Some preliminary material for the course "Calculus of Variations & Applications"

0.1 Lebesgue measure

▶ For $n \in \mathbb{N}$, an *n*-dimensional *interval I* is a subset of \mathbb{R}^n of the form

$$I = \{x = (x_1, ..., x_n) : \alpha_k \le x_k \le \beta_k, \ k = 1, ..., n\}$$

$$\equiv [\alpha_1, \beta_1] \times [\alpha_2, \beta_2] \times ... \times [\alpha_n, \beta_n],$$

where $\alpha_k < \beta_k$ for all k = 1, ..., n. The volume of an interval *I* is given by

$$\operatorname{Vol}(I) = \prod_{i=1}^{n} (\beta_k - \alpha_k).$$

▶ The *Lebesgue measure* (denoted throughout by \mathscr{L}^n), is defined for any $A \subseteq \mathbb{R}^n$ by

$$\mathscr{L}^n(A) := \inf \left\{ \sum_{k \in \mathbb{N}} \operatorname{Vol}(I_k) : \{I_k\}_{k \in \mathbb{N}} \text{ are intervals and } A \subseteq \bigcup_{k \in \mathbb{N}} I_k \right\}.$$

One can show for an interval *I* that $\mathscr{L}^n(I) = \mathscr{L}^n(I^\circ) = \operatorname{Vol}(I)$.

► A set $A \subseteq \mathbb{R}^n$ is called \mathscr{L}^n -measurable (from now on only measurable) if

$$\mathscr{L}^n(B) = \mathscr{L}^n(B \cap A) + \mathscr{L}^n(B \setminus A) \quad \forall B \subseteq \mathbb{R}^n.$$

Hence, a set $A \subseteq \mathbb{R}^n$ is measurable if and only if the set $A^c := \mathbb{R}^n \setminus A$ is measurable. Also, \emptyset , \mathbb{R}^n and sets of measure 0 are measurable. It turns out that if $\{A_k \subset \mathbb{R}^n\}_{k \in \mathbb{N}}$ is a sequence of measurable sets, then

- (i) if $\{A_k\}_{k\in\mathbb{N}}$ are disjoint, then $\mathscr{L}^n(\bigcup_{k\in\mathbb{N}}A_k) = \sum_{k\in\mathbb{N}}\mathscr{L}^n(A_k)$,
- (ii) if $\{A_k\}_{k\in\mathbb{N}}$ is non-decreasing, then $\lim_{k\to\infty} \mathscr{L}^n(A_k) = \mathscr{L}^n(\bigcup_{k\in\mathbb{N}} A_k)$,
- (iii) if $\{A_k\}_{k\in\mathbb{N}}$ is non-increasing and $\mathscr{L}^n(A_1) < \infty$, then $\lim_{k\to\infty} \mathscr{L}^n(A_k) = \mathscr{L}^n(\bigcap_{k\in\mathbb{N}} A_k)$,

(iv) the sets $\bigcup_{k \in \mathbb{N}} A_k$ and $\bigcap_{k \in \mathbb{N}} A_k$ are measurable.

• A collection of subsets $\mathscr{A} \subseteq 2^{\mathbb{R}^n}$ is called a σ -algebra provided

(i) \emptyset , $\mathbb{R}^n \in \mathscr{A}$, (ii) $A \in \mathscr{A} \Rightarrow \mathbb{R}^n \setminus A \in \mathscr{A}$, (iii) $\{A_k \in \mathscr{A}\}_{k \in \mathbb{N}} \Rightarrow \bigcup_{k \in \mathbb{N}} A_k \in \mathscr{A}$.

Hence, the collection of all measurable sets form a σ -algebra. The *Borel* σ -algebra of \mathbb{R}^n is defined as the smallest σ -algebra of \mathbb{R}^n containing the open subsets of \mathbb{R}^n . A set in the Borel σ -algebra will be called a *Borel set*.

▶ The Lebesgue measure is a *Radon measure on* \mathbb{R}^n ; that means it satisfies the following properties

- (i) every Borel set is measurable,
- (ii) for each $C \subseteq \mathbb{R}^n$ there exists Borel set *B* such that $C \subseteq B$ and $\mathscr{L}^n(C) = \mathscr{L}^n(B)$,
- (iii) $\mathscr{L}^n(K) < \infty$ for all compact $K \subset \mathbb{R}^n$.

► The Lebesgue measure has the following property (the *Brunn-Minkowski inequality*):

$$ig(\mathscr{L}^n(A+B)ig)^{1/n} \geq ig(\mathscr{L}^n(A)ig)^{1/n} + ig(\mathscr{L}^n(B)ig)^{1/n} ~~orall A,~B\subseteq \mathbb{R}^n$$

where A + B stands for the Minkowski sum of A, B.

