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Solution Sheet 1

For the exercise class on the 02.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 02.03.2023.

Exercise 1 (Convex Examples). (2 Points)
Prove the following functions are convex

(i) affine linear functions, i.e. f(x) = aTx+ c for a ∈ Rd, c ∈ R, (0.5 pts)

Solution. We have

f(λx+ (1− λ)y) = aT (λx+ (1− λ)y) +

1︷ ︸︸ ︷
(λ+ 1− λ) c

linear
= λ (aTx+ c)︸ ︷︷ ︸

f(x)

+(1− λ) (aT y + c)︸ ︷︷ ︸
f(y)

.

(ii) norms, i.e. x 7→ ∥x∥, (0.5 pts)

Solution. We have

∥λx+ (1− λ)y∥
∆
≤ ∥λx∥+ ∥(1− λ)y∥ scaling

= λ∥x∥+ (1− λ)∥y∥.

(iii) sums of convex functions fk, i.e. f(x) =
∑n

k=1 fk(x), (0.5 pts)

Solution. We have

f(λx+ (1− λy)) =
n∑

k=1

fk(λx+ (1− λ)y)︸ ︷︷ ︸
≤λfk(x)+(1−λ)fk(y)

≤ λ
n∑

k=1

fk(x)︸ ︷︷ ︸
=f(x)

+(1− λ)

n∑
k=1

fk(y)︸ ︷︷ ︸
=f(y)

.

(iv) F (x) := supf∈F f(x) for a set of convex functions F . (0.5 pts)

Solution. We have

F (λx+ (1− λ)y) ≤ sup
f∈F

λf(x) + (1− λ)f(y) ≤ sup
f∈F

λf(x) + sup
g∈F

(1− λ)g(y)

= λF (x) + (1− λ)F (y).
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Exercise 2 (Finite Jensen). (2 Points)
Let φ be convex, and

∑n
i=1 λi = 1 for λi ≥ 0. Prove

φ
( n∑
i=1

λixi

)
≤

n∑
i=1

λiφ(xi)

and deduce ( 1n
∑n

i=1 xi)
2 ≤ 1

n

∑n
i=1 x

2
i .

Solution. For n = 2 this is simply the definition of convexity. Assume it holds for n. Then the
induction step is given by

φ

(n+1∑
i=1

λixi

)
= φ

(
λn+1xn+1 + (1− λn+1)

n∑
i=1

λi

1− λn+1︸ ︷︷ ︸
=:λ̃i

xi

)

≤ λn+1φ(xn+1) + (1− λn+1)φ

( n∑
i=1

λ̃ixi

)
︸ ︷︷ ︸
ind.
≤
∑n

i=1 λ̃iφ(xi)≤
n+1∑
i=1

λiφ(xi)

Where it is easy to check that λ̃i sums to one. For the second part select λi = 1
n and φ(x) = x2,

which is convex because

(λx+ (1− λ)y)2 = λ2︸︷︷︸
=λ(1−(1−λ))

x2 + (1− λ)2︸ ︷︷ ︸
=(1−λ)−λ(1−λ)

y2 + 2λ(1− λ)xy

= λx2 + (1− λ)y2 − λ(1− λ) (x2 + y2 − 2xy)︸ ︷︷ ︸
=(x−y)2≥0

≤ λx2 + (1− λ)y2.

Exercise 3 (Strict & Strong Convexity). (4 Points)
Prove the following statements

(i) µ-strong convexity implies strict convexity. (1 pt)

Solution. Assuming x ̸= y we have

0 < µ
2∥x− y∥2

µ-strong conv.
≤ f(x)− f(y)− ⟨∇f(y), x− y⟩

But after moving the negative parts to the left we are left with a condition which is equivalent
to strict convexity by Proposition A.1.8 in the lecture.

(ii) For twice differentiable f , the following are equivalent (3 pts)

(a) ∇2f(x) ⪰ µI
(b) zT∇2f(x)z ≥ µ∥z∥2

(c) f is µ-strongly convex
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where I is the identity matrix and

A ⪰ B : ⇐⇒ A−B is (weakly) positive definite.

