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Ch2: Unconstrained Optimization methods
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Unconstrained Optimization methods
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Optimality conditions

Necessary optimality conditions:
Let f : Rd → R, S ⊂ Rd open, and let x∗ ∈ S be a local minimum of f

If f is continuously differentiable over S, then ∇f(x∗) = 0.
If f is twice continuously differentiable over S, then ∇2f(x∗) is positive semi-definite.
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Optimality conditions

Sufficient optimality conditions:
Let f : Rd → R be twice continuously differentiable over open subset S ⊂ Rd, and x∗ ∈ S with

∇f(x∗) = 0.
∇2f(x∗) positive definite.

Then x∗ is a strict local minimum of f and there exist γ > 0, ε > 0 such that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2

for all x ∈ Bε(x∗).
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Optimality conditions

Optimality condition for convex functions
Let f : Rd → R be continuously differentiable and convex.

1. local minimum of f ⇒ global minimum of f .
2. f strictly convex ⇒ there exists at most one global minimum of f .
3. ∇f(x∗) = 0 sufficient and necessary condition for global minimum of f .
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Descent methods

Descent direction
d ∈ Rd descent direction of f in x ∈ Rd: ∃ᾱ > 0 such that f(x+ αd) < f(x) for all α ∈ (0, ᾱ].

Descent condition
∇f(x)>d < 0 ⇒ d ∈ Rd descent direction of f in x.

{f(x) = c1}

{f(x) = c0}

{f(x) = c2}

{f(x) = c3}

c0 > c1 > c2 > c3

x0

x1

x2

x3

6 / 48



Descent methods

Gradient based methods
xk+1 = xk − αkDk∇f(xk)

examples:
Gradient descent: Dk = Id
Newton method: Dk = (∇2f(xk))

−1

Quasi-Newton method: Dk ≈ (∇2f(xk))
−1
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Descent methods
step size selection:

Constant step size: αk = s > 0 for all k ∈ N
Diminishing step size: limk→∞ αk = 0

Armijo rule:

α

f(x+ αd)

acceptable step sizes unsuccessfull step sizes

f(x) + σα∇f(x)⊤d

α(0)α(1)α(2)
·0.5·0.5
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Convergence of gradient descent

Theorem
f : Rd → R be continuously differentiable,
(xk)k∈N be generated by

xk+1 = xk + αkdk, dk = − ∇f(xk)

‖∇f(xk)‖
,

αk > 0 is chosen by the Armijo step size rule,
Then it holds true that every accumulation point x̄ ∈ Rd of the sequence (xk)k∈N is a stationary
point of f , i.e. ∇f(x̄).
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Convergence of gradient descent

Definition
f : Rd → R L-smooth, L > 0 :⇔ f differentiable & L-Lipschitz gradients, i.e.

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, x, y ∈ Rd.

Descent Lemma
f : Rd → R be L-smooth: f(x+ y) ≤ f(x) + y>∇f(x) + L

2 ‖y‖
2

If α ≤ 2
L :

f(x− α∇f(x)) ≤ f(x)− α‖∇f(x)‖2 + α2L

2
‖∇f(x)‖2 ≤ f(x)
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Convergence of gradient descent

Theorem (convergence GD with constant step size)

f : Rd → R be L-smooth
(xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xK),

with ᾱ ∈ [ε, 2−ε
L ], ε ∈ (0, 2

L+1 ).
Then every accumulation point x̄ ∈ Rd of (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.
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Convergence of gradient descent

Theorem (convergence GD with diminishing step size)

f : Rd → R be L-smooth
(xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xK),

where αk > 0 with

lim
k→∞

αk = 0 and
∞∑
k=0

αk = ∞.

Then for (f(xk))k∈N it holds true that either

lim
k→∞

f(xk) = −∞ or lim
k→∞

∇f(xk) = 0.

Moreover, every accumulation point x̄ ∈ Rd of (xk)k∈N is a stationary point of f , i.e. ∇f(x̄) = 0.

12 / 48



Convergence of gradient descent

Theorem (GD convex and smooth)

f : Rd → R convex and L-smooth with infx f(x) > −∞,
(xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk),

with ᾱ ≤ 1
L .

