1. Gut lernen - Definitionen und Beispiele

Zum Beispiel sowas wie

- (a) Ist eine Sigma-Algebra immer ein Dynkinsystem?
- (b) Zeichne die Verteilungsfunktion von $\frac{1}{3}\delta_1 + \frac{2}{3}\delta_2$.
- $\textbf{(c)} \ \ \text{Was sind die charaktisierenden Eigenschaften einer multivariaten Verteilungsfunktion?}$
- (d) Gib ein Beispiel einer Folge von Zufallsvariablen, die in \mathcal{L}^2 , aber nicht fast sicher konvergiert.
- (e) Wann ist $f = 1_A$ messbar?
- (f) Ein Zusammenhang zwischen den Konvergenzbegriffen.
- (g) Gib eine Formel für E[g(X)] an, wenn X diskret ist.

2. Maßtheorie.

- (A) Verständniss und Umgang mit den Objekten, z. B. Variationen von
- (a) Kleine Rechendinge mit σ -Algebren und Dynkin-Systemen (Stetigkeit von Maßen, Argumente um 1.2.8 herum).
- (b) Ist der Schnitt von Dynkin-System ein Dynkin-System?
- (c) Ist die Summe messbarer Funktionen messbar?
- (d)
- (B) Was zu den dicken Sätzen:
- (a) Etwas zu dem Beweis von Caratheodory (wer den Beweis durchgearbeitet hat, bekommt es hin)
- (b) Etwas zu dem Beweis des welche Konvergenzart impliziert welche Konvergenzart.

3. Grundlagen der Stochastik (inklusive Integrationstheorie - Erwartungswerte)

- Eine Anwendung von Hoelder, aber fuer Zufallsvariablen! z. B. $\mathcal{L}^p \subseteq \mathcal{L}^q$ für $p \leq q$.
- Was zu monotoner oder dominierter Konvergenz.
- Kanonische Konstruktion von Zufallsvariablen oder Zufallsvektoren (diskret und stetig), z. B. Warum gibt es ein stochastisches Modell, dass das Ziehen aus [a, b] beschreibt, bei dem keine Teilmenge von [a, b] bevorzugt wird?
- Was zu Markov Ungleichung bzw. der Varianten
- Bedingte Wahrscheinlichkeiten, gedächtnislosigkeit von geometrisch und exponentiellen ZV.

4. Konkretes Rechen.

- (A) Zufallsvariablen
- (a) Was mit Dichten berechnen. Ist etwas eine Dichte? Was ist die Wahrscheinlichkeit $P(X \in [a, b])$, was ist V(X) für $X \sim$
- (b) Was für eine Verteilung hat Y^2 , $\log(Y)$? Oder sowas.
- (c) Warum definieren $p_k = \frac{\lambda^k}{k!}$ ein W-Mass? Was ist der Erwartungswert davon? Wir nehmen vermutlich nicht Poisson, also für alle überlegen.
- (d) Was mit Varianzen ausrechnen
- (B) Mehrere Zufallsvariablen (Zufallsvektoren)
- (a) Was mit gemeinsamen Verteilungen ausrechnen. Vielleicht mit gemeinsamer Dichte, was ist $P((X,Y) \in B)$. Vielleicht bei unabhängigen.
- (b) Sind $X, Y \dots$ ZV, was ist die Verteilung von X + Y, min(X, Y) oder so. Es kommt etwas zu Faltung oder momenterzeugender Funktion (wir wuerfeln das unabhaengig aus).

5. Konvergenz von Zufallsvariablen.

- (a) Etwas zu den Zusammenhängen der Konvergenzbegriffe, z. B. ein Beispiel checken (beachte: erst nachdenken. Wegen Konvergenzzusammenhang links im Schaubild starten weil man vielleicht schon manches durch den Satz geschenkt bekommt).
- (b) Schwaches und starkes Gesetz der grossen Zahlen, der eine Beweis ist kurz (verstehen, nicht auswendig lernen, die Annahmen könnten abgeändet werden).

6. Freestyle.

Mal schauen, was uns noch einfällt oder nachts unter meiner Tür durchgeschoben wird!