
Optimization in Machine Learning Universität Mannheim
HWS 2024 Prof. Simon Weißmann, Felix Benning

Solution Sheet 2

For the exercise class on the 03.10.2024 at 12:00.
Hand in your solutions by 10:15 in the lecture on Tuesday 01.10.2024.

Exercise 1 (Descent Directions of a Maximum). (1 Points)
Let x∗ ∈ Rd be a strict local maximum of f : Rd → R. Prove that every d ∈ Rd is a descent direction
of f in x∗.

Solution. Let ε > 0 be such, that x∗ is a strict maximum in Bε(x∗)\{x∗}, where existence of such an
ε is the strict local maximum property. We now have for any direction d that it is a descent direction,
because with ᾱ = ε

‖d‖ > 0 we have for all α ∈ (0, ᾱ]

f(x∗ + αd) < f(x∗),

since x∗ + αd ∈ Bε(x∗) \ {x∗} as ‖αd‖ ≤ ᾱ‖d‖ = ε.

Exercise 2 (Convergence to Stationary Point). (5 Points)
Let f : Rd → R be a continuously differentiable function.

(i) Let (xk)k∈N be defined by gradient descent

xk+1 = xk − αk∇f(xk), x0 ∈ Rd

with diminishing step size αk > 0 such that
∑∞

k=1 αk = ∞. Suppose that (xk)k∈N converges
to some x∗ ∈ Rd. Prove that x∗ is a stationary point of f , i.e. ∇f(x∗) = 0. (2.5 pts)

Solution. For any ε > 0 there exists n ≥ 0 such that for all i, j ≥ n we have by Cauchy-
Schwarz and convergence of∇f(xi) to∇f(x∗) due to continuity of∇f

〈∇f(xi),∇f(xj)〉
= ‖∇f(x∗)‖2 + 〈∇f(xi)−∇f(x∗),∇f(x∗)〉+ 〈∇f(xi),∇f(xj)−∇f(x∗)〉

C.S.
≥ ‖∇f(x∗)‖2 − ‖∇f(xi)−∇f(x∗)‖︸ ︷︷ ︸

≤ε

‖∇f(x∗)‖ − ‖∇f(xi)‖︸ ︷︷ ︸
≤‖∇f(x∗)‖+ε

‖∇f(xj)−∇f(x∗)‖︸ ︷︷ ︸
≤ε

≥ ‖∇f(x∗)‖2 − 2ε‖∇f(x∗)‖ − ε2 =: p(ε)

This results in

‖xn − xm‖2 =
∥∥∥m−1∑
k=n

αk∇f(xk)
∥∥∥2 =

m−1∑
i,j=n

αiαj〈∇f(xi),∇f(xj)〉

≥
(m−1∑
k=n

αk

)2

p(ε)
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Taking the limit over m results in

∞ > ‖xn − x∗‖2 ≥
( ∞∑
k=n

αk

)2

︸ ︷︷ ︸
=∞

p(ε).

So we necessarily need p(ε) ≤ 0. But as ε was arbitrary, we have

0 ≤ ‖∇f(x∗)‖2 = lim
ε→0

p(ε) ≤ 0.

(ii) Assume that f is also L-smooth. Prove for xn generated by gradient descent with constant step
size α ∈ (0, 2

L) we have

m∑
k=n

‖∇f(xk)‖2 ≤
f(xn)− f(xm)

α(1− L
2α)

≤ f(xn)−minx f(x)

α(1− L
2α)

for any n,m ∈ N. Deduce for the case minx f(x) > −∞, that we have

min
k≤n
‖∇f(xk)‖2 ∈ o(1/n). (2.5 pts)

Solution. By L-smoothness of f , we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),

−α∇f(xk)︷ ︸︸ ︷
xk+1 − xk〉+ L

2 ‖xk+1 − xk‖2

= f(xk)− (α− L
2α

2)‖∇f(xk)‖2

and therefore

m∑
k=n

‖∇f(xk)‖2 ≤
m∑
k=n

f(xk)− f(xk+1)

α(1− L
2α)

telescope
=

f(xn)− f(xm)

α(1− L
2α)

.

Now an := mink≤n ‖∇f(xk)‖2 is non-increasing, therefore

na2n ≤
2n∑
k=n

ak ≤
∞∑
k=n

ak → 0 (n→∞).

Thus a2n ∈ o(1/n). And we can simply bound the odd elements of the sequence

a2n+1 ≤ a2n ∈ o(1/n).

Exercise 3 (Optimizing Quadratic Functions). (9 Points)
In this exercise we consider functions of type

f(x) = xTAx+ bTx+ c,

where x ∈ Rd, A ∈ Rd×d, b ∈ Rd, c ∈ R.
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(i) Let H := AT +A be invertible. Prove that f can be written in the forms

f(x) = (x− x∗)TA(x− x∗) + c̃ (1)

= 1
2(x− x∗)T (AT +A)︸ ︷︷ ︸

=:H

(x− x∗) + c̃ (2)

for some x∗ ∈ Rd and c̃ ∈ R. Argue that H is always symmetric. Under which circumstances
is x∗ a minimum? (3 pts)

Solution. We want for some x∗

f(x)
!