Then the sequence (xk)k∈N converges in the sense that

e(xk) := f(xk)− f∗ ≤ c

k
, k ∈ N

for some constant c > 0 and f∗ = minx∈Rd f(x).
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Convergence of gradient descent

f : Rd → R with
L-smooth =⇒ f(y) ≤ f(x) +∇f(x)>(y − x) + L

2 ‖x− y‖2

µ-strongly convex =⇒ f(y) ≥ f(x) +∇f(x)>(y − x) + µ
2 ‖x− y‖2

L-smooth + µ-strongly convex: µ
2 ‖x− y‖2 ≤ f(y)− f(x)−∇f(x)>(y − x) ≤ L

2 ‖x− y‖2

In particular: µ
2 ‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ L

2 ‖x− x∗‖2
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Convergence of gradient descent

Theorem (GD strong convex and smooth)

f : Rd → R µ-convex and L-smooth,
x∗ ∈ Rd unique global minimum of f , f(x∗) = minx∈Rd f(x),
(xk)k∈N generated by

xk+1 = xk − ᾱ∇f(xk),

with ᾱ = 2
µ+L .

Then the sequence (xk)k∈N converges linearly in the sense that

e(xk) := ‖xk − x∗‖ ≤
(
κ− 1

κ+ 1

)k

‖x0 − x∗‖, k ∈ N

where κ = L
µ .
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Sub-gradient descent method

Definition
gx ∈ Rd sub-gradient of f : Rd → R in x ∈ Rd if

f(y) ≥ f(x) + g>x (y − x).

for all y ∈ Rd. Sub-differential: Set of all sub-gradients of f in x of f denoted by ∂f(x).

y z

f(y)

f(z)

f

≤ f(z)f(y) +∇f(y)>(z − y)

y z

f(y)
f(z)

f

≤ f(z)f(y) + g>i (z − y)

g1

g2
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Sub-gradient descent method
Algorithm: Sub-gradient descent method

find a sub-gradient gxk
∈ ∂f(xk)

set xk+1 = xk − αkgxk

Theorem (Sub-gradient descent convergence )

f : Rd → R be convex and M -Lipschitz continuous,
αk > 0,
assume existence of a global minimum x∗ ∈ Rd of f

Then for x̄N :=
∑N

k=0 wkxk, wk = αk∑N
s=0 αs

, k = 1, . . . , N it holds true that

e(xk) = f(x̄N )− f(x∗) ≤
‖x0 − x∗‖+M2

∑N
k=0 α

2
k

2
∑N

k=0 αk

.
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Ch3: Accelerated gradient descent method
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Accelerated gradient descent method

Gradient descent struggles with quadratic cost functions of high condition number:

Figure: Contour lines of a quadratic function for increasing condition number κ.
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Accelerated gradient descent method
Polyak’s heavy ball method (HBM):

xk+1 = xk − αk∇f(xk)︸ ︷︷ ︸
gradient descent

+ βk(xk − xk−1)︸ ︷︷ ︸
Heavy ball momentum

.

Example: Quadratic cost function f(x) = 1
2x

>Qx with lowest eigenvalue λmin(Q) = µ and
largest eigenvalue λmax(Q) = L. → condition number κ = L

µ ≥ 1.

Method step size momentum convergence rate

GD ᾱ = 2
µ+L β = 0 c = κ−1

κ+1

HBM ᾱ = 4
(
√
µ+

√
L)2

β =
(√

κ−1√
κ+1

)2
c =

√
κ−1√
κ+1
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Accelerated gradient descent method
23.03.23, 11:43 high-condition.svg

file:///Users/simonweissmann/Downloads/high-condition.svg 1/1

Figure: Illustration of the effect through momentum.
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Accelerated gradient descent method

Lower bound on convergence?

Assumption (first order)
The sequence (xk)k∈N (generated by some iterative scheme) satisfies the condition

xk ∈ x0 + span{∇f(x0), . . . ,∇f(xk−1)}

for all k ≥ 1.
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Accelerated gradient descent method
Lower bound on convergence?