Solution. Let us get (a)⇔(b) out of the way first:

zT∇2f(x)z − µ∥z∥2 = ⟨z,∇2f(x)z⟩ − ⟨z, µIz⟩ = zT (∇2f(x)− µI)z

If we have (a), then the rightmost side is positive and thus we also have (b). For the other
direction we simply start from the left.

For (a)⇒(c) let
g(y) := f(y)− µ

2∥y∥
2,

because f is µ strongly convex

g(y) = f(y)− µ
2∥y∥

2

f µ-strong conv.
≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2∥y − x∥2 − µ
2∥y∥

2

= f(x)− µ
2∥x∥

2︸ ︷︷ ︸
=g(x)

+µ
2∥x∥

2 + ⟨∇f(x)− µx︸ ︷︷ ︸
∇g(x)

, y − x⟩+ µ⟨x, y − x⟩ − µ⟨x, y⟩+ µ
2∥x∥

2

= g(x) + ⟨∇g(x), y − x⟩

g is still convex. So we know by the lecture that

∇2g(x) = ∇2f(x)− µI

is positive definite.

On the other hand for (c)⇒(a): if ∇2f ⪰ µI, we know that ∇2g is positive definite and thus
that g is convex by the lecture. Reusing the equations above except for the inequality we obtain

f(x) + ⟨∇f(x), y − x⟩+ µ
2∥y − x∥2 − µ

2∥y∥
2 = g(x) + ⟨∇g(x), y − x⟩
g conv.
≤ g(y)

= f(y)− µ
2∥y∥

2

Adding µ
2∥y∥

2 on both sides results in the definition of µ-strong convexity of f .

Exercise 4 (Convexity and Minima). (3 Points)
Prove the following statements

(i) If f is convex, then every local minimum is also a global minimum. (1 pt)

Solution. Let x∗ be a local minimum and assume it was not global. Then there exists y such
that

f(y) < f(x∗).

Select λ small enough such that x∗ + λ(y− x∗) is still in the ϵ neighborhood of x∗ where x∗ is
a local minimum. Then obtain a contradiction

f(x∗) ≤ f(x∗ + λ(y − x∗))
conv.
≤ (1− λ)f(x∗) + λ︸︷︷︸

>0

f(y)︸︷︷︸
<f(x∗)

< f(x∗).
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(ii) If f is strictly convex, then there exists at most one minimum. (1 pt)

Solution. Let x ̸= y both be minima (which are global by (i)). Then for some λ ∈ (0, 1)

f(λx+ (1− λ)y)
strict conv.

< λf(x) + (1− λ)f(y) = min
z

f(z),

which is a contradiction.

(iii) If f convex and differentiable and ∇f(x∗) = 0, then x∗ is a minimum. (1 pt)

Solution. By Proposition A.1.8 convexity is equivalent to

f(x) ≥ f(x∗) + ⟨∇f(x∗)︸ ︷︷ ︸
=0

, x− x∗⟩ = f(x∗) ∀x.

So x∗ is a (global) minimum.

Exercise 5 (Directional Minima). (3 Points)
Let f be some differentiable function. For every direction d ∈ Rn define

gd(α) := f(x∗ + αd).

Assume that for every d, gd is minimized by α = 0. Prove that

(i) We have necessarily ∇f(x∗) = 0. (1 pt)

Solution. If we select a standard basis vector as the direction, then

0 = g′ei(α)
∣∣∣
α=0

= ⟨∇f(x∗ + αei), ei⟩
∣∣∣
α=0

= ⟨∇f(x∗), ei⟩

So the i-th entry of ∇f(x∗) is zero. As i was arbitrary, we are done.

(ii) f(x∗) is not necessarily a minimum of f . (2 pts)

Solution. Let 0 < p < q and define

f(y, z) := (z − py2)(z − qy2)

then for p < m < q we have for y ̸= 0

f(y,my2) = (my2 − py2)(my2 − qy2) = y2︸︷︷︸
>0

(m− p)︸ ︷︷ ︸
>0

(m− q)︸ ︷︷ ︸
<0

< 0.

This means that f(0, 0) = 0 is not a minimum since we can get arbitrarily close to x∗ = (0, 0)
with (y,my2) with smaller and smaller y.

