
LETCURE NOTES FOR INTRODUCTION TO PDES

LI CHEN

This is an introductory course for partial differential equations. Four basic types of PDEs,

i.e. the transport equation, wave equation, heat equation, and Poisson equation, will be

studied. Derivation of the solution formula by using characteristic method, separation of

variable (Fourier series), and Fourier transformation are going to be introduced for specific

equations, the technics can be used also for other type of equations. Classical tools such

as maximum principle and energy estimates are introduced in order to get uniqueness and

stability of the solutions.
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1. Introduction

1.1. Definition and examples of linear and nonlinear equations. Within this lecture

notes, we will use the following notations.

Ω is an open subset in Rn. Let u be a smooth function defined on Ω. A multi-index is

an n dimensional vector, i.e., α = (α1, · · · , αn) and the differential operator Dα is defined

by

Dαu = ∂α1
x1 ∂

α2
x2 · · · ∂

αn
xn u.

The order of the operator Dα is given by |α| = α1 + α2 + · · · + αn, i.e., Dα is an |α|-th
order differential operator.

F is a mapping in the following sense

F : Rn
k × Rn

k−1 × · · · × Rn × R× Ω→ R.

Symbolically a k-th order partial differential equation can be written in the form of

F (Dku(x), Dk−1u(x), · · · , Du(x), u(x), x) = 0, ∀x ∈ Ω, (1.1)

where Dk are all the k-th order differential operators, i.e., Dα with |α| = k. The unknown

in the equation is u(x) : Ω→ R.

Moreover, if F is a vector-valued function such that

F : Rmn
k × Rmn

k−1 × · · · × Rmn × Rm × Ω→ Rm,

then the corresponding equation is a k-th order partial differential system

F(Dku(x), Dk−1u(x), · · · , Du(x),u(x), x) = 0, ∀x ∈ Ω (1.2)

and u : Ω→ Rm is the unknown.

If the equation can be written as∑
|α|≤k

aα(x)Dαu = f(x) (1.3)

with aα(x) and f(x) being given functions, then it is called a linear equation.

If the equation can be written as∑
|α|=k

aα(x)Dαu+ a0(Dk−1u, · · · , Du, u, x) = 0 (1.4)

with aα(x) being a given function and a0 being a given mapping, then it is called a semi-

linear equation.

If the equation can be written as∑
|α|=k

aα(Dk−1u, · · · , Du, u, x)Dαu+ a0(Dk−1u, · · · , Du, u, x) = 0 (1.5)

with aα and a0 being given mappings, then it is called a quasilinear equation.

A PDE is called fully nonlinear if the highest order derivative is nonlinear.
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Theorem 1.1. (Superposition principle for homogeneous linear equations). Let f ≡ 0 in

(1.3). If u1 and u2 are both solutions of (1.3), then all the linear combinations of u1 and

u2 are still solutions of (1.3).

We list here some examples of partial differential equations.

Linear PDEs

(1) Linear transport equation ut + b · ∇u = f ,

(2) Wave equation utt −∆u = f ,

(3) Heat equation ut −∆u = f ,

(4) Poisson equation −∆u = f ,

(5) Schrödinger equation iut = −∆u,

(6) · · · · · · .
where we use the notation ∇ = (∂x1 , ∂x2 , · · · , ∂xn) for n-dimensional gradient operator and

∆ = ∇ · ∇ = ∂x1x1 + ∂x2x2 + · · ·+ ∂xnxn the n-dimensional Laplacian.

There are also some other higher order linear equations, which are mostly from physics

(see more examples in Evan’s book).

Nonlinear PDEs There are plenty of nonlinear equations in the literature. But we can

barely include them in this course. However, if time allows, we will give a short introduction

on the 1-D scalar first order hyperbolic conservation laws.

(1) Scalar conservation law ut + divF(u) = 0,

(2) Hamilton-Jacobi equation ut +H(Du, x) = 0,

(3) Nonlinear Poisson equation −∆u = f(u),

(4) Monge-Ampère equation detD2u = f ,

(5) Porous medium equation ut −∆um = 0,

(6) Nonlinear Schrödinger equation iut = −∆u+ |u|2u,

(7) · · · · · · .
PDE systems are as well important in the literature, such as Euler system, Navier-Stokes

system, Maxwell’s equations, reaction diffusion system, multi-component diffusion system,

Keller-Segel system. However, due to the limitation of time, we are not going to investigate

any system in this course.

1.2. Setup of the problems. In order to set up a well-posed PDE problem, additional

boundary and initial conditions need to be given.

For time evolutionary PDE, some initial data of the problem is desired. For example,

for heat equation ut−∆u = f , we need initial conditions like u|t=0 = u0(x) where u0(x), is

a given function. For wave equation utt −∆u = f , we need u|t=0 = g and ut|t=0 = h since

we have double derivatives in time t.

If we study the PDE with space variable x in Ω, which is an open subset in Rn, and

∂Ω 6= ∅, we need to give boundary conditions. There are three kinds of typical boundary

conditions, each of which has its own physical background.

(1) Dirichlet boundary condition, the unknown itself is given on the boundary

u|∂Ω = uD(x),
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where uD(x) is a given function defined on ∂Ω.

(2) Neumann boundary condition, the normal derivative of the unknown is given

on the boundary

∇u · γ|∂Ω = uN (x),

where γ is the pointwise unit outer normal vector of ∂Ω.

(3) Robin boundary condition, the nontrivial linear combination of the unknown

and its normal derivative is given on the boundary

αu+ β∇u · γ|∂Ω = uR(x),

where α(x) and β(x) are nonnegative functions given on the boundary.

1.3. Basic topics in studying PDE problems. After settling down a reasonable PDE

problem, our main purpose is to find the solution and to study it in order to have a more

clear understanding of the solution behavior. A direct way is to find an analytical solution

representation, which gives explicitly how the solution behaves. However, in most of the

cases, it is impossible to find an explicit formula for the solution. What can we do then?

In working with the problems directly, we can still get detailed information of the solutions

without knowing the explict representation.

Given a PDE problem, we need to study its well-posedness, including

(1) Existence. As mentioned before that the direct way to get existence of solution is to

solve it explicitly. Then under appropriate regularity assumption of the given data,

one can show that the existence of classical solution is given by solution formula.

Here classical solution means that the k-th order derivatives of the solution exist if

it is a solution to a k-th order PDE. For those equations, for which it is hopeless

to get solution formula, there are several other ways to get existence, for example,

fixed point theorems from functional analysis, variational methods, approximation

by approximated solutions are oftenly used in the literature. The main thing one

should keep in mind is, in which function class one could expect the existence of

solution. Many problems have no classical solution. Usually the existence should

be studied in the sense that the equation is satisfied in some weaker formulation

instead of its classical one. Afterwards, one can try to find out whether the weak

solution has further regularities if the given data are correspondingly smooth.

(2) Uniqueness. Once we have existence at hand, a natural question to ask is whether

it is unique and of course in which class it is unique. For some of the problems one

may also expect to get existence of multi solutions. The larger the existence class,

the less the hope to assure uniqueness.

(3) Stability. The stability of a solution means that if the given data are slightly

perturbed, is it true that the solution also doesn’t change so much? In other words,

stability means the continuous dependence of the solution on its given data, includ-

ing initial and boundary conditions, or any other given parameters in the equation.

(4) Solution behavior. From the aspect of applications, solution behavior is the most

important thing that the PDE analysis should contribute to. Here the solution
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behavior we talk about is in the very general sense. It could be the large time

behavior, boundary layer behavior or singular behavior if one considers the singular

limit problem.

In the literature, the research in PDEs starts from finding explicit solutions. The basic

tools that we will discuss in this course are

(1) method of characteristics,

(2) Fourier transform,

(3) separation of variables (Fourier series),

(4) Green’s function.

Although these tools to find solution formula couldn’t be directly used in many of the PDE

problems, they still play a very important role in understanding the basic theories and

phenomena.

There are also many other tools to study the solution behavior without using formula,

to name just a few,

(1) energy method,

(2) maximum principle,

(3) asymptotic expansion,

(4) · · · · · · .
As explained above, for many of the physical problems, one couldn’t expect that they

always have classical solutions. In this course, we will also talk about the ideas on how to

define weak solutions. Moreover, a very brief introduction on distributions will be given.

1.4. Linear transport equations. In the end of introduction, we use linear transport

equation as an example to give a first try to get solution representation. It is actually an

application of the solution for first order ordinary differential equation.

1.4.1. Constant speed. Linear transport equation in 1-D is the simplest partial differential

equation,

ρt + aρx = 0, in R× R+,

ρ(x, 0) = ρ0(x),

where a is a constant. This equation with constant speed is an ordinary differential system

in the sense that

d

dt
ρ(x(t), t) = 0,

d

dt
x(t) = a,

ρ(x(0), 0) = ρ0(x0).

Obviously, it has solution

ρ(x, t) = ρ0(x− at).
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This strategy is called the method of characteristics and x(t) is called the characteristic

line.

Moreover, one can also solve the transport equation in inhomogeneous case

ρt + aρx = f(x, t), in R× R+,

ρ(x, 0) = ρ0(x)

by using the same characteristic line x(t) = x0 + at. The solution is

ρ(x, t) = ρ0(x− at) +

∫ t

0
f(x− a(t− s), s)ds.

Remark 1.1. By using the method of characteristics, one can easily solve the multi-D

equation

ρt + b · ∇ρ = 0, in Rn × R+,

ρ(x, 0) = ρ0(x),

where b is a constant vector. We leave it as an exercise.

1.4.2. Non-constant speed. The Cauchy problem we consider in this part is

ρt + (v(x)ρ)x = 0, in R× R+, (1.6)

ρ(x, 0) = ρ0(x),

where v(x) is a given Lipschitz continuous function.

A reformulation of the equation is

ρt + v(x)ρx + v′(x)ρ = 0.

If v(x) is Lipschitz continuous, then the characteristic line x(t) satisfies

dx

dt
= v(x), (1.7)

x(0) = x0.

With the help of this line, the equation is rewritten into

dρ(x(t;x0), t)

dt
= −v′(x(t;x0))ρ,

ρ(x(t;x0), t)|t=0 = ρ0(x0).

By separation of variables in solving ODE, we have

ln ρ(x(t;x0), t) = ln ρ0(x0) +

∫ t

0
−v′(x(τ ;x0))dτ

= ln ρ0(x0) +

∫ x(t;x0)

x0

−v
′(x)

v(x)
dx

= ln ρ0(x0)− ln v(x(t;x0)) + ln v(x0),
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where in the first equation the change of variable x = x(τ, x0), dx = x′dτ = v(x)dτ is used.

So the problem has solution

ρ(x(t;x0), t) = ρ0(x0)
v(x0)

v(x(t;x0))
.

Therefore, finding the exact solution of the homogeneous problem (1.6) is reduced to the

solvability of the characteristic line (1.7).

1.5. Half-line problem. We will study the half-line problem for transport equation only

with constant speed. One must be careful in giving boundary conditions because of the

“directions” of the characteristic lines. One can not arbitrarily give boundary condition at

x = 0 if the characteristic lines starting from t = 0 meet x = 0 at some time t. As an

example, we consider

ut + ux = 0, (x, t) ∈ (0,+∞)× (0,+∞),

u|t=0 = u0(x), u|x=0 = 0.

For compatibility, we need u0(0) = 0. It is easily seen that the solution is

u(x, t) =

{
0, x ≤ t,
u0(x− t), x > t.

If the boundary condition is inhomogeneous, say u|x=0 = g(t), the compatibility condition

is then u(0, 0) = g(0). The solution changes accordingly to

u(x, t) =

{
g(t− x), x ≤ t,
u0(x− t), x > t.

Another method is to use the transformation v(x, t) = u(x, t) − g(t), so that v is zero on

the boundary x = 0. And the problem that v satisfies is

vt + vx = −gt(t), (x, t) ∈ (0,+∞)× (0,+∞),

v|t=0 = u0(x)− g(0), u|x=0 = 0.

1.6. Problems.

(1) Point out the type of these equations (linear, semilinear, quasilinear, fully nonlin-

ear).

