Lecture: Optimization in Machine Learning

Simon Weissmann

Assistant Professor of Applied Stochastics, office: B6, 26 – Room B 3.05 email: simon.weissmann@uni-mannheim.de

Thursday, 12:00 - 13:30 December 5, 2024

Ch2: Unconstrained Optimization methods

Unconstrained Optimization methods

Optimality conditions

Necessary optimality conditions:

Let $f: \mathbb{R}^d \to \mathbb{R}$, $S \subset \mathbb{R}^d$ open, and let $x_* \in S$ be a local minimum of f

- If f is continuously differentiable over S, then $\nabla f(x_*) = 0$.
- If f is twice continuously differentiable over S, then $\nabla^2 f(x_*)$ is positive semi-definite.

Optimality conditions

Sufficient optimality conditions:

Let $f : \mathbb{R}^d \to \mathbb{R}$ be twice continuously differentiable over open subset $S \subset \mathbb{R}^d$, and $x_* \in S$ with $\nabla f(x_*) = 0.$

• $\nabla^2 f(x_*)$ positive definite.

Then x_* is a strict local minimum of f and there exist $\gamma > 0$, $\varepsilon > 0$ such that

$$f(x) \ge f(x_*) + \frac{\gamma}{2} ||x - x_*||^2$$

for all $x \in \mathcal{B}_{\varepsilon}(x_*)$.

Optimality conditions

Optimality condition for convex functions

Let $f : \mathbb{R}^d \to \mathbb{R}$ be continuously differentiable and convex.

- 1. local minimum of $f \Rightarrow$ global minimum of f.
- 2. f strictly convex \Rightarrow there exists at most one global minimum of f.
- 3. $\nabla f(x_*) = 0$ sufficient and necessary condition for global minimum of f.

Descent methods

Descent direction

 $d \in \mathbb{R}^d$ descent direction of f in $x \in \mathbb{R}^d$: $\exists \bar{\alpha} > 0$ such that $f(x + \alpha d) < f(x)$ for all $\alpha \in (0, \bar{\alpha}]$.

Descent condition

×

 $\nabla f(x)^\top d < 0 \quad \Rightarrow \quad d \in \mathbb{R}^d \text{ descent direction of } f \text{ in } x.$

Descent methods

Gradient based methods

$$x_{k+1} = x_k - \alpha_k D_k \nabla f(x_k)$$

examples:

- Gradient descent: $D_k = \mathrm{Id}$
- Newton method: $D_k = (\nabla^2 f(x_k))^{-1}$
- Quasi-Newton method: $D_k \approx (\nabla^2 f(x_k))^{-1}$

Descent methods

step size selection:

- Constant step size: $\alpha_k = s > 0$ for all $k \in \mathbb{N}$
- Diminishing step size: $\lim_{k\to\infty} \alpha_k = 0$
- Armijo rule:

Theorem

- $f: \mathbb{R}^d \to \mathbb{R}$ be continuously differentiable,
- $(x_k)_{k\in\mathbb{N}}$ be generated by

$$x_{k+1} = x_k + \alpha_k d_k, \quad d_k = -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|},$$

• $\alpha_k > 0$ is chosen by the Armijo step size rule,

Then it holds true that every accumulation point $\bar{x} \in \mathbb{R}^d$ of the sequence $(x_k)_{k \in \mathbb{N}}$ is a stationary point of f, i.e. $\nabla f(\bar{x})$.

Definition

 $f: \mathbb{R}^d \to \mathbb{R} \text{ L-smooth, $L>0$} \quad :\Leftrightarrow \quad f \text{ differentiable } \& \text{ L-Lipschitz gradients, i.e.}$

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|, \quad x, y \in \mathbb{R}^d.$$

Descent Lemma

$$f: \mathbb{R}^d \to \mathbb{R}$$
 be L-smooth: $f(x+y) \leq f(x) + y^\top \nabla f(x) + \frac{L}{2} \|y\|^2$

If
$$\alpha \leq \frac{2}{L}$$
:

$$f(x - \alpha \nabla f(x)) \le f(x) - \alpha \|\nabla f(x)\|^2 + \alpha^2 \frac{L}{2} \|\nabla f(x)\|^2 \le f(x)$$

Theorem (convergence GD with constant step size)

- $f: \mathbb{R}^d \to \mathbb{R}$ be *L*-smooth
- $(x_k)_{k\in\mathbb{N}}$ generated by

$$x_{k+1} = x_k - \bar{\alpha} \nabla f(x_K),$$

with $\bar{\alpha} \in [\varepsilon, \frac{2-\varepsilon}{L}]$, $\varepsilon \in (0, \frac{2}{L+1})$.