= (x− x∗)TA(x− x∗) + c̃ = xTAx−xTAx∗ − xT∗Ax︸ ︷︷ ︸
=−xT∗ (A+AT )x

!
=bT x

+xT∗Ax∗ + c̃︸ ︷︷ ︸
!
=c

So we simply select

x∗ := −(A+AT )−1b and c̃ := c− xT∗Ax∗.

This proves our first representation (1). For (2) we simply note

yTAy = 〈y,Ay〉 symm.
= 〈Ay, y〉 = yTAT y.

Applying this to y = x− x∗ in (1) we are done.

Symmetry of H follows directly from its definition as Hij = Aji +Aij = Hji.

Now x∗ is a minimum iff H is positive definite. If it is positive definite, then x∗ is a minimum
by∇2f(x) = H and the lecture. If H is not positive definite, we need to show that there exists
some x such that f(x) ≤ m for all m ≤ c̃. Since H is not positive definite, there exists some y
such that

yTHy =: −ε < 0

define x = x∗ + y
√

c̃−m
ε . Then

f(x) =
c̃−m
ε

yTHy + c̃ = m.

(ii) Argue that the Newton Method (with step size αn = 1) applied to f would jump to x∗ in one
step and then stop moving. (1 pt)

Solution. Taking the derivative of (2) we get

∇f(x) = H(x− x∗). (3)

So with∇2f(x) = H and

x∗ = x−H−1H(x− x∗) = x− [∇2f(x)]−1∇f(x),

we have that the Newton Method finds x∗ in one step. By (3) we also get ∇f(x∗) = 0 which
stops the Newton method afterwards.
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(iii) Let V = (v1, . . . , vd) be an orthonormal basis such that

H = V diag[λ1, . . . , λd]V
T

with 0 < λ1 ≤ · · · ≤ λd and write
y(i) := 〈y, vi〉.

Express (xn−x∗)(i) in terms of (x0−x∗)(i), where xn is given by the gradient descent recursion

xn+1 = xn − h∇f(xn).

For which step size h do all the components (xn − x∗)(i) converge to zero? Which component
has the slowest convergence speed? Find the optimal learning rate h∗ and deduce for this
learning rate

‖xn − x∗‖ ≤ (1− 2
1+κ)n‖x0 − x∗‖.

with the condition number κ = λd
λ1

. (5 pts)

Solution. Using the representation (3) of the gradient again and subtracting x∗ from our recur-
sion, we get

xn+1 − x∗ = xn − x∗ − hH(xn − x∗) = [I− hH](xn − x∗)

Therefore

(xn+1 − x∗)(i) = 〈[I− hH](xn − x∗), vi〉
H symmetric

= 〈xn − x∗, [I− hH]vi〉
eigenvec.

= 〈xn − x∗, (1− hλi)vi〉
= (1− hλi)(xn − x∗)(i)

induction
= (1− hλi)n+1(x0 − x∗)(i).

For all components to converge we need |1 − hλi| < 1 for all i. Since 1 − hλi < 1 is always
given, because h, λi > 0, we only need 1−hλi > −1 or 2

h > λi for all i. Since the eigenvalues
are sorted, this is equivalent to 2

h > λd or

h <
2

λd
.

Under this condition, all components converge. The component with the slowest convergence
is given by

max
i
|1− hλi| = max

i
max{1− hλi︸ ︷︷ ︸

≤1−hλ1

,−(1− hλi)︸ ︷︷ ︸
≤−(1−hλd)

} = max{1− hλ1,−(1− hλd)}.

To minimize the slowest convergence, we want to take the derivative. The discontinuity is at

1− hλ1 = −(1− hλd) ⇐⇒ 2 = h(λ1 + λd)

4



so
d

dh
=

{
−λ1 h ≤ 2

λ1+λ2

λd h ≥ 2
λ1+λ2

So the maximal convergence speed is achieved by h∗ = 2
λ1+λ2

with

r(h∗) := max
i
|1− h∗λi| = 1− 2λ1

λ1 + λd
= 1− 2

1 + κ

where κ = λd
λ1

is the condition number. Putting things together, we have

‖xn − x∗‖2 =
∥∥∥ d∑
i=1

(1− hλi)n(x0 − x∗)(i)vi
∥∥∥2

orthonormal
=

d∑
i=1

(1− hλi)2n︸ ︷︷ ︸
≤r(h∗)2n

(x
(i)
0 − x

(i)
∗ )2 = r(h∗)2n‖x0 − x∗‖2

and therefore
‖xn − x∗‖ ≤ r(h∗)n‖x0 − x∗‖.

Exercise 4 (Programming exercise). (9 Points)
For the Python exercises join the GitHub classroom https://classroom.github.com/a/
8yrTMIm1. If you are new to git, checkout https://classroom.github.com/a/dEzm_
HGt
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