(a) ut − uxuxxx = x2,

(b) −∆u+ u2 = 1,

(c) utt − div((x2 + t)∇u) = f(x),

(d) ut + div
[
u∇
(∆
√
u√
u

)]
= 0,

(e) ∆(u2) = f(x),

(f) |∇u| = 1.

(2) Find the solution formula by using characteristic method.

(a)

{
ut + (1 + x2)ux − u = 0, t > 0,−∞ < x <∞,
u|t=0 = arctanx, −∞ < x <∞,
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(b)

{
ut + b · ∇u = f, (x, t) ∈ Rn × (0,∞),

u|t=0 = g, x ∈ Rn.
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2. Wave equation

After a short derivation of the one dimensional wave equation, we will give the solution

formula for initial value problem (the Cauchy problem) by using characteristic method.

Then with the help of spherical mean, we will derive the three dimensional Kirchhoff’s

formula and two dimensional Poisson’s formula by Hadamard’s method of descent. These

shows that if the initial data are regular enough, then the classical solutions exist. Further-

more, the uniqueness and stability results will be given by using enery method.

For one dimensional initial boundary value problem with Dirichlet boundary condition,

we will use the separation of variable to deduce a solution formula with the help of Fourier

series. In the mean while, the Sturm Liouville theorem is going to be presented which

provides the theoretical basis for the method of separation of variables. Based on that, the

existence of solution can be obtained by studying the convergence of function series. Again

energy method will be used to show uniqueness and stability.

In the end of this section, we introduce the weak solution of initial boundary value

problem in the sense of distribution and show that the weak solution exists uniquely.

2.1. Derivation of the one dimensional wave equation. A stretched string with con-

stant density ρ is set to vibrate on a plane. The displacement of the string u(x, t) is a

function of x and time t, where x is the horizontal coordinate. Now let’s consider a dis-

cretized model in which a sequence of equally massed (i.e., m = ρh) particles with equal

distance h connect each other with coordinates · · · , xn−1, xn, xn+1, · · · . Newton’s second

law implies that for the n-th particle, the external force on this particle is equal to its mass

multiplied by the acceleration of it. We further make a simple assumption that the external

force F on the n-th particle, which comes from the (n− 1)-th and the (n+ 1)-th particle,

is proportional to the difference of the displacements of its adjacent particles and itself, i.e.

F = (u(xn+1, t)− u(xn, t))/h+ (u(xn−1, t)− u(xn, t))/h.

Therefore

ρhu′′(xn, t) =
u(xn+1, t) + u(xn−1, t)− 2u(xn, t)

h
.

Now if we take the limit h → 0 and come back to the continuous case, we arrive at the

one dimensional wave equation

ρutt = uxx.

2.2. Cauchy problem.

2.2.1. Solution formula and existence. d’Alembert’s formula — 1-D We will give the

formal solution of Cauchy problem

utt − uxx = 0, in R× R+,

u|t=0 = g(x), (2.1)

ut|t=0 = h(x).
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Figure 1. Derivation of wave equation by particle method

By factorizing the operator ∂tt − ∂xx = (∂t + ∂x)(∂t − ∂x), the problem is reduced into

solving the following two transport equations,

vt + vx = 0, (2.2)

v|t=0 = h(x)− g′(x)

and

ut − ux = v, (2.3)

u|t=0 = g(x).

With the help of characteristic method, the solution of (2.2) is

v(x, t) = h(x− t)− g′(x− t)

and the solution of (2.3) is

u(x, t) = g(x+ t) +

∫ t

0
v(x+ (t− s), s)ds.

Therefore, combining the two formulas above, we have the solution of (2.1),

u(x, t) = g(x+ t) +

∫ t

0
h(x+ t− 2s)− g′(x+ t− 2s)ds

= g(x+ t) +
1

2

∫ x+t

x−t
(h(y)− g′(y))dy

= g(x+ t)− 1

2
g(x+ t) +

1

2
g(x− t) +

1

2

∫ x+t

x−t
h(y)dy

=
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy.
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This is the so-called d’Alembert’s formula. The formal solution of (2.1) is

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy. (2.4)

From this formula, we are ready to get the existence of the solution with smooth initial

data

Theorem 2.1. If g ∈ C2(R) and h ∈ C1(R), then u, given by d’Alembert’s furmula, is a

C2(R× [0,+∞))-function. Furthermore, it satisfies wave equation utt − uxx = 0 and

lim
(x,t)→(x0,0)

u(x, t) = g(x0), lim
(x,t)→(x0,0)

ut(x, t) = h(x0).

Some properties of the solution d’Alembert’s formula reveals in itself some important

sets in the x− t space.

(1) {y ∈ R||y − x| ≤ t} is called the domain of dependence of the point (x, t),

(2) {(x, t) ∈ R× [0,+∞)|x ≥ x1 − t and x ≤ x2 + t} is called the range of influence

of [x1, x2],

(3) {(x, t) ∈ R× [0,+∞)|x ≥ x1 + t and x ≤ x2− t} is called the determining region

of [x1, x2],

(4) x+ t and x− t are the characteristics of the wave equation.

Inhomogeneous problem By the same method, we can also find the solution of inho-

mogeneous problem

utt − uxx = f(x, t), (x, t) ∈ R× R+, (2.5)

u|t=0 = g(x), ut|t=0 = h(x),

which is

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy +

1

2

∫ t

0
ds

∫ x+(t−s)

x−(t−s)
f(y, s)dy. (2.6)

By using the solution formula, it is easy to verify that

Corollary 2.1. If g, h and f are odd (even, or periodic) in x, so is u.

Half-line problem By using extension, we can also give the solution formula of the

following problem

utt − uxx = 0, in R+ × R+,

u|t=0 = g(x), ut|t=0 = h(x), (2.7)

u|x=0 = 0.

In order to assure compatibility between initial and boundary conditions, we need h(0) =

g(0) = 0. The homogeneous Dirichlet boundary condition at x = 0 motivates us to use odd

extension. Let

g̃ =

{
g(x), x ≥ 0,

−g(−x), x < 0,
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and we do the same odd extensions for ũ(x, t) and h̃(x). Then from the above corollary, ũ

satisfies the following Cauchy problem

ũtt − ũxx = 0, in R× R+,

ũ|t=0 = g̃(x),

ũt|t=0 = h̃(x).

By d’Alembert’s formula, ũ has the representation

ũ(x, t) =
1

2
(g̃(x+ t) + g̃(x− t)) +

1

2

∫ x+t

x−t
h̃(y)dy.

We need to get back to the domain {(x, t) : x > 0, t > 0} and drop the tildes in the formula.

There are two cases. In the case of x ≥ t, our solution has the representation

u(x, t) =
1

2
(g(x+ t) + g(x− t)) +

1

2

∫ x+t

x−t
h(y)dy.

In the case of 0 ≤ x < t, the solution is given by

u(x, t) =
1

2
(g(x+ t)− g(t− x)) +

1

2

(∫ x+t

0
h(y)dy −

∫ t−x

0
h(−y)dy

)
=

1

2
(g(x+ t)− g(t− x)) +

1

2

∫ x+t

t−x
h(y)dy.

Remark 2.1. For inhomogeneous boundary condition u|x=0 = uD(t), we can first get a

homogeneous boundary condition by using new variable v = u − uD(t), where v satisfies

vtt−vxx = −(uD)tt. Afterwards, we do the same odd extension to get the solution formula.

Remark 2.2. It is an easy exercise to get half-line problem with homogeneous Neumann

boundary condition ux|x=0 = 0 by using even extension.

Kirchhoff’s formula in 3-D and Poisson’s formula in 2-D We will reduce the

multi-dimension problem into a half-line problem by using spherical mean of the solution.

The spherical mean of a function u(x, t) on ∂B(x, r) is given by

U(x; r, t) =

∫
∂B(x,r)
− u(y, t)dSy. (2.8)

Lemma 2.1. If u ∈ Cm(Rn × (0,+∞)) is a solution of

utt −∆u = 0, in Rn × (0,+∞), (2.9)

u|t=0 = g, ut|t=0 = h.

Then the spherical mean of u, U(x; r, t) as a function of r and t is a function in Cm([0,+∞)×
[0,+∞)). Furthermore it satisfies

Utt − Urr −
n− 1

r
Ur = 0, in R+ × R+, (2.10)

U |t=0 = G, Ut|t=0 = H,
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where G,H are the corresponding spherical mean of g, h. The equation (2.10) is called the

Euler-Poisson-Darboux equation.

Proof. By direct calculations, we have

Ur(x; r, t) =
∂

∂r

∫
∂B(x,r)
− u(y, t)dSy =

∂

∂r

∫
∂B(0,1)
− u(x+ rz, t)dSz

=

∫
∂B(0,1)
− ∇u(x+ rz, t) · zdSz =

∫
∂B(x,r)
− ∇u(y, t) · y − x

r
dSy

=

∫
∂B(x,r)
− ∇u · γdSy =

r

n

∫
B(x,r)
− ∆u(y, t)dy.

As a consequence,

lim
r→0+

Ur(x; r, t) = 0.

If we take one derivative more,

Urr(x; r, t) =
∂

∂r

( r
n

∫
B(x,r)
− ∆u(y, t)dy

)
=

1

nα(n)

∂

∂r

(
r1−n

∫
B(x,r)

∆u(y, t)dy
)

=
1− n
n

1

α(n)rn

∫
B(x,r)

∆u(y, t)dy +
1

nα(n)rn−1

∂

∂r

∫
B(x,r)

∆u(y, t)dy

= (
1

n
− 1)

∫
B(x,r)
− ∆udy +

∫
∂B(x,r)
− ∆udSy.

where α(n) = π
n
2 /Γ(n2 + 1) is the volume of the n dimensional unit ball. Furthermore,

lim
r→0+

Urr(x; r, t) =
1

n
∆u(x, t).

Therefore, if u ∈ C2, we have U ∈ C2. By iteration argument, we have U ∈ Cm if u ∈ Cm.

Back to the first order derivative, by using the wave equation utt −∆u = 0, we have

Ur =
r

n

∫
B(x,r)
− uttdy =

1

nα(n)rn−1

∫
B(x,r)

uttdy.

Multiplying the above equation by rn−1 gives

rn−1Ur =
1

nα(n)

∫
B(x,r)

uttdy.

Then the desired equation follows from taking one more derivative of rn−1Ur, i.e.,

(rn−1Ur)r =
1

nα(n)

∫
∂B(x,r)

uttdSy = rn−1

∫
∂B(x,r)
− uttdSy = rn−1Utt.

�

In the case of n = 3, we will get Kirchhoff’s formula by using Euler-Poisson-Darboux

equation.

Let Ũ = rU , G̃ = rG and H̃ = rH, we have

Ũr = U + rUr,
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and moreover

Ũtt = rUtt = rUrr + 2Ur = (U + rUr)r = Ũrr.

Now Ũ solves the half-line problem

Ũtt − Ũrr = 0, in R+ × R+,

Ũ |t=0 = G̃, Ũt|t=0 = H̃,

Ũ |r=0 = 0.

By the solution representation in half-line problem, we have

Ũ(x; r, t) =
1

2
(G̃(r + t)− G̃(t− r)) +

1

2

∫ r+t

t−r
H̃(y)dy, ∀0 < r < t.

Since u(x, t) is a continuous function, its value at (x, t) is exactly the limit of its spherical

mean. Thus

u(x, t) = lim
r→0+

U(x; r, t) = lim
r→0+

Ũ(x; r, t)

r

= lim
r→0+

[
1

2

G̃(r + t)− G̃(t− r)
r

+
1

2r

∫ r+t

t−r
H̃(y)dy

]
= G̃′(t) + H̃(t).

By the definition of G̃ and H̃, after changing back to the original functions g and h, we

arrive at

u(x, t) =
∂

∂t

[
t

∫
∂B(x,t)
− g(y)dSy

]
+ t

∫
∂B(x,t)
− h(y)dSy.

Therefore after the following further computation

∂

∂t

∫
∂B(x,t)
− g(y)dSy =

∂

∂t

∫
∂B(0,1)
− g(x+ tz)dSz

=

∫
∂B(0,1)
− ∇g(x+ tz) · zdSz =

∫
∂B(x,t)
− ∇g(y) · y − x

t
dSy,

we obtain the 3-D Kirchhoff’s formula,

u(x, t) =

∫
∂B(x,t)
− [g(y) +∇g(y) · (y − x) + th(y)]dSy. (2.11)

In the case of n = 2, we will get Poisson’s formula by the Hadamard’s method of descent.

