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Ch2: Unconstrained Optimization methods
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Unconstrained Optimization methods
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Optimality conditions

Necessary optimality conditions:

Let f: RY - R, S C R? open, and let , € S be a local minimum of f
m If f is continuously differentiable over S, then V f(z.) = 0.
m If f is twice continuously differentiable over S, then V2 f(z.,) is positive semi-definite.
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Optimality conditions

Sufficient optimality conditions:

Let f:R?Y — R be twice continuously differentiable over open subset S C R¢, and z, € S with
m Vf(z.) =0.
m V2f(x,) positive definite.

Then z, is a strict local minimum of f and there exist v > 0, € > 0 such that

@) = f@.) + Ll — 2.2

for all z € B.(x4).
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Optimality conditions

Optimality condition for convex functions

Let f : R — R be continuously differentiable and convex.

1. local minimum of f = global minimum of f.
2. f strictly convex = there exists at most one global minimum of f.

3. Vf(z.) = 0 sufficient and necessary condition for global minimum of f.
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Descent methods

Descent direction

d € R? descent direction of f in z € R%: 3a > 0 such that f(z + ad) < f(x) for all a € (0, a].

Descent condition

Vf(z)'d<0 = deR?descent direction of f in z.

Q> > >
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Descent methods

Gradient based methods

$k+1 =X — OékaVf(l'k)

examples:
m Gradient descent: D, = Id
m Newton method: Dy, = (V2 f(z))~!
m Quasi-Newton method: Dy, ~ (V2 f(xy))~*
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Descent methods

step size selection:
m Constant step size: a, = s > 0 for all k € N

m Diminishing step size: limg_,oo ap = 0

m Armijo rule:
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Convergence of gradient descent

m f:R? — R be continuously differentiable,
m (xp)ren be generated by

dy = Vf(wk)

IVf @)l

Tg+1 = Tk + apdk,
m oy > 0 is chosen by the Armijo step size rule,

Then it holds true that every accumulation point Z € R? of the sequence (z)xen is a stationary
point of f, i.e. Vf(Z).
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Convergence of gradient descent

f:R? - R L-smooth, L >0 :& f differentiable & L-Lipschitz gradients, i.e.

IVf(@@) = Vil < Llz—yl, =zyeR.

Descent Lemma

f:RY— R be L-smooth: f(z+y) < f(z) +y' Vf(z)+ %||y||2

If a <
fla— V(@) < f(@) ~ al V1@ + 0> LI V@) < f(2)
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Convergence of gradient descent

Theorem (convergence GD with constant step size)

m f:R? — R be L-smooth
m (2)ren generated by
Thy1 = o — aV f(zk),

with a € [e, 255], € € (0, LL-&-I)'

Then every accumulation point 7 € R? of (z)ren is a stationary point of f, i.e. Vf(z) = 0.
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Convergence of gradient descent

Theorem (convergence GD with diminishing step size)

m f:R?Y— R be L-smooth
® (z1)ren generated by
Tyl = T — C_va(l‘K),

where aj > 0 with

oo
lim ap =0 and E Qp = 00.
k— o0 i

Then for (f(xr))ken it holds true that either
lim f(zxx) =—o00 or lim Vf(zy)=0.
k—o00 k—o0

Moreover, every accumulation point 7 € R? of (zj)ren is a stationary point of f, i.e. Vf(7) = 0.
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Convergence of gradient descent

Theorem (GD convex and smooth)

m f:R? — R convex and L-smooth with inf, f(z) > —oo,
m (z))ken generated by
Tr+1 = Tk — AV f(zk),
with @ < .

Then the sequence (2 )kren converges in the sense that

e(zg) = f(zp) — f < -, keN

> o

for some constant ¢ > 0 and f, = min,cga f(z).
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Convergence of gradient descent

f:R? = R with
" Lsmooth = f(y) < () + V(@) (g~ ) + o —
>

f(
m s-strongly convex = f(y) > f(z)+ Vf(z) (y —x) + §llz —yl?

L-smooth + yi-strongly convex: 4l —yl|> < f(y) — f(z) = Vf(z)" (y — z)

In particular: 4[|z — 2, |? < f(2) — f(z:) < £z — 2. |?

<

L
2

l = ylI?
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Convergence of gradient descent

Theorem (GD strong convex and smooth)

m f:R?Y— R p-convex and L-smooth,
m 7, € R? unique global minimum of f, f(z,) = min,cga f(z),
m (z))ren generated by

Tht1 = Tk — @Vf(l‘k),
A2
Then the sequence (z)kren converges linearly in the sense that

k
k—1
e(zr) = ||z — z«|| < ( > |lzo — z«||, k€N

Kk+1

where K = =.