Let d = (d1, d2) be an arbitrary direction. Then

gd(α) = (αd2 − p(αd1)
2)(αd2 − q(αd1)

2)

= α2(d2 − pαd21)(d2 − qαd21)

= α2(d22 − αd2(p+ q)d21 + α2pqd21)

Thus g′(0) = 0 and g′′(0) = 2d22 > 0 which implies g has a minimum in zero.
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Exercise 6 (Bregman Divergence). (10 Points)
The Bregman Divergence D

(B)
f of a continuously differentiable function f : Rd → R is defined as

the error of the linear approximation and is related to µ-strong convexity and Lipschitz continuous
gradients as follows

µ
2∥x− x0∥2

µ-strongly convex
(definition)

≤ f(x)−
linear approximation︷ ︸︸ ︷

f(x0)− ⟨∇f(x0), x− x0⟩︸ ︷︷ ︸
=: D

(B)
f (x, x0)

L-Lipschitz gradient
(Descent Lemma)

≤ L
2 ∥x− x0∥2.

For µ = 0 this is simply the convexity condition by Prop. A.1.8. So non-negativity of the Bregman
divergence implies convexity. The L-Lipschitz gradients provide us with an upper bound on the
Bregman divergence on the other hand which immediately results in an upper bound on f

f(x) = f(x0) + ⟨∇f(x0), x− x0⟩+D
(B)
f (x, x0)︸ ︷︷ ︸

≤L
2 ∥x−x0∥2

. (1)

(i) Prove for functions f with L-Lipschitz gradients, we have for all x0

min
x

f(x) ≤ f(x0)− 1
2L∥∇f(x0)∥2.

By minimizing the upper bound (1). What is the minimizer of the upper bound? (2 pts)

Solution. We first solve the directional minimization problem

argmin
x:∥x−x0∥=r

f(x0) + ⟨∇f(x0), x− x0⟩+ L
2 ∥x− x0∥2 = x0 + argmin

d:∥d∥=r
⟨∇f(x0), d⟩

= x0 + argmax
d:∥d∥=r

⟨−∇f(x0), d⟩

= x0 −
r∇f(x0)

∥∇f(x0)∥
, (2)

where the last equation is true because by Cauchy-Schwartz

⟨−∇f(x0), d⟩
C.S.
≤ ∥∇f(x0)∥r.

So in summary we have

min
x

f(x) ≤ min
r

min
x:∥x−x0∥=r

f(x0) + ⟨∇f(x0), x− x0⟩+ L
2 ∥x− x0∥2︸ ︷︷ ︸

(2)
=f(x0)−r∥∇f(x0)∥+L

2 r2

.

Minimizing over the length r implies minimizing a convex parabola, so the first order condition
is sufficient yielding

r∗ =
∥∇f(x0)∥

L
.

Reinserting r∗ into our upper bound yields the claim and we get the minimizer by inserting r∗

into (2) resulting in a gradient descent step

x∗ = x0 − 1
L∇f(x0).
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(ii) Prove for convex functions f with L-Lipschitz gradients (2 pts)

D
(B)
f (x, x0) ≥ 1

2L∥∇f(x)−∇f(x0)∥2.

Solution. To apply (i), we want to prove

ϕ(x) := D
(B)
f (x, x0) = f(x)− f(x0)− ⟨∇f(x0), x− x0⟩

has L-Lipschitz gradient. But the gradient of ϕ is given by

∇ϕ(x) = ∇f(x)−∇f(x0),

which is merely a shift of the gradient of f and therefore still L-Lipschitz. Due to convexity we
know the Bregman Divergence is greater than zero. So we have

0 = D
(B)
f (x0, x0) = min

y
ϕ(y)

(i)
≤ ϕ(x)− 1

2L∥∇ϕ(x)∥2.

Reordering and inserting the definition we obtain our claim

1
2L∥∇f(x)−∇f(x0)∥2 = 1

2L∥∇ϕ(x0)∥2 ≤ ϕ(x) = D
(B)
f (x, x0).

(iii) Prove for convex functions f with L-Lipschitz gradients, we have for all x, y (1 pt)

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.