Then every accumulation point $\bar{x} \in \mathbb{R}^d$ of $(x_k)_{k \in \mathbb{N}}$ is a stationary point of f, i.e. $\nabla f(\bar{x}) = 0$.

Theorem (convergence GD with diminishing step size)

- $f: \mathbb{R}^d \to \mathbb{R}$ be L-smooth
- $(x_k)_{k\in\mathbb{N}}$ generated by

$$x_{k+1} = x_k - \bar{\alpha} \nabla f(x_K),$$

where $\alpha_k > 0$ with

$$\lim_{k o\infty}lpha_k=0 \quad ext{and} \quad \sum_{k=0}^\infty lpha_k=\infty.$$

Then for $(f(x_k))_{k\in\mathbb{N}}$ it holds true that either

$$\lim_{k \to \infty} f(x_k) = -\infty \quad \text{or} \quad \lim_{k \to \infty} \nabla f(x_k) = 0.$$

Moreover, every accumulation point $\bar{x} \in \mathbb{R}^d$ of $(x_k)_{k \in \mathbb{N}}$ is a stationary point of f, i.e. $\nabla f(\bar{x}) = 0$.

Theorem (GD convex and smooth)

- $f: \mathbb{R}^d \to \mathbb{R}$ convex and *L*-smooth with $\inf_x f(x) > -\infty$,
- $(x_k)_{k\in\mathbb{N}}$ generated by

$$x_{k+1} = x_k - \bar{\alpha} \nabla f(x_k),$$

with $\bar{\alpha} \leq \frac{1}{L}$.

Then the sequence $(x_k)_{k\in\mathbb{N}}$ converges in the sense that

$$e(x_k) := f(x_k) - f_* \le \frac{c}{k}, \quad k \in \mathbb{N}$$

for some constant c > 0 and $f_* = \min_{x \in \mathbb{R}^d} f(x)$.

 $f:\mathbb{R}^d
ightarrow \mathbb{R}$ with

- L-smooth $\implies f(y) \le f(x) + \nabla f(x)^\top (y-x) + \frac{L}{2} ||x-y||^2$
- μ -strongly convex $\implies f(y) \ge f(x) + \nabla f(x)^\top (y-x) + \frac{\mu}{2} \|x-y\|^2$

 $L\text{-smooth} + \mu\text{-strongly convex:} \quad \frac{\mu}{2} \|x - y\|^2 \le f(y) - f(x) - \nabla f(x)^\top (y - x) \le \frac{L}{2} \|x - y\|^2$

In particular: $\frac{\mu}{2} \|x - x_*\|^2 \le f(x) - f(x_*) \le \frac{L}{2} \|x - x_*\|^2$

Theorem (GD strong convex and smooth)

- $f: \mathbb{R}^d \to \mathbb{R} \ \mu$ -convex and L-smooth,
- $x_* \in \mathbb{R}^d$ unique global minimum of f, $f(x_*) = \min_{x \in \mathbb{R}^d} f(x)$,
- $(x_k)_{k\in\mathbb{N}}$ generated by

$$x_{k+1} = x_k - \bar{\alpha} \nabla f(x_k),$$

with $\bar{\alpha} = \frac{2}{\mu + L}$.

Then the sequence $(x_k)_{k\in\mathbb{N}}$ converges linearly in the sense that

$$e(x_k) := \|x_k - x_*\| \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|x_0 - x_*\|, \quad k \in \mathbb{N}$$

where $\kappa = \frac{L}{\mu}$.

Sub-gradient descent method

Definition

 $g_x \in \mathbb{R}^d$ sub-gradient of $f: \mathbb{R}^d \to \mathbb{R}$ in $x \in \mathbb{R}^d$ if

$$f(y) \ge f(x) + g_x^\top (y - x).$$

for all $y \in \mathbb{R}^d$. Sub-differential: Set of all sub-gradients of f in x of f denoted by $\partial f(x)$.