0.2 Lebesgue measurable functions

► A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called \mathscr{L}^n -measurable (from now on only measurable) if

$$U \subseteq \mathbb{R}^m$$
 is open $\Rightarrow f^{-1}(U)$ is measurable.

If $f,g: \mathbb{R}^n \to \overline{\mathbb{R}}$ are measurable, then so are f+g, fg, |f|, $\min\{f,g\}$, $\max\{f,g\}$ and f/g(provided $g \neq 0$ in \mathbb{R}^n). Also, if $\{f_k: \mathbb{R}^n \to \overline{\mathbb{R}}\}_{k \in \mathbb{N}}$ are measurable, then so are $\inf_{k \in \mathbb{N}} f_k$, $\sup_{k \in \mathbb{N}} f_k$, $\liminf_{k \to \infty} f_k$ and $\limsup_{k \to \infty} f_k$.

• A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called *Borel measurable* if

$$U \subseteq \mathbb{R}^m$$
 is open $\Rightarrow f^{-1}(U)$ is a Borel set.

Hence, if $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous then it is Borel measurable (recall that the pre-image $f^{-1}(U)$ of an open set $U \subseteq \mathbb{R}^m$ through a continuous function f is again open).

▶ If $f : \mathbb{R}^n \to [0,\infty]$ is measurable, there exist measurable sets $\{A_k \subseteq \mathbb{R}^n\}_{k \in \mathbb{N}}$ such that

$$f(x) = \sum_{k \in \mathbb{N}} \frac{1}{k} \chi_{A_k}(x) \quad \forall x \in \mathbb{R}^n.$$

▶ [Lusin's theorem] Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be measurable and $A \subset \mathbb{R}^n$ be measurable with $\mathscr{L}^n(A) < \infty$. Then

 $\forall \varepsilon > 0, \exists \text{ compact } K \subset A \text{ such that } \mathscr{L}^n(A \setminus K) < \varepsilon \text{ and } f|_K \text{ is continuous.}$

▶ The expression "a.e. in *A*" where $A \subseteq \mathbb{R}^n$ means "almost everywhere in *A* with respect to \mathscr{L}^n "; that is, "for all $x \in A \setminus N$ where $\mathscr{L}^n(N) = 0$ ".

▶ [Egoroff's theorem] Let $\{f_k : \mathbb{R}^n \to \mathbb{R}^m\}_{k \in \mathbb{N}}$ be measurable such that $f_k \to f$ a.e. in *A*, where $A \subset \mathbb{R}^n$ is measurable with $\mathscr{L}^n(A) < \infty$. Then

 $\forall \varepsilon > 0, \exists$ measurable $B \subset A$ such that $\mathscr{L}^n(A \setminus B) < \varepsilon$ and $f_k \to f$ uniformly in B.

0.3 Lebesgue integral

► For a function $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ we set $g_+ := \max\{0, g\}$ and $g_- := \max\{0, -g\}$. Observe these are nonnegative functions and that the following decompositions are valid: $g = g_+ - g_-$ and $|g| = g_+ + g_-$.

► A function $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ is called *simple function* if the image of g is countable. Hence, if $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ is simple, then there exist disjoint $\{A_k \subseteq \mathbb{R}^n\}_{k \in \mathbb{N}}$ and $\{\alpha_k \in \overline{\mathbb{R}}\}_{k \in \mathbb{N}}$ such that

$$g = \sum_{k \in \mathbb{N}} lpha_k \chi_{A_k}$$
 and $\bigcup_{k \in \mathbb{N}} A_k = \mathbb{R}^n$.

Furthermore, $\{A_k\}_{k\in\mathbb{N}}$ can be taken measurable if g is known to be measurable.

► Thus, given a measurable simple function $g : \mathbb{R}^n \to [0, \infty]$, then there exist disjoint measurable sets $\{A_k\}_{k \in \mathbb{N}}$ and $\{\alpha_k \in (0, \infty]\}_{k \in \mathbb{N}}$ such that

$$g = \sum_{k \in \mathbb{N}} lpha_k \chi_{A_k} \quad ext{and} \quad igcup_{k \in \mathbb{N}} A_k \subseteq \mathbb{R}^n,$$

and so we define its *integral* on \mathbb{R}^n by

$$\int_{\mathbb{R}^n} g \; \mathrm{d} \mathscr{L}^n := \sum_{k \in \mathbb{N}} lpha_k \mathscr{L}^n(A_k).$$

