Optimization in Machine Learning Universitit Mannheim
FSS 2023 Prof. Simon Weilmann, Felix Benning

Solution Sheet 1

For the exercise class on the 02.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 02.03.2023.

Exercise 1 (Convex Examples). (2 Points)

Prove the following functions are convex
(i) affine linear functions, i.e. f(z) = alz + cfora € RY, ¢ € R, (0.5 pts)
Solution. We have

z—’l%
fOz+ 1 =Ny =a’ Dz +(1-Ny) +(A+1-Nc

fiaear \ (aTz+c)+1 =N (aTy+c). O
— —
f(=@) fw)
(ii) norms, i.e. x — ||z, (0.5 pts)
Solution. We have
A scaling
Az + (L= Nyl < Az + [[(1 = Nyl "= Allz]| + (L= A)llyll- O
(iii) sums of convex functions fy, i.e. f(z) = > ;_; fu(x), (0.5 pts)

Solution. We have

FOz+(1=2) = frlla+ (1 =Ny) <A fr@)+(1 =N fily). O
. k=1 k=1

k=1

SAfr(@)+(1=X) fi(y) ;,_/ N——
=f(=) =f(y)

(iv) F(x) := supser f(w) for a set of convex functions F. (0.5 pts)

Solution. We have

FAz 4+ (1= A)y) <sup Af(z) + (1 = A)f(y) < sup Af(z) + sup(l — A)g(y)
feF feF geF

= AF(z) + (1 — ) F(y). O



Exercise 2 (Finite Jensen). (2 Points)
Let ¢ be convex, and Y ;| \; = 1 for \; > 0. Prove

SO(Z )\i%) <) Nig(:)
i=1 i=1
and deduce (2 > | 2;)2 <150 92

Solution. For n = 2 this is simply the definition of convexity. Assume it holds for n. Then the
induction step is given by

n+1
(Z i $z> = @(Anﬂxnﬂ + (1 = Apt1 Z >
=1 i=1

\_Y_z
:Az
< )\TL+1()0(:UTL+1) + (1 - )\n—l-l)(P(Z 5\137@>
n+1 i/—/
ind.
<> Nip(ay) YT Kip(e)
=1

Where it is easy to check that \; sums to one. For the second part select \; = % and p(z) = 22,
which is convex because
Az 4+ 1 =Ny = A 2?2+ (1 =222 + 201 — Nay
~~ ~——
=AA=(1=2) —(1-x0)-A(1-3)
=A% 4 (1 = N)y? = M1 = \) (22 + % — 229)
N—

=(z—y)*=0
<Az + (1= )2 O
Exercise 3 (Strict & Strong Convexity). (4 Points)
Prove the following statements
(i) p-strong convexity implies strict convexity. (1 pt)

Solution. Assuming x # y we have

9 p-strong conv.
0 < 5lle—yll < f@) - f) - (Vi).z—y)
But after moving the negative parts to the left we are left with a condition which is equivalent
to strict convexity by Proposition A.1.8 in the lecture. O
(ii) For twice differentiable f, the following are equivalent (3 pts)

(@) V2f(z) = pul
(b) 2"V f(x)z > pllz|?

(¢) fis u-strongly convex



where I is the identity matrix and

A= B:<= A — Bis (weakly) positive definite.

Solution. Let us get[(a)}={(b) out of the way first:
SV @)z = ull2ll” = (2 V2 (0)2) = (2, ul) = 21 (V2 (2) = )z

If we have [(a) then the rightmost side is positive and thus we also have [(b)] For the other
direction we simply start from the left.

For[(a)={(c)]let
9(y) = f(y) = Sllyl*,

because f is u strongly convex

9(y) = f(y) = 5llylI?
f p-strong conv.

> fl@)+ (Vf(@),y— @)+ Glly -zl = 5yl
= f(x) = Gll=ll® + 5l + (Vf(z) — pz,y — 2) + ple,y — x) — ple,y) + 5z
—_—— N——
=g(x) Vg(x)
=g(x) + (Vg(z),y — )
g is still convex. So we know by the lecture that
Vig(x) = V?f(x) — pl

is positive definite.