T
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Sub-gradient descent method
gz € R? sub-gradient of f: R? — R in z € R? if
fly) > f(@)+ g, (y — 2).

for all y € R?. Sub-differential: Set of all sub-gradients of f in  of f denoted by 0f(z).

)T (2 y) < f(2)

f) +97 G- f(2)
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Sub-gradient descent method

Algorithm: Sub-gradient descent method
m find a sub-gradient g,, € 0f(zx)
B set Tpy1 = Tk — QGa,

Theorem (Sub-gradient descent convergence )

mf: R? — R be convex and M-Lipschitz continuous,
m o >0,
m assume existence of a global minimum z, € R? of f

Then for Ty = Y0 wyak, Wy = , k=1,...,N it holds true that

s=! 0

llzo — .|| +M22k oak

e(zr) = f(@N) — f(zs) < QZk 0 Ok

17 /48



Ch3: Accelerated gradient descent method



Accelerated gradient descent method

Gradient descent struggles with quadratic cost functions of high condition number:

/| @Dkr=15

o X,

@© k=60

o X,

Figure: Contour lines of a quadratic function for increasing condition number x.
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Accelerated gradient descent method

Polyak’s heavy ball method (HBM):

Tp1 = ap—oapVf(xg) +  Prlaeg —ap—1) .
—_—
gradient descent Heavy ball momentum
Example: Quadratic cost function f(z) = 32T Qz with lowest eigenvalue Ayin(Q) = p and

largest eigenvalue Apax(Q) = L. — condition number x = % > 1.

Method step size momentum convergence rate
- 2 -1
GD o= 7 p= =1
2
~_ 4 _ (r—1 _ /r-1
HBM | a= (VE+VL)? s (\/EH) €= Vrtt
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Accelerated gradient descent method

)
|

(11

I
AR

Figure: lllustration of the effect through momentum.
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Accelerated gradient descent method

Lower bound on convergence?

Assumption (first order)

The sequence (z1)ken (generated by some iterative scheme) satisfies the condition
xy, € xo +span{V f(zo),...,Vf(zr_1)}

for all £ > 1.
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Accelerated gradient descent method

Lower bound on convergence?

Theorem 2.1.13 in Nesterov (2018) - strong convex and smooth

For each x¢ € 2(R), u, L > 0 with k = % > 1, there exists a u-strongly convex and L-smooth

function f : /?(R) — R such that every iterative scheme (zj)xen satisfying Assumption (first
order) satisfies a lower bound on the error given by

\/E—l 2k )
\/Eﬁ*l ||Q?0—I‘*H ’

where z, € (?(R) denotes the unique global minimum of f.

(i) = ok — 22 > (

2%
Upper bound for GD: e(zy) := o1 — z.]]? < (:—3) lzo — 2|2
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Accelerated gradient descent method

Lower bound on convergence?

Theorem 2.1.7 in Nesterov (2018) - convex and smooth

For every k € Nwith 1 <k < 1(d—1), L > 0 and every 2y € R? (d denotes the dimension of the
domain), there exists a convex and L-smooth function f : R? — R such that every iterative
scheme (x)ken satisfying Assumption (first order) satisfies a lower bound on the error given by

3LH£C() — $*||2

G(IL']C) = f(xk) - f* > 32(k . 1)2 d

where f, = mingcga f(z) > —o0 exists.

Upper bound for GD: ¢(z;) := f(zx) — f« < <k§1)
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Accelerated gradient descent method

Counter example HBM:
Consider L-smooth and p-strongly convex function

251.2 1,<1
flx) = x2+24m—12 x€1,2) .
25 2 — 242 +36, = >2

ion: HhoA 4 _
Implementation: HBM with @ = NE=VAEL 8= <\/E+1
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Accelerated gradient descent method
Counter example HBM:

cost function
200 T

—f(x)
180 —e—GD |
HBM

160

140

: \ /
60 / |

-4 3 2 - 1 2 3 4

o
X
Figure: Evolution of the cost function along the iteration.
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Accelerated gradient descent method
Counter example HBM:

cost function state
140 4

—aD —GD
——HBM . ——HBM| |
120 R S

loss
state
o

0 10 20 30 40 50 60 “o 10 20 30 40 50 60
iteration iteration

Figure: Evolution of the cost function along the iteration (left) and the state (right).
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method:
m cost function f : R — R,
m step sizes (o )ren, @ > 0, and momentum parameters (Bx)ken, Bk > 0,
m initial go,po € R%.

