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For the exercise class on the 02.03.2023.
Hand in your solutions by 12:00 in the exercise on Thursday 02.03.2023.

Exercise 1 (Convex Examples). (2 Points)
Prove the following functions are convex

(i) affine linear functions, i.e. f(x) = aTx+ c for a ∈ Rd, c ∈ R, (0.5 pts)

(ii) norms, i.e. x 7→ ∥x∥, (0.5 pts)

(iii) sums of convex functions fk, i.e. f(x) =
∑n

k=1 fk(x), (0.5 pts)

(iv) F (x) := supf∈F f(x) for a set of convex functions F . (0.5 pts)

Exercise 2 (Finite Jensen). (2 Points)
Let φ be convex, and

∑n
i=1 λi = 1 for λi ≥ 0. Prove

φ
( n∑
i=1

λixi

)
≤

n∑
i=1

λiφ(xi)

and deduce ( 1n
∑n

i=1 xi)
2 ≤ 1

n

∑n
i=1 x

2
i .

Exercise 3 (Strict & Strong Convexity). (4 Points)
Prove the following statements

(i) µ-strong convexity implies strict convexity. (1 pt)

(ii) For twice differentiable f , the following are equivalent (3 pts)

(a) ∇2f(x) ⪰ µI
(b) zT∇2f(x)z ≥ µ∥z∥2

(c) f is µ-strongly convex

where I is the identity matrix and

A ⪰ B : ⇐⇒ A−B is (weakly) positive definite.

Exercise 4 (Convexity and Minima). (3 Points)
Prove the following statements

(i) If f is convex, then every local minimum is also a global minimum. (1 pt)

(ii) If f is strictly convex, then there exists exactly one minimum. (1 pt)
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(iii) If f convex and differentiable and ∇f(x∗) = 0, then x∗ is a minimum. (1 pt)

Exercise 5 (Directional Minima). (3 Points)
Let f be some differentiable function. For every direction d ∈ Rn define

gd(α) := f(x∗ + αd).

Assume that for every d, gd is minimized by α = 0. Prove that

(i) We have necessarily ∇f(x∗) = 0. (1 pt)

(ii) f(x∗) is not necessarily a minimum of f . (2 pts)

Hint. Let 0 < p < q and define

f(y, z) := (z − py2)(z − qy2)

consider x∗ = (0, 0) and prove that f(y,my2) < 0 for p < m < q.

Exercise 6 (Bregman Divergence). (10 Points)

The Bregman Divergence D
(B)
f of a continuously differentiable function f : Rd → R is defined as

the error of the linear approximation and is related to µ-strong convexity and Lipschitz continuous
gradients as follows

µ
2∥x− x0∥2

µ-strongly convex
(definition)

≤ f(x)−
linear approximation︷ ︸︸ ︷

f(x0)− ⟨∇f(x0), x− x0⟩︸ ︷︷ ︸
=: D

(B)
f (x, x0)

L-Lipschitz gradient
(Descent Lemma)

≤ L
2 ∥x− x0∥2.

For µ = 0 this is simply the convexity condition by Prop. A.1.8. So non-negativity of the Bregman
divergence implies convexity. The L-Lipschitz gradients provide us with an upper bound on the
Bregman divergence on the other hand which immediately results in an upper bound on f

f(x) = f(x0) + ⟨∇f(x0), x− x0⟩+D
(B)
f (x, x0)︸ ︷︷ ︸

≤L
2 ∥x−x0∥2

. (1)

(i) Prove for functions f with L-Lipschitz gradients, we have for all x0

min
x

f(x) ≤ f(x0)− 1
2L∥∇f(x0)∥2.

What is the minimizer? (2 pts)

Hint. Minimize the upper bound (1). For this, first minimize over the direction x − x0 subject
to the length ∥x− x0∥ = r being constant. Then minimize over r.

(ii) Prove for convex functions f with L-Lipschitz gradients (2 pts)

D
(B)
f (x, x0) ≥ 1

2L∥∇f(x)−∇f(x0)∥2.
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Hint. Apply (i) to
ϕ(x) := D

(B)
f (x, x0).

Due to convexity you should already know the global minimum of ϕ.

(iii) Prove for convex functions f with L-Lipschitz gradients, we have for all x, y (1 pt)

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1
L∥∇f(x)−∇f(y)∥2.

Hint. Use (ii) twice.

(iv) Prove for convex f that the upper bound

D
(B)
f (x, x0) ≤

L

2
∥x− x0∥2

is sufficient for Lipschitz continuity of the gradient ∇f . (1 pt)

Hint. Argue why you can use (iii) without circular reasoning.

(v) In this last part we want to assume f is µ-strongly convex (and its gradient L-Lipschitz). Prove
for all x, y (4 pts)

⟨∇f(x)−∇f(y), x− y⟩ ≥ µ
L+µ∥x− y∥2 + 1

L+µ∥∇f(x)−∇f(y)∥2.

Hint. Note that strong convexity provides an alternative lower bound to (ii). Using this alter-
native lower bound we could directly obtain a modified version of (iii). But we are greedy. We
want to use both lower bounds for an even tighter bound on the scalar product. We therefore
want to use

gx(y) := f(y)− µ
2∥x− y∥2

to break down the Bregman divergence of f , so we can have our cake and eat it:

D
(B)
f (y, z) = D(B)

gx (y, z)︸ ︷︷ ︸
use (ii)

+ µ
2∥y − z∥2︸ ︷︷ ︸

strong convexity

.

Remember to check convexity of gx and Lipschitz continuity of ∇gx before applying (ii). When
applying (ii), the selection z = x might be helpful.
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