If u(x1, x2, t) is a solution in 2-D, let ū(x1, x2, x3, t) = u(x1, x2, t), then ū solves the wave

equation in 3-D,

ūtt −∆ū = 0, in R3 × (0,∞),

ū|t=0 = ḡ, ūt|t=0 = h̄,

where ḡ(x1, x2, x3) = g(x1, x2) and h̄(x1, x2, x3) = h(x1, x2). Then by Kirchhoff’s formula

in 3-D, we have

u(x, t) =
∂

∂t

[
t

∫
∂B(x̄,t)
− ḡ(y)dSy

]
+ t

∫
∂B(x̄,t)
− h̄(y)dSy,
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where x̄ = (x1, x2, 0). Due to the fact that ḡ(y1, y2, y3) = g(y1, y2), we can simplify the

integral on ∂B(x̄, t) by∫
∂B(x̄,t)
− ḡ(y)dSy =

1

4πt2

∫
∂B(x̄,t)

ḡ(y)dSy

=
2

4πt2

∫
B(x,t)

g(y)(1 + |∇γ(y)|2)
1
2dy,

where γ(y) =
√
t2 − (y − x)2 and (1 + |∇γ(y)|2)

1
2 = t(t2 − |y − x|2)−

1
2 . Therefore∫

∂B(x̄,t)
− ḡ(y)dSy =

1

2πt

∫
B(x,t)

g(y)

(t2 − |y − x|2)
1
2

dy

=
t

2

∫
B(x,t)
− g(y)

(t2 − |y − x|2)
1
2

dy.

Then after taking derivative with respect to t, we have

∂

∂t

[
t2
∫
B(x,t)
− g(y)

(t2 − |y − x|2)
1
2

dy

]
=

∂

∂t

[
t

∫
B(0,1)
− g(x+ tz)

(1− |z|2)
1
2

dz

]

=

∫
B(0,1)
− g(x+ tz)

(1− |z|2)
1
2

dz + t

∫
B(0,1)
− ∇g(x+ tz) · z

(1− |z|2)
1
2

dz

= t

∫
B(x,t)
− g(y)

(t2 − |y − x|2)
1
2

dy + t

∫
B(x,t)
− ∇g(y) · (y − x)

(t2 − |y − x|2)
1
2

dy

Thus the 2-D Poisson’s formula is

u(x, t) =
1

2

∫
B(x,t)
− tg(y) + t2h(y) + t∇g(y) · (y − x)

(t2 − |y − x|2)
1
2

dy. (2.12)

With the help of Kirchhoff’s and Poisson’s formula in 3-D and 2-D, we have the following

existence result.

Theorem 2.2. (n = 2, 3) If g ∈ C3(Rn) and h ∈ C2(Rn), then u given by (2.11) and

(2.12), a function in C2(Rn × [0,+∞)), is a classical solution of (2.9).

The difference of the solution behaviors between 3-D and 2-D If we look at the

Kirchhoff’s formula (2.11) and the Poisson’s formula (2.12), we can easily find that the

main difference locates on the domain of the integrals. The integral is on the sphere (which

is the boundary of a domain) in Kirchhoff’s formula, while the integral is in the ball in

Poisson’s formula.

Let’s assume that the initial data have compact support Ω, where Ω is connected and

regular enough. For any fixed point x0 6∈ Ω, let d1 = dist(x0,Ω) > 0, d2 = max{dist(x0, x) :

x ∈ Ω}. In 3-D case, the possible non-zero points of u(x0, t) can only be in the interval

t ∈ [d1, d2], while in 2-D, the possible non-zero points of u(x0, t) must be the half line

t ∈ [d1,+∞). That explains why one can hear the others’ voice in 3-D, and why the water

wave diffuses to the whole space in 2-D.
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Figure 2. Wave propagation in 3-D and 2-D

2.2.2. Uniqueness and stability (Energy method). After obtaining the existence result, a

further natural question to ask is whether the solution is unique and stable? In the following

discussion, we introduce the energy method, which is a “powerful” tool in PDE theory.

Uniqueness and stability follow thereafter as an application of the energy estimates.

We first introduce a useful lemma.

Lemma 2.2. (Gronwall’s inequality) Assume G(τ) ≥ 0, G′(τ) ∈ C[0, T ] and ∀τ ∈ [0, T ],

the following inequality holds

dG(τ)

dτ
≤ CG(τ) + F (τ),

where C is a nonnegative constant, F (τ) ≥ 0 is nondecreasing in τ . Then

dG(τ)

dτ
≤ CeCτG(0) + eCτF (τ),

and

G(τ) ≤ eCτG(0) + C−1(eCτ − 1)F (τ).

Proof. By multiplying the given inequality by e−Cτ and integrating it over [0, τ ], we have

e−CτG(τ) ≤ G(0) +

∫ τ

0
e−CtF (t)dt ≤ G(0) + F (τ)C−1(1− e−Cτ ).

�
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The Cauchy problem we considered is revisited

utt − uxx = f, in R× R+,

u|t=0 = g(x), (2.13)

ut|t=0 = h(x).

The energy inequality of 1-D Cauchy problem (2.13) is

Theorem 2.3. If u ∈ C1(R × [0,+∞)) ∩ C2(R × (0,+∞)) is a solution of (2.13), then

∀(x0, t0) ∈ R× (0,+∞), we have∫
Ωτ

[u2
t (x, τ) + u2

x(x, τ)]dx ≤ C(t0)
(∫

Ω0

(h2 + g2
x)dx+

∫ ∫
Kτ

f2(x, t)dxdt
)
,∫ ∫

Kτ

[u2
t (x, t) + u2

x(x, t)]dxdt ≤ C(t0)
(∫

Ω0

(h2 + g2
x)dx+

∫ ∫
Kτ

f2(x, t)dxdt
)
,

where K = {(x, t) ∈ R×[0,+∞) : |x−x0| < t0−t}, Kτ = K∩{0 ≤ t ≤ τ}, Ωτ = K̄∩{t = τ},
and C(t0) is a constant depends on t0.

Figure 3. Domains in energy estimates

Proof. Multiplying the equation by ut and integrating over Kτ , we have∫ ∫
Kτ

(ututt − utuxx)dxdt =

∫ ∫
Kτ

utfdxdt.
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Noticing that the boundary of Kτ is ∂Kτ = Ω0 ∪ Ωτ ∪ Γ1
τ ∪ Γ2

τ , we can calculate the left

hand side by using divergence lemma,∫ ∫
Kτ

1

2
(u2
t + u2

x)tdxdt−
∫ ∫

Kτ

(utux)xdxdt

=

∫
∂Kτ

(
1

2
(u2
t + u2

x),−utux)T · γdl

=

∫
Ωτ

1

2
(u2
t + u2

x)dx−
∫

Ω0

1

2
(u2
t + u2

x)dx

+

∫
Γ1
τ

1√
2

(
1

2
(u2
t + u2

x) + utux)dl +

∫
Γ2
τ

1√
2

(
1

2
(u2
t + u2

x)− utux)dl

≥
∫

Ωτ

1

2
(u2
t + u2

x)dx−
∫

Ω0

1

2
(h2 + g2

x)dx,

where γ is the outer unit normal vector of ∂Kτ and has values γ = (−1, 0) on Ω0, γ = (1, 0)

on Ωτ , γ = 1√
2
(1,−1) on Γ1

τ and γ = 1√
2
(1, 1) on Γ2

τ .

The right hand side can be estimated by using Young’s inequality,∫ ∫
Kτ

utfdxdt ≤
1

2

∫ ∫
Kτ

u2
tdxdt+

1

2

∫ ∫
Kτ

f2dxdt.

with the above discussions being combined together, we have∫
Ωτ

(u2
t + u2

x)dx ≤
∫

Ω0

(h2 + g2
x)dx+

∫ ∫
Kτ

u2
tdxdt+

∫ ∫
Kτ

f2dxdt.

Let

G(τ) =

∫ ∫
Kτ

(u2
t + u2

x)dxdt =

∫ τ

0

∫ x0+(t0−t)

x0−(t0−t)
(u2
t + u2

x)dxdt,

F (τ) =

∫
Ω0

(h2 + g2
x)dx+

∫ ∫
Kτ

f2dxdt.

The estimates we have done is equivalent to the following inequality

dG(τ)

dτ
≤ G(τ) + F (τ),

where F (τ) is increasing in τ . Then noticing that G(0) = 0, Gronwall’s inequality implies

G(τ) ≤ (eτ − 1)F (τ) ≤ et0F (τ).

�

We can also get the L2 estimate from the energy estimate.
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Theorem 2.4. If u ∈ C1(R × [0,+∞)) ∩ C2(R × (0,+∞)) is a solution of (2.13), then

∀(x0, t0) ∈ R× (0,+∞),∫
Ωτ

u2(x, τ)dx ≤ M1

(∫
Ω0

(g2 + h2 + g2
x)dx+

∫ ∫
Kτ

f2dxdt
)
,∫ ∫

Kτ

u2(x, t)dxdt ≤ M1

(∫
Ω0

(g2 + h2 + g2
x)dx+

∫ ∫
Kτ

f2dxdt
)
,

where M1 is a constant depends on t0, τ ∈ [0, t0] and the definitions of domains Kτ , Ωτ

and Ω0 are the same as before.

Proof. We only need to prove that ‖u‖L2(Ωτ ) and ‖u‖L2(Kτ ) can be controlled by ‖ut‖L2(Kτ ).

In fact,∫
Ωτ

(u2(x, τ)− u2(x, 0))dx =

∫
Ωτ

∫ τ

0
∂tu

2(x, t)dtdx ≤
∫ ∫

Kτ

(u2 + u2
t )dxdt.

By Gronwall’s inequality, we have∫
Ωτ

u2(x, τ)dx ≤ C(t0)
(∫

Ω0

g2(x)dx+

∫ ∫
Kτ

u2
tdxdt

)
,∫ ∫

Kτ

u2(x, t)dxdt ≤ C(t0)
(∫

Ω0

g2(x)dx+

∫ ∫
Kτ

u2
tdxdt

)
.

Thus the L2 estimate is a direct consequence from energy estimates. �

Uniqueness is a direct corollary of energy estimates. Let Q = R× (0,+∞).

Corollary 2.2. If u1 and u2 are two C2(Q)∩C1(Q̄) solutions of the Cauchy problem (2.13),

then u1 = u2 in Q.

Proof. Let w = u1 − u2, then wtt − wxx = 0 in Q and w|t=0 = wt|t=0 = 0. Then energy

estimates for w state that ∀(x0, t0) ∈ Q, 0 < τ < t0, there holds∫
Ωτ

(w2 + w2
t + w2

x)dx ≤ 0,

which implies w = 0 in Ωτ . Since (x0, t0) is arbitrary, the uniqueness is proved. �

Stability in the sense of H1-norm. H1-norm of a function is defined by

‖u‖H1 = ‖u‖L2 + ‖∇u‖L2 .

Corollary 2.3. If u1, u2 are C2(Q) ∩ C1(Q̄) solutions of the Cauchy problem (2.13) with

different data f1, g1, h1 and f2, g2, h2 respectively. Then

‖u1 − u2‖H1(Kτ ) ≤M
(
‖g1 − g2‖H1(Ω0) + ‖h1 − h2‖L2(Ω0) + ‖f1 − f2‖L2(Kτ )

)
,
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where

‖u‖2H1(Kτ ) =

∫ ∫
Kτ

[u2(x, τ) + u2
t (x, τ) + u2

x(x, τ)]dxdt,

‖g‖2H1(Ω0) =

∫
Ω0

[g2(x) + g2
x(x)]dx,

‖h‖2L2(Ω0) =

∫
Ω0

h2(x)dx,

‖f‖2L2(Kτ ) =

∫ ∫
Kτ

f2(x, t)dxdt,

and the definitions of domains Kτ , Ωτ and Ω0 are the same as before.

