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For the exercise class on the 02.03.2023.

Hand in your solutions by 12:00 in the exercise on Thursday 02.03.2023.

Exercise 1 (Convex Examples).

Prove the following functions are convex

(i) affine linear functions, i.e. f(z) = a’x + cfora € RY, ¢ € R,

(ii) norms, i.e. x — |z,
(iii) sums of convex functions fy, i.e. f(z) = > p_; fu(x),
(iv) F(z) :=supcr f(x) for a set of convex functions F.

Exercise 2 (Finite Jensen).
Let ¢ be convex, and Z?:l A; = 1 for \; > 0. Prove

@(Zn: )\il'z) < Zn: Aip(z;)
i=1 i—1

and deduce (2 > | 2;)2 < 150 92,
Exercise 3 (Strict & Strong Convexity).
Prove the following statements

(i) p-strong convexity implies strict convexity.

(ii) For twice differentiable f, the following are equivalent
(@) V2f(z) = ul
(b) 2" V2f(x)z = p2|?

(c) fis u-strongly convex

where [ is the identity matrix and

A > B: <= A — Bis (weakly) positive definite.

Exercise 4 (Convexity and Minima).

Prove the following statements

(i) If f is convex, then every local minimum is also a global minimum.

(ii) If f is strictly convex, then there exists exactly one minimum.
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(iii) If f convex and differentiable and V f(z*) = 0, then z* is a minimum. (1 pt)

Exercise 5 (Directional Minima). (3 Points)

Let f be some differentiable function. For every direction d € R™ define
ga(a) := f(z" + ad).
Assume that for every d, g4 is minimized by o = 0. Prove that
(i) We have necessarily V f(z*) = 0. (1 pt)
(ii) f(z*) is not necessarily a minimum of f. (2 pts)
Hint. Let 0 < p < q and define
fy,2) = (z = py*) (= — av?)
consider z* = (0,0) and prove that f(y,my?) < 0forp <m < q.

Exercise 6 (Bregman Divergence). (10 Points)

The Bregman Divergence D;B) of a continuously differentiable function f : R¢ — R is defined as

the error of the linear approximation and is related to p-strong convexity and Lipschitz continuous
gradients as follows

p-strongly convex linear approximation L-Lipschitz gradient
" 9 (definition) (Descent Lemma) I 9
Sl = ol < f(x) = f(xo) — (Vf(x0),x — x0) < Sz — ol
B)
=: D; )(a:,a:o)

For 1 = 0 this is simply the convexity condition by Prop. A.1.8. So non-negativity of the Bregman
divergence implies convexity. The L-Lipschitz gradients provide us with an upper bound on the

Bregman divergence on the other hand which immediately results in an upper bound on f
f(x) = f(zo) +(Vf(x0), 2 — x0) —i—DSCB)(a:,xO). (1)
—_———
<% llo—ao]?

(i) Prove for functions f with L-Lipschitz gradients, we have for all xq
min f(2) < f(z0) = 57 [V (w0)[I*.
What is the minimizer? (2 pts)

Hint. Minimize the upper bound (I). For this, first minimize over the direction © — x( subject
to the length ||x — xz¢|| = r being constant. Then minimize over r.

(i1) Prove for convex functions f with L-Lipschitz gradients (2 pts)

DY (2, 20) > ||V f(2) — Vf (o) >



(ii1)

(iv)

v)

Hint. Apply[(i)|to
o(x) == D;B) (x, o).

Due to convexity you should already know the global minimum of ¢.

Prove for convex functions f with L-Lipschitz gradients, we have for all x, y (1 pt)

(Vf(z) = Vfy),z—y) > 1l|VF() - V)

Hint. Use|(ii)|twice.

Prove for convex f that the upper bound
B L
D7 (@, 20) < Sl — ol

is sufficient for Lipschitz continuity of the gradient V f. (1 pt)

Hint. Argue why you can use (iii)|without circular reasoning.

In this last part we want to assume f is p-strongly convex (and its gradient L-Lipschitz). Prove
for all x,y (4 pts)

(V@) = Vy)e—y) = flle —yl® + 25V @) - V)

Hint. Note that strong convexity provides an alternative lower bound to Using this alter-
native lower bound we could directly obtain a modified version of| But we are greedy. We
want to use both lower bounds for an even tighter bound on the scalar product. We therefore
want to use

92(y) = f(y) — &z —y|?

to break down the Bregman divergence of f, so we can have our cake and eat it:

B
D) (y,2) = D (y, ) + 4y — 2|)* .

use[[i7]] strong convexity

Remember to check convexity of g, and Lipschitz continuity of V g, before applying When
applying|(ii)| the selection z = x might be helpful.