Theorem 2.1.13 in Nesterov (2018) - strong convex and smooth
For each x0 ∈ `2(R), µ,L > 0 with κ = L

µ > 1, there exists a µ-strongly convex and L-smooth
function f : `2(R) → R such that every iterative scheme (xk)k∈N satisfying Assumption (first
order) satisfies a lower bound on the error given by

e(xk) := ‖xk − x∗‖2 ≥
(√

κ− 1√
κ+ 1

)2k

‖x0 − x∗‖2,

where x∗ ∈ `2(R) denotes the unique global minimum of f .

Upper bound for GD: e(xk) := ‖xk − x∗‖2 ≤
(

κ−1
κ+1

)2k
‖x0 − x∗‖2

23 / 48



Accelerated gradient descent method

Lower bound on convergence?

Theorem 2.1.7 in Nesterov (2018) - convex and smooth
For every k ∈ N with 1 ≤ k ≤ 1

2 (d− 1), L > 0 and every x0 ∈ Rd (d denotes the dimension of the
domain), there exists a convex and L-smooth function f : Rd → R such that every iterative
scheme (xk)k∈N satisfying Assumption (first order) satisfies a lower bound on the error given by

e(xk) := f(xk)− f∗ ≥ 3L‖x0 − x∗‖2

32(k + 1)2
,

where f∗ = minx∈Rd f(x) > −∞ exists.

Upper bound for GD: e(xk) := f(xk)− f∗ ≤ C
(k+1)
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Accelerated gradient descent method

Counter example HBM:
Consider L-smooth and µ-strongly convex function

f(x) =


25
2 x2, x < 1
1
2x

2 + 24x− 12, x ∈ [1, 2)
25
2 x2 − 24x+ 36, x ≥ 2

.

Implementation: HBM with ᾱ = 4
(
√
µ+

√
L)2

, β =
(√

κ−1√
κ+1

)2
and x0 = 3.3.
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Accelerated gradient descent method
Counter example HBM:

Figure: Evolution of the cost function along the iteration.
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Accelerated gradient descent method
Counter example HBM:

Figure: Evolution of the cost function along the iteration (left) and the state (right).
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method:
cost function f : Rd → R,
step sizes (αk)k∈N, αk > 0, and momentum parameters (βk)k∈N, βk ≥ 0,
initial q0, p0 ∈ Rd.

Iterate:

pk+1 = qk − αk∇f(qk)

qk+1 = pk+1 + βk(pk+1 − pk)
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method: convex case
Written as three variables: (special case αk = γkτk, βk = τk+1(1−τk)

τk
, y 7→ p, x 7→ q)

xk = τkzk + (1− τk)yk,

yk+1 = xk − αk∇f(xk),

zk+1 = zk − γk∇f(xk),
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Accelerated gradient descent method
Theorem (convex and smooth cost function)

f : Rd → R be L-smooth and convex with minx∈Rd f > −∞,
αk = 1

L , Ak > 0, γk = Ak+1 −Ak ≥ 0 and τk = γk

Ak+1
= Ak+1−Ak

Ak+1
∈ (0, 1),

initial (y0, z0) ∈ Rd × Rd.
Then the increments of (Ek)k∈N defined as Ek = 1

2‖zk − x∗‖2 +Ak(f(yk)− f(x∗)) satisfy

Ek+1 − Ek ≤
(
1

2
(Ak+1 −Ak)

2 − 1

2L
Ak+1

)
‖∇f(xk)‖2

for all k ∈ N. For the particular choice Ak = 1
4L (k + 1)k, k ≥ 1, and A0 = A1, we obtain

ek = f(yk)− f∗ ≤ 4LE0

(k + 1)k
, k ≥ 1.
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method: strongly convex case
Written as three variables: (special case αk = 1

L , β =
√
L−√

µ√
L+

√
µ

, τ =
√

µ
L , y 7→ p, x 7→ q)

xk =
τ

1 + τ
zk +

1

1 + τ
yk

yk+1 = xk − 1

L
∇f(xk)

zk+1 = zk + τ(xk − zk)−
τ

µ
∇f(xk)
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Accelerated gradient descent method

Theorem (strongly convex and smooth cost function)

f : Rd → R be µ-strongly convex and L-smooth with L > µ,
x∗ ∈ Rd unique global minimum of f ,
τ =