Proof. Notice that w = u1 − u2 is a solution of

wtt − wxx = f1 − f2, in Q,

w|t=0 = g1 − g2, wt|t=0 = h1 − h2,

then the energy estimates and L2-estimates directly imply the stability. �

2.3. Initial boundary value problem in one dimension. We consider the initial

boundary value problem with homogeneous Dirichlet boundary condition

utt − uxx = 0, x ∈ (0, 1), t > 0, (2.14)

u|t=0 = g(x), ut|t=0 = h(x),

u|x=0 = u|x=1 = 0.

Other reasonable boundary conditions are Neumann boundary condition and Robin bound-

ary condition. For simplicity, in most of the cases, we only handle the Dirichlet boundary

condition.

2.3.1. Separation of variables (motivation). The problem (2.14) can be solved by separation

of variables. Before stating the rigorous result, we present here a formal calculation as a

motivation.

Suppose that our solution has a factorized form u(x, t) = X(x)T (t). If we put it into the

equation, we get immediately

XT ′′ −X ′′T = 0 ⇒ X ′′

X
=
T ′′

T
.

Now both sides of this equation are functions of one dimensional variables, but with dif-

ferent variables x and t. Once they are equal, they must be the same constant, which

is independent of x and t. We denote the constant by −λ. By applying the boundary

conditions, we have

X ′′ + λX = 0, X(0) = X(1) = 0,

T ′′ + λT = 0.
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Then the solutions would be

X(x) = C cos
√
λx+D sin

√
λx,

T (t) = A cos
√
λt+B sin

√
λt,

where A, B, C and D are constants to be determined later. The reason why λ are nonneg-

ative will be explained later.

Applying the boundary condition for X yields

C = 0, D sin
√
λ = 0, ⇒ λ = (nπ)2, n = 1, 2, 3, · · · .

Therefore, for any fixed n, we have the following solutions with undetermined constants An
and Bn,

un(x, t) = (An cos
√
λnt+Bn sin

√
λnt) sin

√
λnx

= (An cosnπt+Bn sinnπt) sinnπx.

By superposition principle, we know that the finite summation of solutions is still a solution,

i.e., for any fixed N ,

uN (x, t) =
N∑
n=1

un(x, t) =
N∑
n=1

(An cosnπt+Bn sinnπt) sinnπx

is a solution of the wave equation with Dirichlet boundary condition. If, furthermore, the

initial data g(x) and h(x) have the same form, say,

g(x) =
N∑
n=1

gn sinnπx, h(x) =
N∑
n=1

hn sinnπx,

then uN must be a solution with this initial data. One could naturally ask how about the

case with general initial data? What is the corresponding solution u(x, t)? Can we use

∞ to replace N? These problems introduce directly to the theory of Fourier series. We

first write initial data g and h into Fourier series, which can be done for L2 functions (see

the appendix in the end of this chapter), then the corresponding series lim
N→∞

uN (x, t) can

be expected to be a solution for smooth enough initial data. We will prove this rigorously

later.

2.3.2. Generalized Fourier series (Sturm-Liouville theorem). As a preparation for getting

rigorous solution formula, we introduce the so-called Sturm-Liouville problem, which is

the theoretical basis of the method of separation of variables. We consider an eigenvalue

problem with more general boundary condition (Robin type). Dirichlet and Neumann

boundary conditions are merely special cases from Robin boundary condition. Now we

consider

X ′′ + λX = 0, 0 < x < 1,

−α1X
′(0) + β1X(0) = 0, αi, βi ≥ 0, (2.15)

α2X
′(1) + β2X(1) = 0, αi + βi > 0.
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Theorem 2.5. (Sturm-Liouville theorem)

(1) All the eigenvalues of (2.15) are nonnegative. In addition, if β1 + β2 > 0, then all

the eigenvalues are positive,

(2) eigenvalues are countable and increasing to infinity, i.e.,

0 ≤ λ1 < λ2 < · · · < λn < · · · , lim
n→∞

λn =∞,

(3) eigenfunctions of different eigenvalues are orthogonal in the following sense∫ 1

0
XλXµdx = 0, for λ 6= µ,

(4) ∀f ∈ L2(0, 1), it holds that

f(x) =
∞∑
n=1

CnXn(x), in the sense of L2(0, 1), Cn =

∫ 1
0 f(x)Xn(x)dx∫ 1

0 X
2
ndx

,

or

lim
n→∞

‖f(x)− fn(x)‖L2 = 0,

where

∞∑
n=1

CnXn(x) is called the generalized Fourier series.

Proof. We will only proof the first three statements. The last one can be found in functional

analysis in the part of compact self-adjoint operators.

(1) By multiplying the equation by Xλ and integrating it over (0, 1), we have

XλX
′
λ

∣∣∣1
0
−
∫ 1

0
(X ′λ)2dx+ λ

∫ 1

0
X2
λdx = 0.

Boundary conditions show that

−α1X
′
λ(0)Xλ(0) + β1X

2
λ(0) = 0, −α1(X ′λ(0))2 + β1Xλ(0)X ′λ(0) = 0,

α2X
′
λ(1)Xλ(1) + β2X

2
λ(1) = 0, α2(X ′λ(1))2 + β2Xλ(1)X ′λ(1) = 0.

From these, we get

X ′λ(0)Xλ(0) =
1

α1 + β1
(α1(X ′λ(0))2 + β1X

2
λ(0)),

X ′λ(1)Xλ(1) =
−1

α2 + β2
(β2X

2
λ(1) + α2(X ′λ(1))2).

As a consequence, we know the nonnegativity of

λ

∫ 1

0
X2
λdx =

∫ 1

0
(X ′λ)2dx−X ′λ(1)Xλ(1) +X ′λ(0)Xλ(0) ≥ 0.

Thus we have λ ≥ 0 and furthermore

λ = 0 if and only if X ′λ ≡ 0 and
β1

α1 + β1
X2
λ(0) +

β2

α2 + β2
X2
λ(1) = 0,
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or equivalently

Xλ ≡ C and
( β1

α1 + β1
+

β2

α2 + β2

)
C2 = 0.

We can see from this expression that if β1 + β2 > 0, then Xλ ≡ 0 which can not be

a valid eigenfunction. In the end, we get that in the case of β1 + β2 > 0, λ must be

positive.

(2) We have already proved that λ ≥ 0 and λ = 0 iff β1 = β2 = 0. From X ′′ + λX = 0,

we know that for all constants A and B, the following representation is the solution,

X(x) = A cos
√
λx+B sin

√
λx,

X ′(x) = −A
√
λ sin

√
λx+B

√
λ cos

√
λx.

We will get further information on the constants A and B from the boundary

conditions. It will be studied in the following three cases:

(a) Dirichlet boundary condition α1 = α2 = 0, then the boundary condition

is reduced into X(0) = X(1) = 0. Simple computations show that A = 0 and

B sin
√
λ = 0. As a consequence,

λn = (nπ)2, Xn(x) = sinnπx, n = 1, 2, · · · .

Obviously, in this case, λn is monotone and increasing to ∞.

(b) Neumann boundary condition β1 = β2 = 0, in this case the boundary

condition is X ′(0) = X ′(1) = 0, which implies that B = 0, A sin
√
λ = 0. Thus

we have

λn = (nπ)2, Xn(x) = cosnπx, n = 0, 1, 2, · · · .

(c) Robin boundary condition α1β2 +α2β1 > 0. From the boundary condition

we have

0 = β1A− α1B
√
λ,

0 = β2(A cos
√
λ+B sin

√
λ)− α2

√
λ(A sin

√
λ−B cos

√
λ),

which implies that

α1

√
λ

β1
=
A

B
,

0 = β2α1

√
λ

1

tan
√
λ

+ β2β1 − α1α2λ+ β1α2

√
λ

1

tan
√
λ
.

Let ξ =
√
λ, then we are left to solve the following equation,

tan ξ =
(β2α1 + β1α2)ξ

α1α2ξ2 − β1β2
.

It can be proved that the sequence of all the possible solutions {ξn =
√
λn} is

monotone increasing and goes to ∞.
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(3) Let λ, µ be two different eigenvalues. Multiplying the equation X ′′λ + λXλ = 0 by

Xµ and X ′′µ + µXµ = 0 by Xλ, integrating over (0, 1), we have

XµX
′
λ

∣∣∣1
0
−
∫ 1

0
X ′µX

′
λ + λ

∫ 1

0
XλXµ = 0,

XλX
′
µ

∣∣∣1
0
−
∫ 1

0
X ′µX

′
λ + µ

∫ 1

0
XλXµ = 0.

The difference between this two equations shows that

(λ− µ)

∫ 1

0
XλXµ = −XµX

′
λ

∣∣∣1
0

+XλX
′
µ

∣∣∣1
0
.

Now the boundary conditions for Xλ and Xµ are

−α1X
′
λ(0) + β1Xλ(0) = 0, α2X

′
λ(1) + β2Xλ(1) = 0

−α1X
′
µ(0) + β1Xµ(0) = 0, α2X

′
µ(1) + β2Xµ(1) = 0

These algebraic systems have non zero solutions, thus the coefficient determinants

are 0, i.e., ∣∣∣∣ X ′λ(0) Xλ(0)

X ′µ(0) Xµ(0)

∣∣∣∣ = 0,

∣∣∣∣ X ′λ(1) Xλ(1)

X ′µ(1) Xµ(1)

∣∣∣∣ = 0.

Thus we have

(λ− µ)

∫ 1

0
XµXλdx = 0.

Since λ 6= µ, we know that Xλ and Xµ are orthogonal.

�

Remark 2.3. When β1 = β2 = 0, it is Neumann boundary condition. In this case, λ = 0 is

an eigenvalue, and its eigenfunction is X0 = 1.

Remark 2.4. {Xn(x)} is a complete orthogonal basis of L2(0, 1). After normalization, it is

X∗n(x) =
Xn(x)

‖Xn(x)‖L2

.

Then ∀f ∈ L2(0, 1), the fourier coefficients C∗n are

C∗n =

∫ 1
0 f(x)Xn(x)dx

‖Xn(x)‖L2

,

which is the inner product of f(x) and X∗n(x).
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2.3.3. Solution formula by separation of variables. Now we come back to the solution for-

mula for (2.14) by using the method of separation of variables,

u(x, t) =

∞∑
n=1

(An cosnπt+Bn sinnπt) sinnπx. (2.16)

We only need to determine the coefficients An and Bn by using initial data. Take t = 0 in

(2.16), we have

u(x, 0) =
∞∑
n=1

An sinnπx and ut(x, 0) =
∞∑
n=1

nπBn sinnπx.

For the initial data g, h ∈ L2(0, 1), they have the following Fourier expansion by sine

functions

g(x) =

∞∑
n=1

gn sinnπx, gn = 2

∫ 1

0
g(x) sinnπxdx,

h(x) =
∞∑
n=1

hn sinnπx, hn = 2

∫ 1

0
h(x) sinnπxdx,

then the coefficients can be determined by

An = gn, Bn =
1

nπ
hn.

Thus the solution expression is

u(x, t) =

∞∑
n=1

(gn cosnπt+
hn
nπ

sinnπt) sinnπx. (2.17)

Now we give a short summary on the three main steps in applying the method of sepa-

ration of variables:

(1) let the solution have a factorized form u(x, t) = X(x)T (t), and set up the eigenvalue

problem,

(2) solve the eigenvalue problem, and solve the ODE for T (t),

(3) take a summation of all the factorize-typed solutions, and fix the coefficients by

using initial data.

After the above steps, we arrive at a solution formula, there are still a few questions left:

(1) How can one handle the inhomogeneous equation utt − uxx = f?

(2) How can one deal with the inhomogeneous boundary conditions?

(3) Does the formula give us a classical solution? Under what condition is it a classical

solution?

We will answer the remaining questions in the following.
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Inhomogeneous equation We briefly explain how to deal with the inhomogeneous

equations and left the details to the readers. Here we use (0, l) instead of (0, 1).

utt − uxx = f(x, t), x ∈ (0, l), t > 0,

u|x=0 = u|x=l = 0, (2.18)

u|t=0 = g(x), ut|t=0 = h(x).

Firstly we know that the eigenfunctions are sin
nπx

l
, n = 1, 2, · · · . Then assume that

u(x, t) =

∞∑
n=1

Tn(t) sin
nπ

l
x,

f(x, t) =
∞∑
n=1

fn(t) sin
nπ

l
x,

g(x) =
∞∑
n=1

gn sin
nπ

l
x,

h(x) =

∞∑
n=1

hn sin
nπ

l
x.