▶ If $g : \mathbb{R}^n \to \overline{\mathbb{R}}$ is a measurable simple function and either $\int_{\mathbb{R}^n} g_+ d\mathcal{L}^n < \infty$ or $\int_{\mathbb{R}^n} g_- d\mathcal{L}^n < \infty$, we call *g* an *integrable simple function* and define its integral on \mathbb{R}^n by

$$\int_{\mathbb{R}^n} g \, \mathrm{d} \mathscr{L}^n := \int_{\mathbb{R}^n} g_+ \, \mathrm{d} \mathscr{L}^n - \int_{\mathbb{R}^n} g_- \, \mathrm{d} \mathscr{L}^n.$$

• Given $f : \mathbb{R}^n \to \overline{\mathbb{R}}$, we define the *upper integral* of f on \mathbb{R}^n by

$$\int_{\mathbb{R}^n} f \, \mathrm{d}\mathscr{L}^n := \inf \left\{ \int_{\mathbb{R}^n} g \, \mathrm{d}\mathscr{L}^n : g \text{ integrable simple function with } g \ge f \text{ a.e. in } \mathbb{R}^n \right\}$$

Correspondingly, the *lower integral* of f on \mathbb{R}^n is defined by

$$\underline{\int_{\mathbb{R}^n}} f \, \mathrm{d}\mathscr{L}^n := \sup \Big\{ \int_{\mathbb{R}^n} g \, \mathrm{d}\mathscr{L}^n : g \text{ integrable simple function with } g \leq f \text{ a.e. in } \mathbb{R}^n \Big\}.$$

A measurable function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is called \mathscr{L}^n -integrable (from now on only integrable) if $\overline{\int_{\mathbb{R}^n} f} d\mathscr{L}^n = \int_{\mathbb{R}^n} f d\mathscr{L}^n$. We write then $\int_{\mathbb{R}^n} f d\mathscr{L}^n$ for their common value.

▶ It turns out that any nonnegative measurable function is integrable. Also for any integrable *f* we have $|\int_{\mathbb{R}^n} f \, d\mathscr{L}^n| \leq \int_{\mathbb{R}^n} |f| \, d\mathscr{L}^n$.

► A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is called \mathscr{L}^n -summable (from now on only summable) if it is integrable and $\int_{\mathbb{R}^n} |f| d\mathscr{L}^n < \infty$.

▶ [Fatou's lemma] Let $f_k : \mathbb{R}^n \to [0, \infty], k \in \mathbb{N}$, be measurable. Then

$$\int_{\mathbb{R}^n} \liminf_{k \to \infty} f_k \, \mathrm{d} \mathscr{L}^n \leq \liminf_{k \to \infty} \int_{\mathbb{R}^n} f_k \, \mathrm{d} \mathscr{L}^n.$$

▶ [Monotone convergence theorem] Let $f_k : \mathbb{R}^n \to [0,\infty]$, $k \in \mathbb{N}$ be measurable such that $f_k \leq f_{k+1}$ a.e. in \mathbb{R}^n , for all $k \in \mathbb{N}$. Then

$$\int_{\mathbb{R}^n} \lim_{k \to \infty} f_k \, \mathrm{d} \mathscr{L}^n = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k \, \mathrm{d} \mathscr{L}^n$$

▶ [Dominated convergence theorem] Let $f, f_k : \mathbb{R}^n \to \overline{\mathbb{R}}, k \in \mathbb{N}$, be measurable, $g : \mathbb{R}^n \to [0,\infty]$ be summable, satisfying

- (*i*) $f_k \to f$ as $k \to \infty$, a.e. in \mathbb{R}^n ,
- (*ii*) $|f_k| \leq g$ a.e. in \mathbb{R}^n , for all $k \in \mathbb{N}$.

Then

$$\lim_{k\to\infty}\int_{\mathbb{R}^n}|f_k-f|\mathrm{d}\mathscr{L}^n=0.$$

▶ [Absolute continuity of the integral] If $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is summable then

 $\forall \varepsilon > 0, \exists \delta > 0$ such that if $A \subset \mathbb{R}^n$ is measurable with $\mathscr{L}^n(A) < \delta$, then $\int_A |f| d\mathscr{L}^n < \varepsilon$.

▶ $[C_c(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)]$ If $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is summable then

$$\forall \varepsilon > 0, \exists g \in C_c(\mathbb{R}^n) \text{ such that } \int_{\mathbb{R}^n} |f - g| \, \mathrm{d}\mathscr{L}^n < \varepsilon.$$

▶ [a.e. convergence for a subsequence] Let $f, f_k : \mathbb{R}^n \to \overline{\mathbb{R}}, k \in \mathbb{N}$, be summable and $\int_{\mathbb{R}^n} |f_k - f| d\mathscr{L}^n = 0$. Then there exists a subsequence $\{f_{l_k}\}_{k \in \mathbb{N}}$ which converges to f a.e. in \mathbb{R}^n .