
Some preliminary material for the course
“Calculus of Variations & Applications”

0.1 Lebesgue measure
I For n ∈ N, an n-dimensional interval I is a subset of Rn of the form

I =
{

x = (x1, ...,xn) : αk ≤ xk ≤ βk, k = 1, ...,n
}

≡ [α1,β1]× [α2,β2]× ...× [αn,βn],

where αk < βk for all k = 1, ...,n. The volume of an interval I is given by

Vol(I) =
n

∏
i=1

(βk−αk).

I The Lebesgue measure (denoted throughout by L n), is defined for any A⊆ Rn by

L n(A) := inf
{

∑
k∈N

Vol(Ik) : {Ik}k∈N are intervals and A⊆
⋃

k∈N
Ik

}
.

One can show for an interval I that L n(I) = L n(I◦) = Vol(I).

I A set A⊆ Rn is called L n-measurable (from now on only measurable) if

L n(B) = L n(B∩A)+L n(B\A) ∀ B⊆ Rn.

Hence, a set A ⊆ Rn is measurable if and only if the set Ac := Rn \A is measurable. Also,
/0, Rn and sets of measure 0 are measurable. It turns out that if {Ak ⊂ Rn}k∈N is a sequence
of measurable sets, then

(i) if {Ak}k∈N are disjoint, then L n(⋃
k∈NAk

)
= ∑k∈NL n(Ak),

(ii) if {Ak}k∈N is non-decreasing, then limk→∞ L n(Ak) = L n(⋃
k∈NAk

)
,

(iii) if {Ak}k∈N is non-increasing and L n(A1)< ∞, then limk→∞ L n(Ak) = L n(⋂
k∈NAk

)
,



(iv) the sets
⋃

k∈NAk and
⋂

k∈NAk are measurable.

I A collection of subsets A ⊆ 2R
n

is called a σ -algebra provided

(i) /0, Rn ∈A , (ii) A ∈A ⇒ Rn \A ∈A , (iii) {Ak ∈A }k∈N⇒
⋃

k∈NAk ∈A .

Hence, the collection of all measurable sets form a σ -algebra. The Borel σ -algebra of Rn is
defined as the smallest σ -algebra of Rn containing the open subsets of Rn. A set in the Borel
σ -algebra will be called a Borel set.

I The Lebesgue measure is a Radon measure on Rn; that means it satisfies the following
properties

(i) every Borel set is measurable,

(ii) for each C ⊆ Rn there exists Borel set B such that C ⊆ B and L n(C) = L n(B),

(iii) L n(K)< ∞ for all compact K ⊂ Rn.

I The Lebesgue measure has the following property (the Brunn-Minkowski inequality):(
L n(A+B)

)1/n ≥
(
L n(A)

)1/n
+
(
L n(B)

)1/n ∀ A, B⊆ Rn,

where A+B stands for the Minkowski sum of A, B.

0.2 Lebesgue measurable functions
I A function f : Rn→ Rm is called L n-measurable (from now on only measurable) if

U ⊆ Rm is open ⇒ f−1(U) is measurable.

If f ,g : Rn → R̄ are measurable, then so are f + g, f g, | f |, min{ f ,g}, max{ f ,g} and f/g
(provided g 6= 0 in Rn). Also, if { fk : Rn → R̄}k∈N are measurable, then so are infk∈N fk,
supk∈N fk, liminfk→∞ fk and limsupk→∞ fk.

I A function f : Rn→ Rm is called Borel measurable if

U ⊆ Rm is open ⇒ f−1(U) is a Borel set.

Hence, if f : Rn → Rm is continuous then it is Borel measurable (recall that the pre-image
f−1(U) of an open set U ⊆ Rm through a continuous function f is again open).

I If f : Rn→ [0,∞] is measurable, there exist measurable sets {Ak ⊆ Rn}k∈N such that

f (x) = ∑
k∈N

1
k

χAk(x) ∀ x ∈ Rn.
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I [Lusin’s theorem] Let f : Rn → Rm be measurable and A ⊂ Rn be measurable with
L n(A)< ∞. Then

∀ ε > 0, ∃ compact K ⊂ A such that L n(A\K)< ε and f |K is continuous.