Solution. We simply apply (ii) twice:

1
L∥∇f(x)−∇f(y)∥2

2×(ii)
≤ D

(B)
f (y, x) +D

(B)
f (x, y)

=H
HHf(y)−�

��f(x)− ⟨∇f(x), y − x⟩+�
��f(x)−H

HHf(y)− ⟨∇f(y), x− y⟩
= ⟨∇f(x)−∇f(y), x− y⟩.

(iv) Prove for convex f that the upper bound

D
(B)
f (x, x0) ≤

L

2
∥x− x0∥2

is sufficient for Lipschitz continuity of the gradient ∇f . (1 pt)

Solution. We deduced this upper bound in (i) and then never used the Lipschitz property again.
In (ii) we only needed it to apply (i) and in (iii) we only needed the property to apply (ii). So
our premise is sufficient for (iii) without Lipschitz continuity of the gradient. So by (iii) and
Cauchy-Schwarz we get

1
L∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩

C.S.
≤ ∥∇f(x)−∇f(y)∥∥x− y∥.

Multiplying this inequality by L/∥∇f(x)−∇f(y)∥ results in the claim.
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(v) In this last part we want to assume f is µ-strongly convex (and its gradient L-Lipschitz). Prove
for all x, y (4 pts)

⟨∇f(x)−∇f(y), x− y⟩ ≥ µ
L+µ∥x− y∥2 + 1

L+µ∥∇f(x)−∇f(y)∥2.

Solution. We define
gx(y) := f(y)− µ

2∥x− y∥2.
for which we have

∇gx(y) = ∇f(y)− µ(y − x).

Therefore we have

D(B)
gx (y, z) = gx(y)− gx(z)− ⟨∇gx(z), y − z⟩

= f(y)− µ
2∥x− y∥2 − f(z) + µ

2∥x− z∥2 − ⟨∇f(z)− µ(z − x), y − z⟩

= D
(B)
f (y, z) + µ

2

[
∥x− z∥2 − ∥x− y∥2 + 2⟨z − x, y − z⟩

]
︸ ︷︷ ︸

=−
(
−∥x−z∥2+∥x−z+z−y∥2−2⟨x−z,z−y⟩

)
= D

(B)
f (y, z)− µ

2∥z − y∥2.

Convexity is a given because D
(B)
gx ≥ 0 since D

(B)
f (y, z) ≥ µ

2∥y − z∥2. Similarly we obtain
L− µ-Lipschitz continuity of ∇gx(y) because

D(B)
gx (y, z) = D

(B)
f (y, z)− µ

2∥z − y∥2 ≤ L−µ
2 ∥z − y∥2.

So we can apply (ii) to D
(B)
gx with z = x to obtain

D
(B)
f (y, x) = D(B)

gx (y, x) + µ
2∥x− y∥2

(ii)
≥ 1

2(L−µ)∥∇gx(y)−∇gx(x)∥2 + µ
2∥x− y∥2

= 1
2(L−µ) ∥∇f(y)− µ(y − x)−∇f(x)∥2︸ ︷︷ ︸

∥(∇f(y)−µy)−(∇f(x)−µx)∥2

+µ
2∥x− y∥2.

Which is symmetric in x and y so we can apply the same trick as in (iii) to get

⟨∇f(y)−∇f(x), y − x⟩ = D
(B)
f (y, x) +D

(B)
f (y, x)

≥ 1
(L−µ) ∥∇f(y)− µ(y − x)−∇f(x)∥2︸ ︷︷ ︸

=∥∇f(y)−∇f(x)∥2−2µ⟨∇f(y)−∇f(x),y−x⟩+µ2∥y−x∥2

+µ∥x− y∥2.

Collecting the scalar product on the left results in(
1 + 2µ

L−µ

)
︸ ︷︷ ︸

=L+µ
L−µ

⟨∇f(y)−∇f(x), y − x⟩ ≥ 1
(L−µ)∥∇f(y)−∇f(x)∥2 +

(
µ2

L−µ + µ
)
∥x− y∥2.

Multiplying both sides by L−µ
L+µ we finally get

⟨∇f(y)−∇f(x), y − x⟩ ≥ 1
(L+µ)∥∇f(y)−∇f(x)∥2 +

(
µ2+µ(L−µ)

L+µ

)
︸ ︷︷ ︸

=
µL
L+µ

∥x− y∥2.
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