Iterate:

Prt1 = qr — oV f(qr)
Tk+1 = Ph+1 + Bre(Pr+1 — Pr)
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method: convex case

. . . 1—74
Written as three variables: (special case ay, = YTk, Br = %}CT")

LY D, T q)
xp =1z + (1 — 7)Yk,

Yrt1 = T — i V f(7),
Zh1 = 2k — WV f(2r),
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Accelerated gradient descent method

Theorem (convex and smooth cost function)

m f:R?— R be L-smooth and convex with mingcga f > —o00,

Apg1—A
" OékZ%,Ak>0,7k=Ak+1—Ak203ndi=xZ%:%ﬂk6(071),
m initial (yo,20) € R? x R%.

Then the increments of (Ej)yen defined as By = 1|2, — @.]|% + Ar(f(yx) — f(z4)) satisfy

1
Bunr = B < ( 5(rn — 40P = g dun ) IV £@o)lP

for all k € N. For the particular choice Ay, = /- (k+ 1)k, k > 1, and Ay = A;, we obtain

ALE oy

= flyr) — f« < Grok FZ
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Accelerated gradient descent method

Nesterov’s accelerated gradient descent method: strongly convex case

Written as three variables: (special case ay, = +, 8 = Vi-vE

I3
T TV Ly e

T

1
o 1+Tzk+1+7'yk

1
Ykl = Tk — va(xk)

Zk4+1 = 2k + T(.’Ek — Zk) — %Vf(.’tk)
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Accelerated gradient descent method

Theorem (strongly convex and smooth cost function)

m f:R? — R be p-strongly convex and L-smooth with L > p,

mz, €RY unique global minimum of f,

mr=./2€(01),
m (yo,20) € R? x RY,
Then NAM converges linearly in the sense that

k
y2

cu = £) = flo2) + Bl = 2l < (1= /2) (F00) = £ + S0 = 2IP)
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Accelerated gradient descent method

rate
o
&

—GD
—-=-NAM
— = lower bound
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Figure: lllustration of the linear convergence rate depending on the condition number x = % for GD and

NAM. The left plot shows the convergence rate ¢“P (k) = (

r—1
Kk+1

)Z and

right plot shows the difference to 1, i.e. 1 — ¢(k), in logarithmic scale.
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v

) , whereas the
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Ch4: Stochastic approximation in Optimization
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Expected and empirical risk

m f:RYxRP - R be B(R?) @ B(R?)/B(R) measurable,
m Z : Q — RP random variable with distribution pz, E[|f(z, Z)|] < oo for all z € R,
m Zy,...,ZN beiid. random variables with Z; ~ .

1. expected risk:

F(z) =Egnpulf(z, 2)] = L f(z,2)u(dz), z€R™

2. empirical risk:

$z()

HMZ

35 /48



Stochastic gradient descent method

Lemma

Suppose "certain Assumptions” on f and Z are satisfied, then
1. the function F(z) = E[f(z, Z)] is continuously differentiable,
2. Vf(x,Z) is an unbiased estimator of V, F(x) for every x € R?, i.e. it holds true that
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Stochastic gradient descent method

Input:
m cost function f:R? x RP — R
m initial random variable X : @ — R?
m sequence of step sizes (a)ken, o > 0 (deterministic or F-adapted)

m sequence of i.i.d. random variables (Zy)ren with Z7 ~ pz.

Algorithm: Stochastic gradient descent method (SGD)
msetk=0

m While "convergence/stopping criterion not met”
> approximate the gradient V,F(X}) through

Gr = sz(Xk, Zk‘+l)

> set Xpi1 = Xp —arGr, k—k+1
EndWhile
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Stochastic gradient descent method

Input:
m cost function f: R? x R? — R
m initial random variable Xj : Q — R
m sequence of step sizes (a)ken, o > 0 (deterministic or F-adapted)
m realization of fixed deterministic data set {z(V}X | with 2(}) € RP.

Algorithm: SGD with finite data
msetk=0
m While "convergence/stopping criterion not met”

> generate independently ix11 ~U({1,...,N})
> approximate the gradient V. Fn(X%) through

G = Vi f(Xy, 2++1)

» set Xpi1 = Xk —apGr, k— k+1
EndWhile
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Convergence analysis of SGD

Decompose the iterative scheme:

X1 =X — ap Vo f (X, Zit1) = X — ap Vo F(Xg) + an (Vo F(Xy) — Vo f(Xk, Ziyr))
=: X — akaF(Xk) + o Mpyq.

