - VW) - ]

0

and therefore
pllz =yl <[V f(z) = VIl )]

Finally we know by L-smoothness and V f(z,) = 0 where x, is the minimum

L-smooth [,

f@) = fa) T ET DPwa) T S

O L
; |z — 2)? < 2—||Vf(x) —Vfx)|> O
H ——

=0

(iii) Use a graphing calculator to find ¢ such that f(x) = 2> 4 3sin?(z) satisfies the PL-condition
(argue why x — o0 is not a problem) and prove it is not convex. (2 pts)

Solution. For ¢ = % we have the PL-condition



= Untitled Graph desmos

et L B L - 25
f(x) = (x2+3sin2(x))

V sx? {\

3,’ 20

(316

=

As f'(z) = 2(z + 3sin(x) cos(x)) and therefore

|z >
f'(z)? = 4(x + 3sin(z) cos(x))? > ’ 4(|z| — 3)*
—— —

€[-1,1]

the 22 dominates for large x, so if we make ¢ small enough we can ensure the inequality for
large x.

f is not convex because

FGm+30) = +3 > §n° = 3f(m) + 3/(0).
t

Exercise 6 (Weak PL-Inequality). (4 Points)
Assume f : R? — R is L-smooth and satisfies the “weak PL inequality”

IVF(@)]| = 2¢(f (2) = f+)

for some ¢ > 0 and all z € R? with f, = min, f(z) > —oc.

(i) Let ap € [0, %] for some ¢ > 0 and assume for the sequence (a,)nen that it is positive and
satisfies a diminishing contraction

0 <ap+1 < (1—qap)ay Vn > 0.



(i)

(iii)

Prove the convergence rate

1 1
an < < .
"~ ng+1/ag ~ (n+1)q

Solution. Divide the reordered contraction
2
an > an+1 + qa,,

by a,an+1 to obtain

1 1 an, 1
> — > — tq
an+1 an Gn+41 Gn
>1

which leads to

—_——— = — — >ng.
an Qo 370 Ak+1 Ok
Reordering we obtain our claim
1
1 aOS q 1
a :
"Tng+ L (n+1)q

Prove that f is bounded. More specifically e(x) := f(z) — fi < ﬁ for all z.

Solution. Using Sheet 1 Exercise 1 (i), we get

fo < f@) = 5 IV ()]

and therefore
k PL

e(x) > LV > e(x)

Dividing both sides by e(x) we obtain

and thus
e(r) < %
For gradient descent z,+1 — x, = —a,,V f(z,,) with constant step size aj, =
convergence rate
L
Tp) — < ———.
f@n) = fe < 2c2(n+1)

Solution. Using L-smoothness, we have

F@rg1) < flaw) + (V@) 21 — 2r) + Sllare — o)
< flag) — (1 — L) ||V f (k) ||

~~

>A4c2e(xy)?

1
2L
If we subtract f, from both sides and apply our weak PL inequality we get

e(zh1) < e(zr) — re(ze)? = (1 — % e(zp))e(zr)

with ¢ = 2%2 and e(xg) < % = % by we can applyto obtain our claim.

(I'pt)

(I'pv

O

% prove the

(2 pts)