√
µ
L ∈ (0, 1),

(y0, z0) ∈ Rd × Rd.
Then NAM converges linearly in the sense that

ek := f(yk)− f(x∗) +
µ

2
‖zk − x∗‖2 ≤

(
1−

√
µ

L

)k (
f(y0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
.
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Accelerated gradient descent method
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Figure: Illustration of the linear convergence rate depending on the condition number κ = µ
L

for GD and

NAM. The left plot shows the convergence rate cGD(κ) =
(

κ−1
κ+1

)2

and cNAM(κ) =
(√

κ−1√
κ

)
, whereas the

right plot shows the difference to 1, i.e. 1− c(κ), in logarithmic scale.
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Ch4: Stochastic approximation in Optimization
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Expected and empirical risk

f : Rd × Rp → R be B(Rd)⊗ B(Rp)/B(R) measurable,
Z : Ω → Rp random variable with distribution µZ , E[|f(x,Z)|] < ∞ for all x ∈ Rd,
Z1, . . . , ZN be i.i.d. random variables with Z1 ∼ µZ .

Definition
1. expected risk:

F (x) = EZ∼µ[f(x,Z)] =:

∫
Rp

f(x, z)µ(dz), x ∈ Rd.

2. empirical risk:

FN (x) =
1

N

N∑
i=1

f(x,Z(i)).

35 / 48



Stochastic gradient descent method

Lemma
Suppose ”certain Assumptions” on f and Z are satisfied, then

1. the function F (x) = E[f(x,Z)] is continuously differentiable,
2. ∇f(x,Z) is an unbiased estimator of ∇xF (x) for every x ∈ Rd, i.e. it holds true that

∇xF (x) = E[∇xf(x,Z)].
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Stochastic gradient descent method
Input:

cost function f : Rd × Rp → R
initial random variable X0 : Ω → Rd

sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F-adapted)
sequence of i.i.d. random variables (Zk)k∈N with Z1 ∼ µZ .

Algorithm: Stochastic gradient descent method (SGD)
set k = 0

While ”convergence/stopping criterion not met”
I approximate the gradient ∇xF (Xk) through

Gk = ∇xf(Xk, Zk+1)

I set Xk+1 = Xk − αkGk, k 7→ k + 1

EndWhile
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Stochastic gradient descent method
Input:

cost function f : Rd × Rp → R
initial random variable X0 : Ω → Rd

sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F-adapted)
realization of fixed deterministic data set {z(i)}Ni=1 with z(i) ∈ Rp.

Algorithm: SGD with finite data
set k = 0

While ”convergence/stopping criterion not met”
I generate independently ik+1 ∼ U({1, . . . , N})
I approximate the gradient ∇xFN (Xk) through

Gk = ∇xf(Xk, z
ik+1)

I set Xk+1 = Xk − αkGk, k 7→ k + 1

EndWhile
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Convergence analysis of SGD

Decompose the iterative scheme:

Xk+1 = Xk − αk∇xf(Xk, Zk+1) = Xk − αk∇xF (Xk) + αk (∇xF (Xk)−∇xf(Xk, Zk+1))

=: Xk − αk∇xF (Xk) + αkMk+1.

Factorization:
E[Mk+1 | Fk] = E[∇xF (Xk)−∇xf(Xk, Zk+1) | Fk] = 0,

where Fk = σ(X0, Zm,m ≤ k)
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Almost sure convergence of SGD

Robbins & Siegmund

(Ω,A,F ,P) filtered probability space,
(Zk)k∈N, (Ak)k∈N, (Bk)k∈N and (Ck)k∈N be non-negative and F-adapted,∑∞

k=0 Ak < ∞ and
∑∞

k=0 Bk < ∞ almost surely,
assume

E[Zk+1 | Fk] ≤ Zk(1 +Ak) +Bk−Ck.

Then
1. there exists an almost surely finite random variable Z∞ such that Zk → Z∞ almost surely for

k → ∞,
2. it holds true that

∑∞
k=0 Ck < ∞ almost surely.
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Almost sure convergence of SGD
The SGD iteration satisfies under L-smoothness

E[F (Xk+1)− F∗ | Fk] ≤ (1 + c
L

2
α2
k)(F (Xk)− F∗) + c

L

2
α2
k−αk(1−

L

2
αk)‖∇xF (Xk)‖2.