On the other hand for |(c)=l(a) if V2f = ul, we know that V2g is positive definite and thus
that g is convex by the lecture. Reusing the equations above except for the inequality we obtain

F@) +(Vf(@),y —2) + Glly — = = §llyl® = 9(x) + (Vg(2),y — 2)

g conv.
< 9()
= fy) = 5llyl®
Adding £||y||* on both sides results in the definition of y-strong convexity of . O
Exercise 4 (Convexity and Minima). (3 Points)
Prove the following statements
(i) If f is convex, then every local minimum is also a global minimum. (1pt)

Solution. Let * be a local minimum and assume it was not global. Then there exists y such
that

fly) < f@").

Select A small enough such that z* + \(y — ™) is still in the e neighborhood of z* where z* is
a local minimum. Then obtain a contradiction

conv.

fla) < fla + 2 -2 (1= NAE) + A f)
<f(z*



(ii) If f is strictly convex, then there exists at most one minimum.

(I'pt)

Solution. Let z # y both be minima (which are global by [(i)). Then for some A € (0,1)

strict conv.

FO+ (1= Ny) €™ A @)+ (1= ) () = min f(2),

which is a contradiction.
(iii) If f convex and differentiable and V f (z*) = 0, then z* is a minimum.

Solution. By Proposition A.1.8 convexity is equivalent to

f@) = f(a) + (Vf(@"),x —a%) = f(z%) V.
=0

So z* is a (global) minimum.

Exercise 5 (Directional Minima).

Let f be some differentiable function. For every direction d € R™ define
ga(a) == f(&* + ad).
Assume that for every d, g4 is minimized by a = 0. Prove that

(i) We have necessarily V f(z*) = 0.

Solution. If we select a standard basis vector as the direction, then

0=ygg ()] =(Vf(z"+ae),ei) T (V") ei)

a=0 o=

So the i-th entry of V f(z*) is zero. As ¢ was arbitrary, we are done.
(i) f(z*) is not necessarily a minimum of f.

Solution. Let 0 < p < g and define
fy,2) = (z = py*) (2 — av?)
then for p < m < g we have for y # 0

fly,my?) = (my? — py®)(my? — qy®) = ¢
N e — N —
>0 >0 <0

(m—p) (m—q) <0.

(1 pt)

O]

(3 Points)

(1 pt)

(2 pts)

This means that f(0,0) = 0 is not a minimum since we can get arbitrarily close to z* = (0, 0)

with (y, my?) with smaller and smaller y.

Let d = (d1, d2) be an arbitrary direction. Then

ga(a) = (ady — p(adi)?)(adz — g(ads)?)
= o’(dy — pad?)(dz — qad])
= a?(d3 — ada(p + q)d3 + a’pqd?)

Thus ¢'(0) = 0 and g”(0) = 2d3 > 0 which implies g has a minimum in zero.

4



Exercise 6 (Bregman Divergence). (10 Points)

The Bregman Divergence D;B) of a continuously differentiable function f : R¢ — R is defined as

the error of the linear approximation and is related to u-strong convexity and Lipschitz continuous
gradients as follows

u-strongly convex linear approximation L-Lipschitz gradient
L 9 (definition) (Descent Lemma) I 9
Sllz = ol| < f(@) = f(zo) = (V[f(0),z — o) < Sz = zoll”.
B
=: Dgc )(:C,xo)

For 1 = 0 this is simply the convexity condition by Prop. A.1.8. So non-negativity of the Bregman
divergence implies convexity. The L-Lipschitz gradients provide us with an upper bound on the
Bregman divergence on the other hand which immediately results in an upper bound on f

f(@) = f(zo) + (Vf(w0), & — o) + DY (&, o) . (1)

(i) Prove for functions f with L-Lipschitz gradients, we have for all xq
min f(2) < f(z0) — 57 [V (o).
By minimizing the upper bound (I). What is the minimizer of the upper bound? (2 pts)

Solution. We first solve the directional minimization problem

argmin  f(zo) + (Vf(xo),x — zo) + %Hx — 330H2 = ¢ + argmin(V f(z), d)

z:||lz—xo||=r d:||d||=r
= zo + argmax(—V f(z¢), d)
d:||d||=r
rV f(zo)
= — 2
Vo) @

where the last equation is true because by Cauchy-Schwartz
C.S.
(=Vf(zo),d) < [V f(zo)llr.
So in summary we have

min f(z) Smin | min __f(z0) +{V(z0),z o) + Lz — mol*.
x T x:i|lx—x0||=T

B (20)—rl|V (@o) [+ 572

Minimizing over the length r implies minimizing a convex parabola, so the first order condition
is sufficient yielding
o IVf@o)l
L
Reinserting r* into our upper bound yields the claim and we get the minimizer by inserting *
into (2)) resulting in a gradient descent step

z* = z0 — 1V f(20). O



(i)