Then solve the ODE for Tn(t),

T ′′n (t) + (
nπ

l
)2Tn(t) = fn(t),

Tn(0) = gn, T ′n(0) = hn.

One can get that the solution is

Tn(t) = gn cos
nπ

l
t+

l

nπ
hn sin

nπ

l
t+

l

nπ

∫ t

0
fn(τ) sin

nπ

l
(t− τ)dτ.

Then by replacing Tn(t) in the solution u(x, t), we get the solution for inhomogeneous

equation.

Inhomogeneous boundary conditions

The problem with inhomogeneous boundary condition is

utt − uxx = f, x ∈ (0, l), t > 0,

u|x=0 = u0(t), u|x=l = u1(t), (2.19)

u|t=0 = g(x), ut|t=0 = h(x).

We will use homogenization technic. In other words, by introducing a new function v(x, t)

such that the homogeneous boundary conditions work for v(x, t). More precisely, let

v(x, t) := u(x, t)− x

l
u1(t)− l − x

l
u0(t),
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then v(x, t) solves the following initial boundary value problem

vtt − vxx = f(x, t)− x

l
u′′1 −

l − x
l

u′′0,

v|x=0 = v|x=l = 0,

v|t=0 = g(x)− x

l
u1(0)− l − x

l
u0(0),

vt|t=0 = h(x)− x

l
u′1(0)− l − x

l
u′0(0).

By the method of dealing with inhomogeneous equations, we can get a formula for v(x, t),

which gives directly the expression of u(x, t).

2.3.4. Existence of solution for (2.14). Under what conditions for the given data is the

series in (2.17) exactly the classical solution of (2.14)?

If we can prove that u is at least twice differentiable in both x and t, then all the previous

computations can go through, which means that it is indeed a classical solution. Therefore,

we are left to prove that
∞∑
n=1

un,
∞∑
n=1

Dun,
∞∑
n=1

D2un

are uniformly convergent in (0, 1)× (0, T ).

In order to obtain the classical solution of (2.14), we require the following compatibility

conditions

g(0) = g(1) = 0, h(0) = h(1) = 0, g′′(0) = g′′(1) = 0. (2.20)

Theorem 2.6. If g ∈ C3[0, 1], h ∈ C2[0, 1] and they satisfy the compatibility condition

(2.20), then u(x, t) given by (2.17) =
∑∞

n=1 un(x, t) ∈ C2(Q̄) is a solution of (2.14).

Proof. Doing integration by parts on the coefficients of g and h by using compatibility

conditions, we have

hn
nπ

=
2

nπ

∫ 1

0
h(x) sinnπxdx = − 2

(nπ)3

∫ 1

0
h′′(x) sinnπxdx =: − 2

(nπ)3
an,

gn = 2

∫ 1

0
g(x) sinnπxdx =

2

(nπ)3

∫ 1

0
g′′′(x) cosnπxdx =:

2

(nπ)3
bn.

Therefore

u(x, t) =

∞∑
n=1

( 2

(nπ)3
bn cosnπt− 2

(nπ)3
an sinnπt

)
sinnπx.

Moreover the following estimates hold

|un| ≤
C

n3
, |Dun| ≤

C

n2
,

|D2un| ≤
C

n
(|an|+ |bn|) ≤ C(

1

n2
+ |an|2 + |bn|2),
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where the right hand side of the last inequality can be bounded by Bessel’s inequality,

∞∑
n=1

|an|2 ≤ 2

∫ 1

0
|h′′|2dx,

∞∑
n=1

|bn|2 ≤ 2

∫ 1

0
|g′′′|2dx.

�

2.3.5. Uniqueness and Stability — Energy estimates. Let Qτ = (0, 1)× (0, τ). We have the

following energy estimates for initial boundary value problem of wave equation (2.14) in

Qτ . Then uniqueness and stability can be obtained from that.

Theorem 2.7. Assume u ∈ C2(Qτ ) ∩ C1(Q̄τ ) is a solution of (2.14), then∫ 1

0
(u2 + u2

t + u2
x)dx ≤M(

∫ 1

0
(h2 + g2 + g2

x)dx+

∫
Qτ

f2dxdt).

Proof. Multiplying the wave equation by ut and integrating it over Qτ gives∫
Qτ

∂

∂t
(u2
t + u2

x) ≤
∫
Qτ

f2 +

∫
Qτ

u2
t .

Notice that
∫
Qτ

=
∫ τ

0

∫ 1
0 , we have∫ 1

0
(u2
t + u2

x)|t=τ ≤
∫ 1

0
(h2 + g2

x) +

∫
Qτ

f2 +

∫
Qτ

u2
t .

By Gronwall’s inequality,∫ 1

0
(u2
t + u2

x)|t=τ ≤M
(∫ 1

0
(h2 + g2

x) +

∫
Qτ

f2
)
.

Similar to the discussion in Cauchy problem, we have the L2 estimates.

�

2.3.6. Resonance. In the solution formula, u(x, t) =
∞∑
n=1

un(x, t), the n-th wave is a wave

that remains in a constant position in the following sense

un(x, t) = (gn cosnπt+
hn
nπ

sinnπt) sinnπx

= (g2
n + (hn/nπ)2)

1
2 sinnπx

( gn

(g2
n + (hn/nπ)2)

1
2

cosnπt

+
hn/nπ

(g2
n + (hn/nπ)2)

1
2

sinnπt
)

= (g2
n + (hn/nπ)2)

1
2 sinnπx · sin(nπt+ αn)

= Nn · sinnπx · sin(nπt+ αn),

where tanαn =
nπgn
hn

, Nn = (g2
n + (hn/nπ)2)

1
2 . Usually N1 � Nn, ∀n 6= 1.
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Consider the following initial boundary value problem

utt − uxx = A(x) sinωt, x ∈ (0, 1), t > 0,

u|x=0,1 = 0,

u|t=0 = ut|t=0 = 0.

Compatibility condition A(0) = A(1) = 0 is needed for the existence of classical solution.

We assume A ∈ C1. The solution formula from separation of variables is

u(x, t) =

∞∑
n=1

1

nπ

∫ t

0
fn(τ) sinnπ(t− τ)dτ · sinnπx

=

∞∑
n=1

an
nπ

sinnπx

∫ t

0
sinωτ · sinnπ(t− τ)dτ,

where

an = 2

∫ 1

0
A(x) sinnπxdx.

If we calculate further, we will see∫ t

0
sinωτ · sinnπ(t− τ)dτ

=

∫ t

0
−1

2
(cos(nπt+ (ω − nπ)τ)− cos(−(ω + nπ)τ + nπt))dτ

=
1

2

∫ t

0
cos((ω + nπ)τ − nπt)dτ − 1

2

∫ t

0
cos((ω − nπ)τ + nπt)dτ

ω 6=nπ
=

1

2(ω + nπ)
sin((ω + nπ)τ − nπt)

∣∣∣t
0
− 1

2(ω − nπ)
sin((ω − nπ)τ + nπt)

∣∣∣t
0

ω 6=nπ
=

1

2(ω + nπ)
(sinωt+ sinnπt)− 1

2(ω − nπ)
(sinωt− sinnπt).

If ω = kπ for some k, then

uk(x, t) =
ak
kπ

( sin kπt

kπ + kπ
− 1

2

∫ t

0
cos kπtdτ

)
sin kπx

=
( ak

2(kπ)2
sin kπt− ak

2kπ
t · cos kπt

)
sin kπx.

Thus in the case of ω = kπ, we have

u(x, t) =
∑
n6=k

an
nπ

( 1

2(ω + nπ)
(sinωt+ sinnπt)− 1

2(ω − nπ)
(sinωt− sinnπt)

)
sinnπx

+
( ak

2(kπ)2
sin kπt− ak

2kπ
t · cos kπt

)
sinnπx

Therefore there exists a sequence of time tm →∞ such that the uk(x, t) is unbounded for

big m.
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2.4. Appendix-On Fourier Series. ∀f ∈ L1(−l, l), it can be written into a series by

using trigonometric functions

f(x) ∼ A0

2
+
∞∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
),

where

An =
1

l

∫ l

−l
f(x) cos

nπx

l
dx, n = 0, 1, 2, · · · ,

Bn =
1

l

∫ l

−l
f(x) sin

nπx

l
dx, n = 1, 2, · · ·

are called Fourier coefficients of f .

If f(x) is an even function, then Bn = 0, and

f(x) ∼ A0

2
+

∞∑
n=1

An cos
nπx

l
, An =

2

l

∫ l

0
f(x) cos

nπx

l
dx.

If f(x) is an odd function, then An = 0, and

f(x) ∼
∞∑
n=1

Bn sin
nπx

l
, Bn =

2

l

∫ l

0
f(x) sin

nπx

l
dx.

For any fixed N ≥ 1, (SNf)(x) =
A0

2
+

N∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
) is called trigono-

metric polynomial.

sin
nπx

l
, cos

mπx

l
, n,m = 1, 2, · · · are orthogonal in the following sense

1

l

∫ l

−l
cos

mπx

l
cos

nπx

l
dx = δmn,

1

l

∫ l

−l
sin

mπx

l
sin

nπx

l
dx = δmn,

1

l

∫ l

−l
sin

mπx

l
cos

nπx

l
dx = 0.

Moreover, {1,
√

2 cos
nπx

l
,
√

2 sin
nπx

l
}∞n=1 is an orthonormal basis in L2(−l, l), where

the inner product in L2(−l, l) is defined by
1

2l

∫ l

−l
f(x)ḡ(x)dx, ∀f, g ∈ L2.

Here we list several useful facts for trigonometric series that we are going to use in this

course.

Theorem 2.8. (Convergence in L2 norm)

lim
N→∞

‖f(x)− (SNf)(x)‖L2 = 0, for f ∈ L2(−l, l).
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Theorem 2.9. (Bessel’s inequality) For f ∈ L2(−l, l), it holds

A2
0

2
+
∞∑
n=1

(A2
n +B2

n) ≤ 1

l

∫ l

−l
f2dx.

Theorem 2.10. (Parseval’s equality) For f ∈ L2(−l, l), it holds

A2
0

2
+

∞∑
n=1

(A2
n +B2

n) =
1

l

∫ l

−l
f2dx.

2.5. ***Generalized solution. It happens quite often that in some of the physical models

one cannot find the solution in the classical sense. For example, in the model for the

vibrating string, the initial data can be piecewise differentiable. A typical example is

g(x) = x for x ∈ [0, 1/2] and g(x) = 1−x for x ∈ [1/2, 1]. Now g is no longer a differentiable

function, but the problem should still have a “reasonable” solution. One must search for

the solution in a broader class.

In this subsection, we introduce the basic knowledge of weak solution for the following

initial boundary value problem

utt − uxx = f, QT = (0, 1)× (0, T )

u|x=0 = u|x=1 = 0,

u|t=0 = g, ut|t=0 = h.

Here we give a motivation in defining the solution in a more generalized sense.

The motivation is the following. We multiply the equation by ϕ and integrate on the

domain QT , ∫
QT

(utt − uxx)ϕ =

∫
QT

fϕ.

Integration by parts shows that∫
QT

u(ϕtt − ϕxx) +

∫ 1

0
utϕ
∣∣∣T
0
dx−

∫ 1

0
uϕt

∣∣∣T
0
dx+

∫ T

0
uxϕ

∣∣∣1
0
dt−

∫ T

0
uϕx

∣∣∣1
0
dt =

∫
QT

fϕ.

If we choose the test function ϕ to be the one that satisfies the boundary conditions

ϕ|t=T = ϕt|t=T = 0, ϕ|x=0,1 = 0,

we will have ∫
QT

u(ϕtt − ϕxx) +

∫ 1

0
hϕ(x, 0)−

∫ 1

0
gϕt(x, 0) =

∫
QT

fϕ.

Notice that in the above equation, we don’t require any smoothness of u, which means we

can define the solution by using the above equation, which is of the integral form.

Now we will fix our test function in the set

D = {ϕ ∈ C2(Q̄T )|ϕ(x, T ) = ϕt(x, T ) = 0, ϕ|x=0,1 = 0}.
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Definition 1. If u ∈ C(Q̄) and ∀ϕ ∈ D, there holds∫
QT

u(ϕtt − ϕxx)−
∫ 1

0
hϕ(x, 0) +

∫ 1

0
gϕt(x, 0) =

∫
QT

fϕ, (2.21)

then we call u is a weak solution of (2.18).

