Stochastik I

12. Große Übung

Martin Dattge und Leonardo Vela

16.12.2020

Faltung

Definition

Sind μ_1,\ldots,μ_n Wahrscheinlichkeitsmaße auf $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ so heißt das Bildmaß des Produktmaßes $\mu_1\otimes\cdots\otimes\mu_n$ unter der Abbildung

$$h_n: \mathbb{R}^n \to \mathbb{R}, \quad (x_1, \dots, x_n) \mapsto x_1 + \dots + x_n,$$

Faltung von μ_1, \ldots, μ_n . Man schreibt

$$(\mu_1 * \cdots * \mu_n)(B) := (\mu_1 \otimes \cdots \otimes \mu_n)(h_n^{-1}(B)), \quad B \in \mathcal{B}(\mathbb{R}).$$

Summen von unabhängigen Zufallsvariablen

Seien X_1, \ldots, X_n unabhängige Zufallsvariablen. Dann gilt für die Verteilung der Summe dieser Zufallsvariablen

$$\mathbb{P}(X_1 + \dots + X_n \in B) = \mathbb{P}(h_n(X_1, \dots, X_n) \in B)$$

$$= \mathbb{P}((X_1, \dots, X_n) \in h_n^{-1}(B))$$

$$= \mathbb{P}_{(X_1, \dots, X_n)}(h_n^{-1}(B))$$

$$= (\mathbb{P}_{X_1} \otimes \dots \otimes \mathbb{P}_{X_n})(h_n^{-1}(B))$$

$$= (\mathbb{P}_{X_1} * \dots * \mathbb{P}_{X_n})(B),$$

wobei B eine Menge aus $\mathcal{B}(\mathbb{R})$ sei. Die Faltung der Verteilungen von unabhängigen Zufallsvariablen ist also genau die Verteilung der Summe der entsprechenden Zufallsvariablen!

Faltung diskreter Verteilungen

Für diskrete Verteilungen braucht man die Faltung eigentlich überhaupt nicht! Seien X_1, X_2 unabhängige, diskrete Zufallsvariablen. Dann gilt

$$\mathbb{P}(X_1 + X_2 = a) = \mathbb{P}(X_1 + X_2 = a, X_2 \in X_2(\Omega))$$

$$= \mathbb{P}\left(X_1 + X_2 = a, X_2 \in \bigcup_{b \in X_2(\Omega)} \{b\}\right)$$

$$= \sum_{b \in X_2(\Omega)} \mathbb{P}(X_1 + X_2 = a, X_2 = b)$$

$$= \sum_{b \in X_2(\Omega)} \mathbb{P}(X_1 = a - b, X_2 = b)$$

$$= \sum_{b \in X_2(\Omega)} \mathbb{P}(X_1 = a - b) \mathbb{P}(X_2 = b).$$

Beispiel: Summe diskreter Verteilungen

Seien X_1, X_2 unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ mit

$$\mathbb{P}(X_1 = 1) = \mathbb{P}(X_2 = 1) = \mathbb{P}(X_1 = 2) = \mathbb{P}(X_2 = 2) = \frac{1}{2}.$$

Dann gilt

$$X_2(\Omega) = \{1, 2\}$$

und somit

$$\mathbb{P}(X_1 + X_2 = 4) = \sum_{b \in X_2(\Omega)} \mathbb{P}(X_1 = 4 - b) \mathbb{P}(X_2 = b)$$

$$= \mathbb{P}(X_1 = 4 - 1) \mathbb{P}(X_2 = 1) + \mathbb{P}(X_1 = 4 - 2) \mathbb{P}(X_2 = 2)$$

$$= \mathbb{P}(X_1 = 3) \mathbb{P}(X_2 = 1) + \mathbb{P}(X_1 = 2) \mathbb{P}(X_2 = 2)$$

$$= \frac{1}{4}.$$

Faltung stetiger Verteilungen

Für Summen unabhängiger stetiger Zufallsvariablen braucht man hingegen die Faltung. Diese liefert dann eine Regel für die Dichte der Zufallsvariable $X_1 + X_2$, wenn X_1, X_2 unabhängige, stetige Zufallsvariablen, denn nach der Vorlesung gilt für diese

$$f_{X+Y}(x) = \int_{\mathbb{R}} f_X(x-y) f_Y(y) \, \mathrm{d}y.$$

Aufgabe 1

Seien X,Y unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega,\mathcal{A},\mathbb{P})$, sodass

$$\mathbb{P}_X = \mathbb{P}_Y = \mathcal{U}([0,1]).$$

Berechne die Dichte der Zufallsvariable $Z \coloneqq X + Y$ und den Erwartungswert von $\max \{1, Z\}$.

Bedingte Wahrscheinlichkeiten

Definition

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und A, B Mengen aus \mathcal{A} (also Ereignisse) mit $\mathbb{P}(B) > 0$. Dann heißt

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

die bedingte Wahrscheinlichkeit des Ereignisses A gegeben B.

- $\mathbb{P}(A|B)$ gibt an, wie groß die Wahrscheinlichkeit ist, dass A eintritt, falls B schon eingetreten ist.
- Für unabhängige Ereignisse folgt insbesondere $\mathbb{P}(A|B) = \mathbb{P}(A)$

Aufgabe 2

Sei X eine \mathbb{N} -wertige Zufallsvariable auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Zeige die Äquivalenz der folgenden Aussagen:

1) $X \sim \text{Geo}(p)$ für ein $p \in (0, 1)$, d.h. es gilt

$$\mathbb{P}_X = \sum_{n=1}^{\infty} p(1-p)^{n-1} \delta_n.$$

2) Die Verteilung von X ist gedächtnislos, d.h. für alle k, $n \in \mathbb{N}$ gilt:

$$\mathbb{P}(X = n + k | X > k) = \mathbb{P}(X = n).$$

3) Für alle $n \in \mathbb{N}$ gilt $\mathbb{P}(X = n + 1 | X > 1) = \mathbb{P}(X = n)$.

Hinweis: Für $q \in (0, 1)$ gilt

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q}.$$