Sub-gradient descent method

Algorithm: Sub-gradient descent method

- find a sub-gradient $g_{x_k} \in \partial f(x_k)$
- set $x_{k+1} = x_k \alpha_k g_{x_k}$

Theorem (Sub-gradient descent convergence)

• $f: \mathbb{R}^d \to \mathbb{R}$ be convex and *M*-Lipschitz continuous,

• $\alpha_k > 0$,

 \blacksquare assume existence of a global minimum $x_* \in \mathbb{R}^d$ of f

Then for $\bar{x}_N := \sum_{k=0}^N w_k x_k$, $w_k = \frac{\alpha_k}{\sum_{s=0}^N \alpha_s}$, $k = 1, \dots, N$ it holds true that

$$e(x_k) = f(\bar{x}_N) - f(x_*) \le \frac{\|x_0 - x_*\| + M^2 \sum_{k=0}^N \alpha_k^2}{2 \sum_{k=0}^N \alpha_k}$$

Gradient descent struggles with quadratic cost functions of high condition number:

Figure: Contour lines of a quadratic function for increasing condition number κ .

Polyak's heavy ball method (HBM):

$$x_{k+1} = \underbrace{x_k - \alpha_k \nabla f(x_k)}_{\text{gradient descent}} + \underbrace{\beta_k(x_k - x_{k-1})}_{\text{Heavy ball momentum}}.$$

Example: Quadratic cost function $f(x) = \frac{1}{2}x^{\top}Qx$ with lowest eigenvalue $\lambda_{\min}(Q) = \mu$ and largest eigenvalue $\lambda_{\max}(Q) = L$. \rightarrow condition number $\kappa = \frac{L}{\mu} \ge 1$.

Method	step size	momentum	convergence rate
GD	$\bar{\alpha} = \frac{2}{\mu + L}$	$\beta = 0$	$c = \frac{\kappa - 1}{\kappa + 1}$
НВМ	$\bar{\alpha} = \frac{4}{(\sqrt{\mu} + \sqrt{L})^2}$	$\beta = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2$	$c = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}$

Figure: Illustration of the effect through momentum.

Lower bound on convergence?

Assumption (first order)

The sequence $(x_k)_{k\in\mathbb{N}}$ (generated by some iterative scheme) satisfies the condition

 $x_k \in x_0 + \operatorname{span}\{\nabla f(x_0), \dots, \nabla f(x_{k-1})\}\$

for all $k \geq 1$.

Lower bound on convergence?

Theorem 2.1.13 in Nesterov (2018) - strong convex and smooth

For each $x_0 \in \ell^2(\mathbb{R})$, $\mu, L > 0$ with $\kappa = \frac{L}{\mu} > 1$, there exists a μ -strongly convex and L-smooth function $f : \ell^2(\mathbb{R}) \to \mathbb{R}$ such that every iterative scheme $(x_k)_{k \in \mathbb{N}}$ satisfying Assumption (first order) satisfies a lower bound on the error given by

$$e(x_k) := \|x_k - x_*\|^2 \ge \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x_0 - x_*\|^2,$$

where $x_* \in \ell^2(\mathbb{R})$ denotes the unique global minimum of f.

Upper bound for GD: $e(x_k) := ||x_k - x_*||^2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} ||x_0 - x_*||^2$

Lower bound on convergence?

Theorem 2.1.7 in Nesterov (2018) - convex and smooth

For every $k \in \mathbb{N}$ with $1 \le k \le \frac{1}{2}(d-1)$, L > 0 and every $x_0 \in \mathbb{R}^d$ (*d* denotes the dimension of the domain), there exists a convex and *L*-smooth function $f : \mathbb{R}^d \to \mathbb{R}$ such that every iterative scheme $(x_k)_{k \in \mathbb{N}}$ satisfying Assumption (first order) satisfies a lower bound on the error given by

$$e(x_k) := f(x_k) - f_* \ge \frac{3L \|x_0 - x_*\|^2}{32(k+1)^2},$$

where $f_* = \min_{x \in \mathbb{R}^d} f(x) > -\infty$ exists.