I The expression “a.e. in A” where A ⊆ Rn means “almost everywhere in A with respect to
L n”; that is, “for all x ∈ A\N where L n(N) = 0”.

I [Egoroff’s theorem] Let { fk : Rn→ Rm}k∈N be measurable such that fk → f a.e. in A,
where A⊂ Rn is measurable with L n(A)< ∞. Then

∀ ε > 0, ∃ measurable B⊂ A such that L n(A\B)< ε and fk→ f uniformly in B.

0.3 Lebesgue integral
I For a function g : Rn→ R̄ we set g+ := max{0,g} and g− := max{0,−g}. Observe these
are nonnegative functions and that the following decompositions are valid: g = g+−g− and
|g|= g++g−.

I A function g : Rn→ R̄ is called simple function if the image of g is countable. Hence, if
g : Rn→ R̄ is simple, then there exist disjoint {Ak ⊆ Rn}k∈N and {αk ∈ R̄}k∈N such that

g = ∑
k∈N

αkχAk and
⋃

k∈N
Ak = Rn.

Furthermore, {Ak}k∈N can be taken measurable if g is known to be measurable.

I Thus, given a measurable simple function g : Rn→ [0,∞], then there exist disjoint measur-
able sets {Ak}k∈N and {αk ∈ (0,∞]}k∈N such that

g = ∑
k∈N

αkχAk and
⋃

k∈N
Ak ⊆ Rn,

and so we define its integral on Rn by∫
Rn

g dL n := ∑
k∈N

αkL
n(Ak).

I If g : Rn→ R̄ is a measurable simple function and either
∫
Rn g+ dL n < ∞ or

∫
Rn g− dL n <

∞, we call g an integrable simple function and define its integral on Rn by∫
Rn

g dL n :=
∫
Rn

g+ dL n−
∫
Rn

g− dL n.
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I Given f : Rn→ R̄, we define the upper integral of f on Rn by∫
Rn

f dL n := inf
{∫

Rn
g dL n : g integrable simple function with g≥ f a.e. in Rn

}
.

Correspondingly, the lower integral of f on Rn is defined by∫
Rn

f dL n := sup
{∫

Rn
g dL n : g integrable simple function with g≤ f a.e. in Rn

}
.

A measurable function f : Rn→ R̄ is called L n-integrable (from now on only integrable) if∫
Rn f dL n =

∫
Rn f dL n. We write then

∫
Rn f dL n for their common value.

I It turns out that any nonnegative measurable function is integrable. Also for any integrable
f we have |

∫
Rn f dL n| ≤

∫
Rn | f | dL n.

I A function f : Rn → R̄ is called L n-summable (from now on only summable) if it is
integrable and

∫
Rn | f |dL n < ∞.

I [Fatou’s lemma] Let fk : Rn→ [0,∞], k ∈ N, be measurable. Then∫
Rn

liminf
k→∞

fk dL n ≤ liminf
k→∞

∫
Rn

fk dL n.

I [Monotone convergence theorem] Let fk : Rn → [0,∞], k ∈ N be measurable such that
fk ≤ fk+1 a.e. in Rn, for all k ∈ N. Then∫

Rn
lim
k→∞

fk dL n = lim
k→∞

∫
Rn

fk dL n.

I [Dominated convergence theorem] Let f , fk : Rn→ R̄, k ∈ N, be measurable, g : Rn→
[0,∞] be summable, satisfying

(i) fk→ f as k→ ∞, a.e. in Rn,

(ii) | fk| ≤ g a.e. in Rn, for all k ∈ N.

Then
lim
k→∞

∫
Rn
| fk− f |dL n = 0.

I [Absolute continuity of the integral] If f : Rn→ R̄ is summable then

∀ ε > 0, ∃ δ > 0 such that if A⊂ Rn is measurable with L n(A)< δ , then
∫

A
| f |dL n < ε.

I [Cc(Rn) is dense in L1(Rn)] If f : Rn→ R̄ is summable then

∀ ε > 0, ∃ g ∈Cc(Rn) such that
∫
Rn
| f −g| dL n < ε.

I [a.e. convergence for a subsequence] Let f , fk : Rn → R̄, k ∈ N, be summable and∫
Rn | fk− f |dL n = 0. Then there exists a subsequence { flk}k∈N which converges to f a.e.

in Rn.
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