Remark 2.5. Due to the motivations, we know that classical solutions must be weak solu-

tions.

Theorem 2.11. (Uniqueness of weak solution) If u1 and u2 are two weak solutions of

(2.18), then u1 = u2 in QT .

Proof. By definition, we know that ∀ϕ ∈ D,∫
QT

(u1 − u2)(ϕtt − ϕxx) = 0.

”We want to show that∀ψ ∈ C∞0 (QT )

ϕtt − ϕxx = ψ,

ϕ|x=0,1 = 0, ϕ|t=T = 0, ϕt|t=T = 0

has a solution. This is a backward wave equation, by changing variable τ = T − t, let

ϕ̄(x, τ) = ϕ(x, t), the problem will change into

ϕ̄tt − ϕ̄xx = ψ(x, T − τ),

ϕ̄|x=0,1 = 0, ϕ̄|t=T = 0, ϕ̄t|t=T = 0.

Since ψ ∈ C∞0 (QT ) satisfies the compatibility conditions, from existence theory, we know

that this problem has a solution ϕ(x, t) ∈ C2(Q̄T ). Since ψ is arbitrary, we know that

u1 = u2. �

Theorem 2.12. (***Stability of weak solution) If f ≡ 0, then∫
QT

(u1 − u2)2 ≤ C
(∫ 1

0
|g1 − g2|2 +

∫ 1

0
|h1 − h2|2

)
.

Proof. ∀ϕ ∈ C∞0 (QT ), by the definition of weak solution, we have∫
QT

(u1 − u2)(ϕtt − ϕxx)−
∫ 1

0
(h1 − h2)ϕ(x, 0) +

∫ 1

0
(g1 − g2)ϕt(x, 0) = 0. (2.22)

Now we consider problem

ϕtt − ϕxx = uε1 − uε2,
ϕ|x=0,1 = 0, ϕ|t=T = 0, ϕt|t=T = 0,

where uε1, u
ε
2 ∈ C∞0 (QT ) and uεi → ui in L2(QT ), i = 1, 2. By changing time variable

τ = T − t, we have

ϕ̄tt − ϕ̄xx = (uε1 − uε2)(x, T − τ),

ϕ̄|x=0,1 = 0, ϕ̄|t=T = 0, ϕ̄t|t=T = 0.
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Then by the existence of classical solution, we know that the above problem has a solution

ϕ̄(x, τ) ∈ C2(Q̄T ) and the energy estimates hold, i.e.,∫ 1

0
(|ϕ̄|2 + |ϕ̄τ |2)

∣∣∣
τ=T
≤ C‖uε1 − uε2‖2L2(QT ) ≤ C‖u1 − u2‖2L2(QT ).

Therefore putting them together into (2.22), we have∫
QT

(u1 − u2)(uε1 − uε2) ≤ ‖h1 − h2‖L2 · ‖ϕ‖L2 + ‖g1 − g2‖L2 · ‖ϕt‖L2 .

Taking ε→ 0, we have∫
QT

(u1 − u2)2 ≤ C(‖h1 − h2‖L2 + ‖g1 − g2‖L2) · ‖u1 − u2‖L2 .

This completes the proof. �

Theorem 2.13. (Existence of weak solution) Let g ∈ C[0, 1], g(0) = g(1) = 0, g′ and h

are piecewise continuous in [0, 1], then

u(x, t) =
∞∑
n=1

un(x, t)

is a weak solution of (2.14).

Proof. Fix an integer N > 0, let

GN (x) =

N∑
n=1

gn sinnπx, HN (x) =

N∑
n=1

hn sinnπx.

Now we consider the approximation problem

∂ttuN − ∂xxuN = 0, in (0, 1)× (0, T ], (2.23)

uN |x=0,1 = 0,

uN |t=0 = GN , ∂tuN |t=0 = HN .

Then by separation of variables,

uN =
N∑
n=1

(gn cosnπt+
hn
nπ

sinnπt) sinnπx

is a classical solution of (2.23).

For any test function ϕ ∈ D, we have∫
QT

uN (ϕtt − ϕxx) +

∫ 1

0
GN (x)ϕt(x, 0)−

∫ 1

0
HN (x)ϕ(x, 0) = 0. (2.24)

If g(x), h(x) ∈ L2(0, 1), we know that

GN (x)→ g(x), HN (x)→ h(x), in L2.
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Moreover,

|uN | ≤
N∑
n=1

(
|gn|+

∣∣∣hn
nπ

∣∣∣) ≤ N∑
n=1

C

n
(|(g′)n|+ |hn|)

≤ C
N∑
n=1

( 1

n2
+ |(g′)n|2 + |hn|2

)
.

So we have that

uN → u =

∞∑
n=1

un, uniformly in (0, 1).

Now we take limit N →∞ in (2.25), it follows∫
QT

u(ϕtt − ϕxx) +

∫ 1

0
g(x)ϕt(x, 0)−

∫ 1

0
h(x)ϕ(x, 0) = 0.

�

Remark 2.6. In the above proof, the condition that g′ and h ∈ L2(0, 1) is sufficient to

guarantee the existence of weak solution.

2.6. Problems.

(1) Verify that u(x, t) =
F (x− at) +G(x+ at)

h− x
is a solution of(

1− x

h

)2∂2u

∂t2
= a2 ∂

∂x

[(
1− x

h

)2∂u

∂x

]
where h > 0, a > 0 are constants, F,G are any function in C2.

(2) (a) Show the general solution of the PDE uxy = 0 is u(x, t) = F (x) + G(y) for

arbitrary function F,G.

(b) Using the change of variables ξ = x + t, η = x − t, show utt − uxx = 0 if and

only if uξη = 0.

(c) Use the above two facts to derive d’Alembert’s formula.

(3) Give energy estimates for half-line problem and the Cauchy problem in Multi-D

case.

(4) (Equal partition of energy) Suppose that u ∈ C2(R × [0,∞)) is a solution of the

following Cauchy problem

utt − uxx = 0, (x, t) ∈ R× (0,∞),

u|t=0 = g, ut|t=0 = h, x ∈ R,

where g and h have compact support. Let kinetic energy be k(t) =
1

2

∫ ∞
−∞

u2
t (x, t)dx,

potential energy be p(t) =
1

2

∫ ∞
−∞

u2
x(x, t)dx. Try to prove

(a) k(t) + p(t) is a constant independent of t.

(b) k(t) = p(t) for large enough t.
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(5)

utt − uxx = 0, x ∈ (0,+∞), t ∈ (0,+∞),

u|x=0 = cosωt,

u|t=0 = Ae−x
2
, ut|t=0 = 0.

Find the condition for A and ω such that solution u ∈ C2(R̄+ × R̄+), and give this

solution formula.

(6) If u is a classical solution of

utt − uxx = 0, x ∈ (0, 1), t ∈ (0,+∞),

u|x=0 = u|x=1 = 0,

u|t=0 = 0, ut|t=0 = x2(1− x),

try to compute the limit

lim
t→+∞

∫ 1

0
(u2
t + u2

x)dx.

(7) Solve the eigenvalue problem

X ′′(x) + λX(x) = 0, x ∈ (0, l),

X(0) = X ′(l) = 0.

(8)

X ′′(x) + λX(x) = 0, x ∈ (0, 1),

X ′(0) +X(0) = 0, X(1) = 0.

(a) Find an eigenfunction with eigenvalue zero. Call it X0(x).

(b) Find an equation for the positive eigenvalues λ = β2.

(c) Show graphically from part (8b) that there are an infinite number of positive

eigenvalues.

(d) Is there a negative eigenvalue?

(9) Apply separation of variables to get formal solution of

utt − uxx = 0, (x, t) ∈ (0, 1)× (0,∞),

ux|x=0 = A sinωt, u|x=1 = 0, t ≥ 0,

u|t=0 = 1, ut|t=0 = 0, x ∈ [0, 1].

(10)

utt − uxx = 0, x ∈ (0, 1), t ∈ (0,+∞),

u|x=0 = u|x=1 = 0,

u|t=0 = αx4 + βx3 + sinx, ut|t=0 = γ cosx.

Solve the problem and give the conditions on α, β and γ such that the solution you

gave is a classical one.



36 LI CHEN

(11) Find the solution of initial boundary values for heat equation by separation of

variables.

ut − uxx = sinxπ, x ∈ (0, 1), t ∈ (0,+∞),

u|x=0 = u|x=1 = 0,

u|t=0 = 0.

(12) Discussions One can get solution of (2.14) by d’Alembert’ formula and Fourier

series. Are they the same?
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3. Heat equation

We will first give an introcduction for Fourier tansform and distribution, together with a

list of their properties that will be used within this course. The solution for Cauchy problem

of heat equation will be given by using heat kernel. Furthermore, the solution formula for

half space problem will be derived by using Green’s function. As further understanding of

the Fourier series and energy methods, the initial boundary value problem for heat equation

will be also be briefly studied. We will also introduce a new method, the maximum principle,

for parabolic and elliptic type of equations. It provides the first stage a priori estimate and

also can be used to study the uniqueness and stability of the solutions. In the end, we will

study the long time behavior of the solution of heat equation, with Dirichlet and Neumann

boundary conditions separately.

3.1. A short introduction on Fourier transform and distribution.

3.1.1. Fourier transform. Let’s first recall the Fourier series. ∀f ∈ L1(−l, l), its Fourier

series is defined by

f(x) ∼ A0

2
+
∞∑
n=1

(An cos
nπx

l
+Bn sin

nπx

l
),

where

An =
1

l

∫ l

−l
f(x) cos

nπx

l
dx, n = 0, 1, 2, · · · ,

Bn =
1

l

∫ l

−l
f(x) sin

nπx

l
dx, n = 1, 2, · · · .

By Euler’s formula, we can change the items in the summation into

An cos
nπx

l
+Bn sin

nπx

l
= A′ne

inπx
l +B′ne

−inπx
l .

Thus the Fourier series can be rewritten into

f(x) ∼
∞∑
−∞

ane
inπx
l , an =

1

2l

∫ l

−l
f(x)e−i

nπx
l dx,

i.e.,

f(x) ∼ 1

2l

∞∑
−∞

∫ l

−l
f(y)e−i

nπy
l dyei

nπx
l .

Now let kn = nπ
l , the formula is reduced into

f(x) ∼ 1

2π

∞∑
−∞

∫ l

−l
f(y)e−iknydyeiknx

π

l
.
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Formally letting l→∞, one could expect that

f(x) ∼ 1

2π

∫ ∞
−∞

∫ ∞
−∞

f(y)e−ikydyeikxdk.

These formal computations give the motivation in the definition of Fourier transform on R.

Definition 2. ∀f ∈ L1(R), its Fourier transform is defined by

f̂(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx.

A result which can be obtained directly from the definition is that f̂(k) ∈ L∞(R), i.e.,

|f̂(k)| = 1√
2π

∣∣∣∣∫ ∞
−∞

f(x)e−ikxdx

∣∣∣∣ ≤ 1√
2π
‖f‖L1 .

Therefore the definition tells that Fourier transform is a continuous linear mapping from

L1 to L∞. Moreover, the following result holds

Theorem 3.1. If f ∈ L1(R), then f̂(k) is uniformly continuous in R.

Proof. We prove it directly by using the definition of uniformly continuous. ∀ε > 0, f ∈
L1(R) implies that ∃A > 0, such that

1√
2π

∫
|x|>A

2|f |dx ≤ ε

2
.

∀0 < h <

√
2πε

4A‖f‖L1

, we have

|f̂(k + h)− f̂(k)| =
1√
2π

∣∣∣∣∫ ∞
−∞

f(x)e−ixk[e−ixh − 1]dx

∣∣∣∣
≤ 1√

2π

∫
|x|>A

2|f |dx+
1√
2π

∫ A

−A
|x| · |h| · |f |dx

≤ ε

2
+
ε

2
= ε.

�

Remark 3.1. Similarly, one can define Fourier transform in multi-D case, ∀f ∈ L2(Rn),

f̂(k) =
1

(2π)
n
2

∫
Rn
f(x)e−ik·xdx,

where k · x =
∑n

i=1 kixi. It is also a continuous linear mapping from L1(Rn) to L∞(Rn).