Upper bound for GD: $e(x_k) := f(x_k) - f_* \leq \frac{C}{(k+1)}$

Counter example HBM:

Consider L-smooth and μ -strongly convex function

$$f(x) = \begin{cases} \frac{25}{2}x^2, & x < 1\\ \frac{1}{2}x^2 + 24x - 12, & x \in [1,2)\\ \frac{25}{2}x^2 - 24x + 36, & x \ge 2 \end{cases}$$

Implementation: HBM with
$$\bar{\alpha} = \frac{4}{(\sqrt{\mu} + \sqrt{L})^2}$$
, $\beta = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2$ and $x_0 = 3.3$.

Accelerated gradient descent method Counter example HBM:

Figure: Evolution of the cost function along the iteration.

Accelerated gradient descent method Counter example HBM:

Figure: Evolution of the cost function along the iteration (left) and the state (right).

Nesterov's accelerated gradient descent method:

- cost function $f : \mathbb{R}^d \to \mathbb{R}$,
- step sizes $(\alpha_k)_{k\in\mathbb{N}}$, $\alpha_k > 0$, and momentum parameters $(\beta_k)_{k\in\mathbb{N}}$, $\beta_k \ge 0$,
- initial $q_0, p_0 \in \mathbb{R}^d$.

Iterate:

$$p_{k+1} = q_k - \alpha_k \nabla f(q_k) q_{k+1} = p_{k+1} + \beta_k (p_{k+1} - p_k)$$

Nesterov's accelerated gradient descent method: convex case Written as three variables: (special case $\alpha_k = \gamma_k \tau_k$, $\beta_k = \frac{\tau_{k+1}(1-\tau_k)}{\tau_k}$, $y \mapsto p$, $x \mapsto q$)

$$x_k = \tau_k z_k + (1 - \tau_k) y_k,$$

$$y_{k+1} = x_k - \alpha_k \nabla f(x_k),$$

$$z_{k+1} = z_k - \gamma_k \nabla f(x_k),$$

Theorem (convex and smooth cost function)

•
$$f: \mathbb{R}^d \to \mathbb{R}$$
 be *L*-smooth and convex with $\min_{x \in \mathbb{R}^d} f > -\infty$,

•
$$\alpha_k = \frac{1}{L}$$
, $A_k > 0$, $\gamma_k = A_{k+1} - A_k \ge 0$ and $\tau_k = \frac{\gamma_k}{A_{k+1}} = \frac{A_{k+1} - A_k}{A_{k+1}} \in (0, 1)$,

• initial $(y_0, z_0) \in \mathbb{R}^d \times \mathbb{R}^d$.

Then the increments of $(E_k)_{k\in\mathbb{N}}$ defined as $E_k=rac{1}{2}\|z_k-x_*\|^2+A_k(f(y_k)-f(x_*))$ satisfy

$$E_{k+1} - E_k \le \left(\frac{1}{2}(A_{k+1} - A_k)^2 - \frac{1}{2L}A_{k+1}\right) \|\nabla f(x_k)\|^2$$

for all $k \in \mathbb{N}$. For the particular choice $A_k = \frac{1}{4L}(k+1)k$, $k \ge 1$, and $A_0 = A_1$, we obtain

$$e_k = f(y_k) - f_* \le \frac{4LE_0}{(k+1)k}, \quad k \ge 1.$$

Nesterov's accelerated gradient descent method: strongly convex case Written as three variables: (special case $\alpha_k = \frac{1}{L}$, $\beta = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$, $\tau = \sqrt{\frac{\mu}{L}}$, $y \mapsto p$, $x \mapsto q$)

$$x_k = \frac{\tau}{1+\tau} z_k + \frac{1}{1+\tau} y_k$$
$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$
$$z_{k+1} = z_k + \tau (x_k - z_k) - \frac{\tau}{\mu} \nabla f(x_k)$$

Theorem (strongly convex and smooth cost function)

- $f: \mathbb{R}^d \to \mathbb{R}$ be μ -strongly convex and L-smooth with $L > \mu$,
- $x_* \in \mathbb{R}^d$ unique global minimum of f,
- $\tau = \sqrt{\frac{\mu}{L}} \in (0,1)$,
- $(y_0, z_0) \in \mathbb{R}^d \times \mathbb{R}^d.$