Factorization:
E[Mpy1 | Fi] = E[V. F(Xk) = Vo f (Xk, Zig1) | Fi] =0,

where F, = 0(Xo, Zm,m < k)
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Almost sure convergence of SGD

Robbins & Siegmund

m (2, A, F,P) filtered probability space,
[ ] (Zk)keNy (Ak)kENv (Bk)keN and (Ck)kEN be non-negative and .F—adapted,
m) o Ar<oo and > 2 By <oco almost surely,

m assume
E[Zyy1 | Fi) < Zi(1 4+ Ag) + By —C.
Then
1. there exists an almost surely finite random variable Z, such that Zy, — Z., almost surely for
k — oo,

2. it holds true that Y7/ Cj, < co almost surely.
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Almost sure convergence of SGD

The SGD iteration satisfies under L-smoothness

L L L
E[F(Xpy1) — Fo | Fi] < (1 + cgai)(F(Xk) —F,)+ cgaifozk(l - §ak>)||V,I;F(Xk;)||2.

Theorem (SGD almost sure convergence)

m F:R? — R be L-smooth and bounded from below by F, = inf,cpa F(x) > —o0,

B, >0, Y2 ar=o00 and > .o, < oo (almost surely),
m suppose that "certain” Assumptions are satisfied,
m X be rv such that E[F(Xj)] < cc.

Then (F(X}y))ren converges almost surely to some random variable Fi, almost surely finite, and

lim |V, F(Xy)||> =0, almost surely.
k—o0
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Convergence of SGD (convex)

Theorem (SGD for convex and smooth cost function)

m ' :R? = R be convex and L-smooth, set of global minima of F is non-empty,
m suppose that "certain” Assumptions are satisfied (4 uniform variance bound),
m X be rv such that E[|F(Xy)| + || Xo — z«|?] < oo for some x. € argmin,cgs F(x),

m ay, € (0, 1], deterministic and decreasing.

Then for Xy := 30w Xpp1, wi := s, N 22, it holds true that
j=0 I

X — Lx 2 1 L N-1 2
E[F(Xn) — F(z.)] < B[l Xo — z.|°] n c(1+aglL) k:o G
22] =0 Qi 22] -0 Qa;
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Convergence of SGD (strongly convex)

Theorem (SGD for strongly convex and smooth cost function)

m [ :R? = R be p-strongly convex and L-smooth,
m suppose that "certain” Assumptions are satisfied (4 uniform variance bound),
m X, be rv such that E[|F(Xy)| + || Xo — 2.]|?] < 00, 2« € R? global minimum of F,
m ay, € (0, 1], deterministic.
Then for all £ > 0 it holds true that

El| Xir1 — 2l”] < (1 — o) B[ X5, — ]|*] + co

o = —  ElX -l €0 ().

_T
w(k+s)
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Variance reduction for SGD

Assumption error bound
log(k)
convex f + var - v

strong convex | (1 — ayu)ey + var - aj
PL-condition | (1 — ayr)ey, + var - ai
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Dynamical sampling
Input:
m cost function f: RY x R? = R
m initial random variable X : @ — R?
m sequence of step sizes (a)ien, o > 0 (deterministic or F-adapted)
m sequence of batch sizes (By)ken

m sequence of i.i.d. random variables (Z,(Cm))kem m=1,.... By _1
Algorithm: SGD with dynamical sampling

msetk=0

m While "convergence/stopping criterion not met”

> approximate the gradient V, F(X}) through

B,
1 m
G = B Ve (Xk, Z)
m=1
> seth+1 =Xr —arGr, kE—k+1
EndWhile

with Zfl) ~ 7.
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Dynamical sampling

Fixed batch-size: B > e 12ca?(1 — p)~ L ~ e},

, with computational cost

with computational cost

K—-1
71)|€71 .

B; =K - B~ |log(e

=0
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Conclusion
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Outlook
m adaptive step sizes (Adagrad, Adadelta,..)
incorporation of momentum into SGD
adaptive moment estimation (ADAM) =¥ combining everything
many more variants of SGD...

other (heuristic) algorithms (simulated annealing, particle swarm optimization,...)

Application to specific machine learning models (Regression, support vector machines, neural
networks, GP's)

Additional information
m Seminar Stochastik

m Master thesis possible on related topics

48 / 48