(iii)

(iv)

Prove for convex functions f with L-Lipschitz gradients (2 pts)
D > LV f(z) -V 2
;@ 20) = 5l V() = V(o)™
Solution. To apply|(1), we want to prove

o(x) := D (2, m0) = f(2) = f(w0) = (VF(w0), @ — x0)

has L-Lipschitz gradient. But the gradient of ¢ is given by

Vo(x) =V f(x) = Vf(xo),

which is merely a shift of the gradient of f and therefore still L-Lipschitz. Due to convexity we
know the Bregman Divergence is greater than zero. So we have

0= D} (w0, z0) = min g(y) < $(z) — [ Vo ()]*

Reordering and inserting the definition we obtain our claim

B
22V I (@) = V(@0)|* = 3 Vé(ao)| < d(x) = D) (, 20). =
Prove for convex functions f with L-Lipschitz gradients, we have for all x, y (1 pt)

(Vf(@) =V ),z —y) = |Vfl) = VI)|*

Solution. We simply apply |(i1)| twice:

2x[()
LHIVf@) -V ? < DY (y,2) + DY (2, y)

Tt — ) — (Vf(2),y — =) + fa) — Tl — (VI (y), 2 —y)
=(Vf(x) = Vf(y),z—y). O

Prove for convex f that the upper bound
B L
D (@,20) < 5l — ol

is sufficient for Lipschitz continuity of the gradient V f. (1 pt)

Solution. We deduced this upper bound in|(1)]and then never used the Lipschitz property again.

In [(i1)] we only needed it to apply [(1)] and in we only needed the property to apply So
our premise is sufficient for without Lipschitz continuity of the gradient. So by and

Cauchy-Schwarz we get

LIV () - VIWI? < (Vi) - Viw)e —v) < V@) - Vi)l - vl

Multiplying this inequality by L/||V f(x) — V f(y)|| results in the claim. O



(v) In this last part we want to assume f is u-strongly convex (and its gradient L-Lipschitz). Prove
for all x, y (4 pts)

(VI(x) = Vi), —y) > Zhlle —yl? + 25V f(2) = V)

Solution. We define
92(y) == f(y) — §llz — yl>.
for which we have
Vg (y) = VI(y) — uly — z).
Therefore we have
DBy, 2) = guy) — gu(2) = (Vga(2),y — 2)
=fy) = blle—yl? = f(2) + §llz — 2> = (Vf(z) —u(z —x),y — 2)
=Dy, 2) + 4 [llo = 212 — o — yl? + 2(: — 2,y - 2)]

= (~llo—2l2+le—z+2—y|2~2(a—z2-y))
B
= D7 (y.2) — §ll= ol
Convexity is a given because D) > 0 since D&B) (y,2) > &lly — 2||*>. Similarly we obtain
L — p-Lipschitz continuity of Vg, (y) because

AN

DB (y,z) = D (y,2) — &z — y|?

gz !
So we can apply to Df(,f) with z = z to obtain

L—
Sz =yl

B
D (y,x) = DP)(y,2) + &z — y||?

(@
> 5 IV9:(y) = Vgu(@)|” + §llz — y?

= sy IV () = ply — 2) = V(@) +5 ]z - y|*.
(V£ (y)—py)—(V f (z)—pa) |2
Which is symmetric in = and y so we can apply the same trick as in to get

(Vf(y) = Vf(x),y —2) = DY (y,2) + DYV (y, 2)

> V) —ply—=) - Vi@)?  +ule -yl
=ViW) -V (@) 1221V f () =V f(z),y—z)+p2ly—z|?

Collecting the scalar product on the left results in

(14 22) (VFG) - VI@)y = o) 2 5 IV ) = VE@)I+ (25 + 1) e — ol

Multiplying both sides by é—;’i we finally get

(Vi) = VI@,y—a) = FglIViE) - V@I + () o -yl O
~—_———

_pL
T L4p