Then NAM converges linearly in the sense that

$$e_k := f(y_k) - f(x_*) + \frac{\mu}{2} \|z_k - x_*\|^2 \le \left(1 - \sqrt{\frac{\mu}{L}}\right)^k \left(f(y_0) - f(x_*) + \frac{\mu}{2} \|z_0 - x_*\|^2\right).$$

Figure: Illustration of the linear convergence rate depending on the condition number $\kappa = \frac{\mu}{L}$ for GD and NAM. The left plot shows the convergence rate $c^{\text{GD}}(\kappa) = \left(\frac{\kappa-1}{\kappa+1}\right)^2$ and $c^{\text{NAM}}(\kappa) = \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}}\right)$, whereas the right plot shows the difference to 1, i.e. $1 - c(\kappa)$, in logarithmic scale.

Ch4: Stochastic approximation in Optimization

Expected and empirical risk

- $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$ be $\mathcal{B}(\mathbb{R}^d) \otimes \mathcal{B}(\mathbb{R}^p) / \mathcal{B}(\mathbb{R})$ measurable,
- $Z: \Omega \to \mathbb{R}^p$ random variable with distribution μ_Z , $\mathbb{E}[|f(x, Z)|] < \infty$ for all $x \in \mathbb{R}^d$,
- Z_1, \ldots, Z_N be i.i.d. random variables with $Z_1 \sim \mu_Z$.

Definition

1. expected risk:

$$F(x) = \mathbb{E}_{Z \sim \mu}[f(x, Z)] =: \int_{\mathbb{R}^p} f(x, z) \,\mu(\mathrm{d} z), \quad x \in \mathbb{R}^d.$$

2. empirical risk:

$$F_N(x) = \frac{1}{N} \sum_{i=1}^N f(x, Z^{(i)}).$$

Stochastic gradient descent method

Lemma

Suppose "certain Assumptions" on f and Z are satisfied, then

1. the function $F(x) = \mathbb{E}[f(x, Z)]$ is continuously differentiable,

2. $\nabla f(x,Z)$ is an unbiased estimator of $\nabla_x F(x)$ for every $x \in \mathbb{R}^d$, i.e. it holds true that

 $\nabla_x F(x) = \mathbb{E}[\nabla_x f(x, Z)].$

Stochastic gradient descent method

Input:

- \blacksquare cost function $f:\mathbb{R}^d\times\mathbb{R}^p\to\mathbb{R}$
- initial random variable $X_0: \Omega \to \mathbb{R}^d$
- sequence of step sizes $(\alpha_k)_{k\in\mathbb{N}}$, $\alpha_k > 0$ (deterministic or \mathcal{F} -adapted)
- sequence of i.i.d. random variables $(Z_k)_{k\in\mathbb{N}}$ with $Z_1 \sim \mu_Z$.

Algorithm: Stochastic gradient descent method (SGD)

- set k = 0
- While "convergence/stopping criterion not met"
 - approximate the gradient $\nabla_x F(X_k)$ through

 $G_k = \nabla_x f(X_k, Z_{k+1})$

• set
$$X_{k+1} = X_k - \alpha_k G_k$$
, $k \mapsto k+1$

EndWhile

Stochastic gradient descent method

Input:

- cost function $f: \mathbb{R}^d \times \mathbb{R}^p \to \mathbb{R}$
- initial random variable $X_0: \Omega \to \mathbb{R}^d$
- sequence of step sizes $(\alpha_k)_{k\in\mathbb{N}}$, $\alpha_k > 0$ (deterministic or \mathcal{F} -adapted)
- realization of fixed deterministic data set $\{z^{(i)}\}_{i=1}^N$ with $z^{(i)} \in \mathbb{R}^p$.