We list here a series of properties of Fourier transform without proof.

(1) (∂xjf)∧(k) = ikj f̂(k), and (∂αf)∧(k) = i|α|kαf̂(k),

(2) (xjf)∧(k) = i∂kj f̂(k), and (xαf)∧(k) = i|α|∂αf̂(k),

(3) f(x− a)∧(k) = e−ia·kf̂(k),

(4) (f(λx))∧(k) =
1

|λ|n
f̂(
k

λ
), ∀λ 6= 0,
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(5) (f ∗ g)∧(k) = (2π)
n
2 f̂(k)ĝ(k).

Example 1. Fourier transform of Gaussian e−x
2

in 1-d is
1√
2
e−

k2

4 . More general case in

multi-dimension is

(e−A|x|
2
)∧(k) =

n∏
1

(e−Ax
2
i )∧(ki) =

1

(2A)
n
2

e−
|k|2
4A , ∀A > 0.

The inverse Fourier transform can be formally given by

f̆(x) =
1

(2π)
n
2

∫
Rn
f(k)eik·xdk.

The following theorem assures that the inverse Fourier transform is also well-defined.

Theorem 3.2. If f ∈ L1(R) ∩ C1(R), then

lim
N→∞

1

(2π)
1
2

∫ N

−N
f̂(k)eikxdk = f(x).

Proof. *(For those who are interested) We know that f̂(k) is uniformly bounded and con-

tinuous in k ∈ R, by the definition of Fourier transform, we have

1

(2π)
1
2

∫ N

−N
f̂(k)eikxdk

=
1

2π

∫ N

−N

∫ ∞
−∞

f(y)e−ikydyeikxdk

=
1

2π

∫ ∞
−∞

(∫ N

−N
eik(x−y)dk

)
f(y)dy,

where ∫ N

−N
eik(x−y)dk = 2

sinN(x− y)

x− y
.

This is similar to the Dirichlet kernel, therefore one can expect that the whole integral will

converge to f(x) as N →∞. Next we will prove it in detail.

Changing variable z = y − x gives

1

(2π)
1
2

∫ N

−N
f̂(k)eikxdk

=
1

π

∫ ∞
−∞

sinN(x− y)

x− y
f(y)dy =

1

π

∫ ∞
−∞

f(z + x)
sinNz

z
dz.

Now we separate the integral on R into two parts I1 =

∫
|z|≤M

and I2 =

∫
|z|≥M

, where M

is to be determined later. In the following, we will estimate I1 by using Riemann’ lemma,

while the estimate for I2 by 1/M .
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∀ε > 0, choose M =
2‖f‖L1

πε
, we have

I2 =
1

π

∫
|z|≥M

f(z + x)
sinNz

z
dz ≤ 1

πM
‖f‖L1 =

ε

2
.

The way to estimate I1 is by using∫ ∞
−∞

sinx

x
dx = π,

from which we know that ∃N ≥ 0 s.t.∣∣∣f(x)

π

∫ MN

−MN

sin z

z
dz − f(x)

∣∣∣ ≤ ε

4
.

Now I1 can be estimated in the following way,

I1 =
1

π

∫
|z|≤M

f(z + x)
sinNz

z
dz

=
1

π

∫
|z|≤M

f(z + x)− f(x)

z
sinNzdz +

f(x)

π

∫
|z|≤M

sinNz

z
dz

=
1

π

∫
|z|≤M

∫ 1

0
f ′(x+ τz)dτ sinNzdz +

f(x)

π

∫
|z|≤M

sinNz

z
dz

≤ ‖f ′‖L∞
π

∫
|z|≤M

sinNzdz +
f(x)

π

∫
|z|≤M

sinNz

z
dz.

By Riemann’s lemma, we know ∃N1 > 0 s.t. when N ≥ N1, we have

‖f ′‖L∞
π

∫
|z|≤M

sinNzdz ≤ ε

4
.

�

Fourier transform for L2-functions

Theorem 3.3. If f ∈ L1(R) ∩ L2(R), then f̂ ∈ L2(R) and

‖f̂‖L2(R) = ‖f‖L2(R).

Furthermore, f → f̂ has a unique extension to a continuous, linear map from L2(R) to

L2(R), which is isometry.

Proof. Due to the fact that C∞0 is dense in Lp, for p ≥ 1. We only need to prove the

equation for all f ∈ L∞. ∀ε > 0, we consider the following weighted integral∫
R
|f̂(k)|2e−ε|k|2dk.

By the definition of Fourier transform, we have∫
R
|f̂(k)|2e−ε|k|2dk =

1

2π

∫
R

∫
R

∫
R
f(x)f(y)eik(x−y)e−ε|k|

2
dxdydk.



LETCURE NOTES FOR INTRODUCTION TO PDES21 41

Due to the fact that
1√
2π

∫
R
e−εk

2
eik(x−y)dk = (e−εk

2
)∨(x − y), with the help of Fubini

theorem, the above integral is exactly

1√
2π

∫
R

∫
R

1√
2ε
e−

(x−y)2
4ε f(x)f(y)dxdy.

Since

1√
π

∫
R
e
−( x

2
√
ε
)2
d(

x

2
√
ε

) = 1,

It is easy to check that for f ∈ C∞0 ,

1√
2π

∫
R

1√
2ε
e−

(x−y)2
4ε f(y)dy → f(x), for all x ∈ R.

Thus

lim
ε→0

∫
R
|f̂(k)|2e−ε|k|2dk =

∫
R
|f |2dx.

Then monotone convergence theorem implies that f̂ ∈ L2 and

‖f̂‖L2 = ‖f‖L2 .

If f ∈ L2 but not in C∞0 , since C∞0 is dense in L2, there exists {fj} ⊂ C∞0 such that

‖fj − f‖L2 → 0.

On the other hand, since Fourier transform is linear, we have

‖f̂j − f̂m‖L2 = ‖fj − fm‖L2 → 0, as j,m→∞.

Hence, {f̂j} is a Cauchy sequence in L2. Since L2 is a complete space, we have ∃g ∈ L2

such that f̂j → g strongly in L2.

Now we define f̂ = g, thus we have

‖f̂‖L2 = lim
j→∞

‖f̂j‖L2 = lim
j→∞

‖fj‖L2 = ‖f‖L2 .

Continuity and linearity are left to readers. �

Remark 3.2. Fourier transform can be extended for Lp functions in a similar way by using

the following inequality

‖f̂‖Lq ≤ C(p, q)‖f‖Lp ,
1

p
+

1

q
= 1.

3.1.2. Distribution and weak derivative. Let Ω be an open subset of Rn.

Distributions

Definition 3. Test function space D(Ω) consists of all the functions in C∞0 (Ω) supple-

mented by the following convergence: φm → φ ∈ C∞0 (Ω) iff

(1) ∃ a compact set K ⊂ Ω such that suppφm ⊂ K, ∀m,
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(2) for all multi-index ∀α,

sup
K
|∂αφm − ∂αφ| → 0, as m→∞.

Remark 3.3. D(Ω) is a linear space.

Definition 4. Distribution, denoted by D′(Ω), is the dual space of D(Ω), i.e., is the linear

space that includes all the continuous linear functionals on D(Ω). T : D(Ω) → C is called

continuous linear iff

(1) 〈T, αφ1 + βφ2〉 = α〈T, φ1〉+ β〈T, φ2〉,
(2) If φm → φ in D(Ω), then 〈T, φm〉 → 〈T, φ〉.

Remark 3.4. It is usually nonsense to multiply two distributions, since it is not well defined.

Remark 3.5. A distribution multiplied by a smooth function can be defined by the following.

For T ∈ D′ and f ∈ C∞, their product is defined by

〈Tf, φ〉 = 〈T, fφ〉, ∀φ ∈ D.

Remark 3.6. The support of a distribution and the convolution of two distributions can be

also defined with the help of test functions, since we will not use these in our lecture, we

omit the detail here.

Example 2. L1
loc(Ω) ⊂ D′(Ω).

∀f ∈ L1
loc(Ω), Tf ∈ D′(Ω) is defined by

〈Tf , φ〉 =

∫
Ω
f(x)φ(x)dx, ∀φ ∈ D(Ω).

Remark 3.7. Similarly, Lploc(Ω) ⊂ D′(Ω). One can use the Hölder’s inequality to obtain

that Lploc(Ω) ⊂ Lqloc(Ω) for 1 < q < p <∞.

Theorem 3.4. L1
loc functions are uniquely determined by distributions. More precisely, for

two functions f, g ∈ L1
loc(Ω), if∫

Ω
fφdx =

∫
Ω
gφdx, ∀φ ∈ D(Ω),

then f = g a.e. in Ω.

The proof is left to the readers.

Example 3. Probability density functions on R is a subset of D′(R). For any probability

density function P (x), TP ∈ D′(R) is defined by

〈TP , φ〉 =

∫
R
φ(x)P (x)dx, ∀φ ∈ D(R).

Example 4. The set of measures, M(Ω), is a subset of D′(Ω). For any µ ∈ M(Ω), Tµ ∈
D′(Ω) is defined by

〈Tµ, φ〉 =

∫
Ω
φ(x)dµ, ∀φ ∈ D(Ω).
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Example 5. Dirac delta function.

As a typical example of measure, Delta function δ(x) is defined by

〈δ, φ〉 = φ(0), ∀φ ∈ D(Ω).

Remark 3.8. δ /∈ L1
loc.

Proof. If not, there exists f ∈ L1
loc s.t. ∀φ ∈ C∞0 ,

〈δ, φ〉 =

∫
R
fφdx.

Now we choose ϕn(x) =

{
e

1
|nx|2−1 , |nx| < 1

0, |nx| ≥ 1
. Then we have on one hand

〈δ, φn〉 = φn(0) = e−1.

On the other hand, since f ∈ L1
loc,∫

R
fϕndx =

∫
|x|≤ 1

n

f(x)e
1

|nx|2−1dx→ 0, as n→∞,

which is a contradiction. �

Definition 5. A sequence of distributions {Tn}∞n=1 converges to T in the sense of distri-

bution if

〈Tn, φ〉 → 〈T, φ〉, ∀φ ∈ D(Ω).

In the following we will show some sequences which converge to δ-function in the sense

of distribution.

Example 6. Heat kernel ft(x) =
1

2
√
πt
e−

x2

4t .∫
R
ft(x)dx = 1 and ∀φ ∈ C∞0 ,∫

R
ft(x)φ(x)dx =

∫ +∞

−∞

1√
π
e−y

2
φ(2
√
ty)dy → φ(0),

by dominated convergence.

Example 7. Qn(x) =

{
n
2 , |nx| < 1

0, |nx| ≥ 1
.∫

R
Qn(x)dx = 1 and ∀φ ∈ C∞0 ,

∫
R
Qn(x)φ(x)dx =

∫ 1
n

− 1
n

n

2
φ(x)dx→ φ(0).

Example 8. Dirichlet kernel Dn(x) =
sin(n+ 1

2)x

sin x
2

= 1 + 2
∑n

k=1 cos kx.
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R
Dn(x)dx = 2π and ∀φ ∈ C∞0 ,∫ π

−π
Dn(x)φ(x)dx =

∫ π

−π

sin(n+ 1
2)x

sin x
2

φ(x)dx→ 2πφ(0),

which can be proved by using Riemann’s lemma and the similar argument to those we have

used in the proof of inverse Fourier transform for L1 ∩ C1 functions.

Weak derivative of distributions The definition of weak derivative is enlightened by

integration by parts. If f ∈ C1, we have∫
Ω
∂ifφdx = −

∫
Ω
f∂iφdx, ∀φ ∈ C∞0 .

With the same idea, we can define the weak derivative for distributions.

Definition 6. ∀T ∈ D′(Ω), ∂iT is defined by

〈∂iT, φ〉 := −〈T, ∂iφ〉, ∀φ ∈ D(Ω).

Since −∂iφ ∈ D′(Ω), it is easy to check that the right hand side defines a continuous

linear functional on D′(Ω). This new linear functional, as a distribution, is called the weak

derivative of T . One can define higher order derivatives in the same way. Let α be a

multi-index,

〈∂αT, φ〉 = (−1)|α|〈T,Dαφ〉, ∀φ ∈ D(Ω).