Theorem (SGD almost sure convergence)

F : Rd → R be L-smooth and bounded from below by F∗ = infx∈Rd F (x) > −∞,
αk > 0,

∑∞
k=0 αk = ∞ and

∑∞
k=0 α

2
k < ∞ (almost surely),

suppose that ”certain” Assumptions are satisfied,
X0 be rv such that E[F (X0)] < ∞.

Then (F (Xk))k∈N converges almost surely to some random variable F∞, almost surely finite, and

lim
k→∞

‖∇xF (Xk)‖2 = 0, almost surely.
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Convergence of SGD (convex)

Theorem (SGD for convex and smooth cost function)

F : Rd → R be convex and L-smooth, set of global minima of F is non-empty,
suppose that ”certain” Assumptions are satisfied (+ uniform variance bound),
X0 be rv such that E[|F (X0)|+ ‖X0 − x∗‖2] < ∞ for some x∗ ∈ arg minx∈Rd F (x),
αk ∈ (0, 1

L ], deterministic and decreasing.
Then for X̄N :=

∑N−1
k=0 wN

k Xk+1, wN
k := αk∑N−1

j=0 αj
, N ≥ 2, it holds true that

E[F (X̄N )− F (x∗)] ≤
E[‖X0 − x∗‖2]
2
∑N−1

j=0 αj

+
c(1 + α0L)

∑N−1
k=0 α2

k

2
∑N−1

j=0 αj

.

αk := 1
L
√
k+1

=⇒ E[F (X̄N )− F (x∗)] ∈ O
(

log(N)√
N

)
.
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Convergence of SGD (strongly convex)

Theorem (SGD for strongly convex and smooth cost function)

F : Rd → R be µ-strongly convex and L-smooth,
suppose that ”certain” Assumptions are satisfied (+ uniform variance bound),
X0 be rv such that E[|F (X0)|+ ‖X0 − x∗‖2] < ∞, x∗ ∈ Rd global minimum of F ,
αk ∈ (0, 1

L ], deterministic.
Then for all k ≥ 0 it holds true that

E[‖Xk+1 − x∗‖2] ≤ (1− αkµ)E[‖Xk − x∗‖2] + cα2
k

αk := τ
µ(k+s) =⇒ E[‖Xk − x∗‖2] ∈ O

(
1

k+s

)
.
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Variance reduction for SGD

Assumption error bound
convex C1√

k
+ var · log(k)√

k

strong convex (1− αkµ)ek + var · α2
k

PL-condition (1− αkr)ek + var · α2
k
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Dynamical sampling
Input:

cost function f : Rd × Rp → R
initial random variable X0 : Ω → Rd

sequence of step sizes (αk)k∈N, αk > 0 (deterministic or F-adapted)
sequence of batch sizes (Bk)k∈N

sequence of i.i.d. random variables (Z
(m)
k )k∈N, m=1,...,Bk−1

with Z
(1)
1 ∼ µZ .

Algorithm: SGD with dynamical sampling
set k = 0

While ”convergence/stopping criterion not met”
I approximate the gradient ∇xF (Xk) through

Gk =
1

Bk

Bk∑
m=1

∇xf(Xk, Z
(m)
k+1)

I set Xk+1 = Xk − αkGk, k 7→ k + 1

EndWhile
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Dynamical sampling

Optimal dynamical batch-size: Bj = ε−12cᾱ2

(
1−ρ

K
2

1−ρ
1
2

)
ρ

K−1−j
2 , with computational cost

K−1∑
j=0

Bj = ε−12cᾱ2

(
1− ρ

K
2

1− ρ
1
2

)
K−1∑
j=0

ρ
K−1−j

2 ' ε−1,

Fixed batch-size: B̄ ≥ ε−12cᾱ2(1− ρ)−1 ' ε−1, with computational cost

K−1∑
j=0

Bj = K · B̄ ' | log(ε−1)|ε−1 .
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Conclusion
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Outlook
adaptive step sizes (Adagrad, Adadelta,…)
incorporation of momentum into SGD
adaptive moment estimation (ADAM) Ü combining everything
many more variants of SGD…
other (heuristic) algorithms (simulated annealing, particle swarm optimization,…)
Application to specific machine learning models (Regression, support vector machines, neural
networks, GP’s)

Additional information
Seminar Stochastik
Master thesis possible on related topics
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