Algorithm: SGD with finite data

 $\bullet \ {\rm set} \ k=0$

- While "convergence/stopping criterion not met"
 - generate independently $i_{k+1} \sim \mathcal{U}(\{1, \ldots, N\})$
 - approximate the gradient $abla_x F_N(X_k)$ through

$$G_k = \nabla_x f(X_k, z^{\mathbf{i}_{k+1}})$$

• set
$$X_{k+1} = X_k - \alpha_k G_k$$
, $k \mapsto k+1$

EndWhile

Convergence analysis of SGD

Decompose the iterative scheme:

$$X_{k+1} = X_k - \alpha_k \nabla_x f(X_k, Z_{k+1}) = X_k - \alpha_k \nabla_x F(X_k) + \alpha_k \left(\nabla_x F(X_k) - \nabla_x f(X_k, Z_{k+1}) \right)$$
$$=: X_k - \alpha_k \nabla_x F(X_k) + \alpha_k M_{k+1}.$$

Factorization:

$$\mathbb{E}[M_{k+1} \mid \mathcal{F}_k] = \mathbb{E}[\nabla_x F(X_k) - \nabla_x f(X_k, Z_{k+1}) \mid \mathcal{F}_k] = 0,$$
 where $\mathcal{F}_k = \sigma(X_0, \ Z_m, m \le k)$

Almost sure convergence of SGD

Robbins & Siegmund

- $(\Omega, \mathcal{A}, \mathcal{F}, \mathbb{P})$ filtered probability space,
- $(Z_k)_{k\in\mathbb{N}}$, $(A_k)_{k\in\mathbb{N}}$, $(B_k)_{k\in\mathbb{N}}$ and $(C_k)_{k\in\mathbb{N}}$ be non-negative and \mathcal{F} -adapted,
- $\sum_{k=0}^{\infty} A_k < \infty$ and $\sum_{k=0}^{\infty} B_k < \infty$ almost surely,

assume

$$\mathbb{E}[Z_{k+1} \mid \mathcal{F}_k] \le Z_k(1+A_k) + B_k - C_k.$$

Then

- 1. there exists an almost surely finite random variable Z_∞ such that $Z_k\to Z_\infty$ almost surely for $k\to\infty$,
- 2. it holds true that $\sum_{k=0}^{\infty} C_k < \infty$ almost surely.

Almost sure convergence of SGD

The SGD iteration satisfies under L-smoothness

$$\mathbb{E}[F(X_{k+1}) - F_* \mid \mathcal{F}_k] \le (1 + c\frac{L}{2}\alpha_k^2)(F(X_k) - F_*) + c\frac{L}{2}\alpha_k^2 - \alpha_k(1 - \frac{L}{2}\alpha_k) \|\nabla_x F(X_k)\|^2.$$

Theorem (SGD almost sure convergence)

- $F: \mathbb{R}^d \to \mathbb{R}$ be L-smooth and bounded from below by $F_* = \inf_{x \in \mathbb{R}^d} F(x) > -\infty$,
- $\alpha_k > 0$, $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$ (almost surely),
- suppose that "certain" Assumptions are satisfied,
- X_0 be rv such that $\mathbb{E}[F(X_0)] < \infty$.

Then $(F(X_k))_{k\in\mathbb{N}}$ converges almost surely to some random variable F_{∞} , almost surely finite, and

$$\lim_{k \to \infty} \|\nabla_x F(X_k)\|^2 = 0, \quad \text{almost surely.}$$

Convergence of SGD (convex)

Theorem (SGD for convex and smooth cost function)

- $F: \mathbb{R}^d \to \mathbb{R}$ be convex and L-smooth, set of global minima of F is non-empty,
- suppose that "certain" Assumptions are satisfied (+ uniform variance bound),
- X_0 be rv such that $\mathbb{E}[|F(X_0)| + ||X_0 x_*||^2] < \infty$ for some $x_* \in \arg \min_{x \in \mathbb{R}^d} F(x)$,
- $\alpha_k \in (0, \frac{1}{L}]$, deterministic and decreasing.

Then for $\bar{X}_N := \sum_{k=0}^{N-1} w_k^N X_{k+1}, \ w_k^N := \frac{\alpha_k}{\sum_{j=0}^{N-1} \alpha_j}, \ N \ge 2$, it holds true that

$$\mathbb{E}[F(\bar{X}_N) - F(x_*)] \le \frac{\mathbb{E}[\|X_0 - x_*\|^2]}{2\sum_{j=0}^{N-1} \alpha_j} + \frac{c(1 + \alpha_0 L) \sum_{k=0}^{N-1} \alpha_k^2}{2\sum_{j=0}^{N-1} \alpha_j}$$

 $\alpha_k := \frac{1}{L\sqrt{k+1}} \implies \mathbb{E}[F(\bar{X}_N) - F(x_*)] \in \mathcal{O}\left(\frac{\log(N)}{\sqrt{N}}\right).$

Convergence of SGD (strongly convex)

Theorem (SGD for strongly convex and smooth cost function)

- $F: \mathbb{R}^d \to \mathbb{R}$ be μ -strongly convex and L-smooth,
- suppose that "certain" Assumptions are satisfied (+ uniform variance bound),
- X_0 be rv such that $\mathbb{E}[|F(X_0)| + ||X_0 x_*||^2] < \infty$, $x_* \in \mathbb{R}^d$ global minimum of F,
- $\alpha_k \in (0, \frac{1}{L}]$, deterministic.

Then for all $k \ge 0$ it holds true that

$$\mathbb{E}[\|X_{k+1} - x_*\|^2] \le (1 - \alpha_k \mu) \mathbb{E}[\|X_k - x_*\|^2] + c\alpha_k^2$$

$$\alpha_k := \frac{\tau}{\mu(k+s)} \implies \mathbb{E}[\|X_k - x_*\|^2] \in \mathcal{O}\left(\frac{1}{k+s}\right).$$

Variance reduction for SGD

Assumption	error bound	
convex	$\frac{C_1}{\sqrt{k}} + \operatorname{var} \cdot \frac{\log(k)}{\sqrt{k}}$	
strong convex	$(1 - \alpha_k \mu) e_k + \operatorname{var} \cdot \alpha_k^2$	
PL-condition	$(1 - \alpha_k r)e_k + \operatorname{var} \cdot \alpha_k^2$	

Dynamical sampling

Input:

- \blacksquare cost function $f:\mathbb{R}^d\times\mathbb{R}^p\to\mathbb{R}$
- initial random variable $X_0: \Omega \to \mathbb{R}^d$
- sequence of step sizes $(\alpha_k)_{k\in\mathbb{N}}$, $\alpha_k > 0$ (deterministic or \mathcal{F} -adapted)
- sequence of batch sizes $(B_k)_{k\in\mathbb{N}}$
- sequence of i.i.d. random variables $(Z_k^{(m)})_{k \in \mathbb{N}, m=1,...,B_{k-1}}$ with $Z_1^{(1)} \sim \mu_Z$.

Algorithm: SGD with dynamical sampling

- set k = 0
- While "convergence/stopping criterion not met"
 - approximate the gradient $\nabla_x F(X_k)$ through

$$G_{k} = \frac{1}{B_{k}} \sum_{m=1}^{B_{k}} \nabla_{x} f(X_{k}, Z_{k+1}^{(m)})$$

▶ set
$$X_{k+1} = X_k - \alpha_k G_k$$
, $k \mapsto k+1$
EndWhile

Dynamical sampling

Optimal dynamical batch-size: $B_j = \varepsilon^{-1} 2c\bar{\alpha}^2 \left(\frac{1-\rho^{\frac{K}{2}}}{1-\rho^{\frac{1}{2}}}\right) \rho^{\frac{K-1-j}{2}}$, with computational cost

$$\sum_{j=0}^{K-1} B_j = \varepsilon^{-1} 2c\bar{\alpha}^2 \left(\frac{1-\rho^{\frac{K}{2}}}{1-\rho^{\frac{1}{2}}}\right) \sum_{j=0}^{K-1} \rho^{\frac{K-1-j}{2}} \simeq \varepsilon^{-1},$$

Fixed batch-size: $\bar{B} \ge \varepsilon^{-1} 2c\bar{\alpha}^2(1-\rho)^{-1} \simeq \varepsilon^{-1}$, with computational cost

$$\sum_{j=0}^{K-1} B_j = K \cdot \bar{B} \simeq |\log(\varepsilon^{-1})| \varepsilon^{-1}.$$

Conclusion

Outlook

- adaptive step sizes (Adagrad, Adadelta,...)
- incorporation of momentum into SGD
- adaptive moment estimation (ADAM) → combining everything
- many more variants of SGD...
- other (heuristic) algorithms (simulated annealing, particle swarm optimization,...)
- Application to specific machine learning models (Regression, support vector machines, neural networks, GP's)

Additional information

- Seminar Stochastik
- Master thesis possible on related topics