Remark 3.9. According to this definition, we know that all distributions are infinitely weakly

differentiable.

Example 9. The derivatives of δ-function.

∀φ ∈ D(R), we have

〈δ′, φ〉 = −〈δ, φ′〉 = −φ′(0),

〈δ(k), φ〉 = (−1)k〈δ, φ(k)〉 = (−1)kφ(k)(0).

Example 10. The derivatives of Heaviside function H =

{
1, x ≥ 0

0, x < 0
.

∀φ ∈ D(R), we have

〈H ′, φ〉 = −〈H,φ′〉 = −
∫ ∞

0
φ′(x)dx = φ(0) = 〈δ, φ〉.

Motivated by the change of variables, we can give the translation of distributions.

Definition 7.

〈T (x− a), φ(x)〉 = 〈T (x), φ(x+ a)〉.

For example, δa(x) = δ(x− a) is defined by

〈δ, φ(x+ a)〉 = φ(a).
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3.1.3. Tempered distribution and its Fourier transform.

Definition 8. Schwartz class function S(Rn), (rapidly decreasing function),

S(Rn) = {φ ∈ C∞(Rn)| sup
x
|xγDαφ| < +∞,∀ multi-index α, γ},

where the convergence of a sequence {φj} ⊂ S(Rn) to φ ∈ S(Rn) is defined by

sup
x
|xγDα(φj − φ)| → 0,∀ multi-index α, γ.

Theorem 3.5. If φ ∈ S(Rn), then φ̂ ∈ S(Rn)

Proof. For all multi-index α, γ, by the properties of Fourier transform, we have∣∣∣kαDγφ̂(k)
∣∣∣ =

∣∣∣(Dα
(
(−x)γφ(x)

))∧∣∣∣ ≤ ∫
Rn

∣∣Dα
(
(−x)γφ(x)

)∣∣ dx.
By taking the supremum in k ∈ Rn, we have

sup
k
|kαDγφ̂(k)| ≤ 1

(2π)
n
2

∫
Rn
|Dα

(
(−x)γφ(x)

)
|dx

≤ 1

(2π)
n
2

C sup
x

(1 + |x|)n+1|Dα
(
(−x)γφ(x)

)
| < +∞,

where C =

∫
Rn

1

(1 + |x|)n+1
dx.

�

Definition 9. The dual space of S(Rn) is called tempered distribution space, denoted by

S ′(Rn).

Remark 3.10.

D(Rn) ⊂ S(Rn), S ′(Rn) ⊂ D′(Rn).

Definition 10. ∀T ∈ S ′(Rn), its Fourier transform is defined by ∀φ ∈ S(Rn),

〈T̂ , φ〉 = 〈T, φ̂〉.

Example 11. The Fourier transform of Dirac delta function is a constant.

∀φ ∈ S(Rn), by definition,

〈δ̂, φ〉 = 〈δ, φ̂〉 = φ̂(0) =
1

(2π)
n
2

∫
Rn
φ(x)e−i0·xdx =

1

(2π)
n
2

∫
Rn
φ(x)dx = 〈 1

(2π)
n
2

, φ〉

This means that δ̂ =
1

(2π)
n
2

in the sense of distributions.

3.2. Cauchy Problem. The initial value problem of the heat equation is

ut −∆u = f(x, t), x ∈ Rn, t > 0, (3.1)

u|t=0 = u0(x). (3.2)
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3.2.1. Solution formula of the Cauchy problem. We will find the formal solution of Cauchy

problem by Fourier transform. Taking the Fourier transform in x in equation (3.1) and as

well as its initial value in (3.2) gives

ût + |k|2û = f̂(k, t), k ∈ Rn, t > 0,

û|t=0 = û0(k).

This ODE problem is easy to solve by Duhamel’s formula

û(k, t) = e−|k|
2tû0(k) +

∫ t

0
e−|k|

2(t−τ)f̂(k, τ)dτ.

Now taking the inverse Fourier transform and using its property for convolutions, we have

u(x, t) =
1

(4πt)
n
2

e−
|x|2
4t ∗ u0(x) +

∫ t

0

1

(4π(t− τ))
n
2

e
− |x|2

4(t−τ) ∗ f(x, τ)dτ

=
1

(4πt)
n
2

∫
Rn
e−
|x−y|2

4t u0(y)dy +

∫ t

0

∫
Rn

1

(4π(t− τ))
n
2

e
− |x−y|

2

4(t−τ) f(y, τ)dydτ.

It can be seen from here that the function, known as heat kernel,

K(x, t) =
1

(4πt)
n
2

e−
|x|2
4t , (3.3)

is very important in getting the solution of the heat equation. Actually, the solution can

be written in the following form

u(x, t) = K(x, t) ∗ u0 +

∫ t

0
K(x, t− τ) ∗ f(x, τ)dτ. (3.4)

which is called Poisson’s formula.

Theorem 3.6. For homogeneous equation, i.e., f ≡ 0, if u0 is a bounded function in C(R),

then u(x, t) given by (3.4) is a bounded classical solution of (3.1)-(3.2).

Proof. It is easy to see that ∀t > 0, u(x, t) = K(x, t) ∗ u0(x) is infinitely differentiable both

in x and t. Another fact is that

Kt −∆K = 0, ∀t > 0.

These show that u(x, t) is a solution of the equation for t > 0, i.e., ut−4u = 0 in Rn×(0,∞).

Now we are left to check whether u(x, t) satisfies the initial data. More precisely, it remains

to show that,

lim
(x,t)→(x0,0)

u(x, t) = u0(x0), ∀x0 ∈ Rn.

By changing of variables in the integral, we have

u(x, t) =
1

(4πt)
n
2

∫
Rn
e−
|x−y|2

4t u0(y)dy

=
1

π
n
2

∫
Rn
e−|z|

2
u0(x+ 2

√
tz)dz.
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Due to the fact that u0 is bounded, the above integral is uniformly convergent in x and t,

which allows us to switch the order of the limit and the integral. Therefore

lim
(x,t)→(x0,0)

u(x, t) =
1

π
n
2

∫
Rn
e−|z|

2
u0(x0)dz = u0(x0).

�

Remark 3.11. Some basic properties of the solution u(x, t) =
1

(4πt)
n
2

∫
Rn
e−
|x−y|2

4t u0(y)dy

can be obtained directly from this formula.

(1) If u0 is periodic (or odd, or even) in x, so is u(x, t).

(2) Infinite speed of propagation. If u0(x) ≥ 0 has support in a small domain, say

Ω0 ⊂ Rn, u(x, t) is positive everywhere in Rn.

(3) Infinite differentiability of the solution u(x, t) for t > 0.

Next we consider the inhomogeneous equation with homogeneous initial value

ut −∆u = f, in Rn × (0,+∞), (3.5)

u|t=0 = 0.

The solution is given by

u(x, t) =

∫ t

0

∫
Rn
K(x− y, t− s)f(y, s)dyds

=

∫ t

0

1

(4π(t− s))
n
2

∫
Rn
e
− |x−y|

2

4(t−s) f(y, s)dyds. (3.6)

Theorem 3.7. If f ∈ C2,1(Rn× [0,∞)) and has compact support, then the function u given

by (3.6) is a function in C2,1(Rn × [0,∞)), furthermore, it is a solution of (3.5).

Proof. By the regularity of f , we have

(∂t −∆)u(x, t)

=

∫ t

0

∫
Rn
K(y, s)(ft −∆f)(x− y, t− s)dyds+

∫
Rn
K(y, t)f(x− y, 0)dy

=

∫ ε

0

∫
Rn
K(y, s)(ft −∆f)(x− y, t− s)

+

∫ t

ε

∫
Rn
K(y, s)(ft −∆f)(x− y, t− s)

+

∫
Rn
K(y, t)f(x− y, 0)dy =: Jε + Iε + L.

We deal with the right hand side term by term,

|Jε| ≤ (‖ft‖L∞ + ‖D2f‖L∞)

∫ ε

0

∫
Rn
K(y, s)dyds ≤ εC.
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Iε =

∫ t

ε

∫
Rn
K(y, s)(ft −∆f)(x− y, t− s)dyds

=

∫ t

ε

∫
Rn

(∂s −∆y)K(y, s)f(x− y, t− s)dyds+

∫
Rn
K(y, ε)f(x− y, t− ε)dy

−
∫
Rn
K(y, t)f(x− y, 0)dy

=

∫
Rn
K(y, ε)f(x− y, t− ε)dy − L.

Therefore we have

ut −∆u = lim
ε→0

∫
Rn
K(y, ε)f(x− y, t− ε)dy = f(x, t), ∀t > 0,

and

|u(x, t)| =
∣∣∣ ∫ t

0

∫
Rn
K(y, s)f(x− y, t− s)dyds

∣∣∣ ≤ t‖f‖L∞ → 0, as t→ 0,

which means that the solution also satisfies the initial condition. �

Remark 3.12. By superposition principle for linear equations, under the conditions of the-

orem 3.6 and 3.7, we claim

u(x, t) =

∫
Rn
K(x− y, t)u0(y)dy +

∫ t

0

∫
Rn
K(x− y, t− s)f(y, s)dyds

is the solution of

ut −∆u = f, u|t=0 = u0.

3.2.2. Fundamental solution. We first give some motivations in defining fundamental solu-

tions. Formally, the right hand side function f(x, t), the heat source, can be represented

by

f(x, t) =

∫ ∞
0

∫
Rn
δ(ξ,τ)(x, t)f(ξ, τ)dξdτ, ∀x ∈ Rn, t > 0,

which means that f(x, t) can be treated as a summation of δ(ξ,τ)(x, t)f(ξ, τ)dξdτ , the point

heat source. Therefore, we can expect that if K(x, t; ξ, τ) is the solution of ut − ∆xu =

δ(ξ,τ)(x, t), then K(x− ξ, t− τ)f(ξ, τ)dξdτ is the solution with point heat source. Thus in

the case of general heat source f(x, t), the solution can be written into a superposition of

point heat sources,

u(x, t) =

∫ ∞
0

∫
Rn
K(x− ξ, t− τ)f(ξ, τ)dξdτ.

Basically, the fundamental solution of heat equation is to find the temperature distribution

with a point heat source at (ξ, τ).

Definition 11. K(x, t; ξ, τ) = K(x− ξ, t− τ) is called the fundamental solution of heat

equation.
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Let Q = Rn× (0,∞). ∀(x, t) ∈ Q. K(x, t; ξ, τ) is a solution (in the sense of distribution)

of the following Cauchy problem

ut −∆xu = δ(ξ,τ)(x, t),

u|t=0 = 0.

Remark 3.13. We also know that K(x, t; ξ, τ) is a solution of

ut −∆xu = 0, ∀x ∈ Rn, t ≥ τ,
u|t=τ = δξ(x).

Some properties of the fundamental solution

(1) K(x, t; ξ, τ) > 0 for t > τ .

(2) K(x, t; ξ, τ) = K(ξ, t;x, τ).

(3) ∀x ∈ Rn, t > τ , ∫
Rn
K(x, t; ξ, τ)dξ = 1.

(4) ∀x, ξ ∈ Rn, t > τ ,

(∂t −∆x)K(x, t; ξ, τ) = 0

(∂τ + ∆ξ)K(x, t; ξ, τ) = 0

(5) If ϕ(x) is a bounded continuous function in Rn, then

lim
t→0+

∫
Rn
K(x, t; ξ, 0)ϕ(ξ)dξ = ϕ(x).

(6) K(x, t; ξ, τ) is infinitely differentiable and ∃M > 0 s.t. in the case of t > τ ,

|K(x, t; ξ, τ)| ≤ M

(t− τ)
n
2

.

Remark 3.14. There is another derivation of fundamental solution instead of using Fourier

transform. One can check this method in Evan’s book.

3.3. Half space problem and its Green’s function. The main purpose of this section

is to give a first insight on how to build up a Green’s function on general problem.

Consider the problem

ut − uxx = 0, x ∈ (0,+∞), t > 0,

u|t=0 = ϕ, x ∈ [0,+∞), (3.7)

u|x=0 = 0, t > 0.

We want to find a function G(x, t, ξ, 0) such that the solution of (3.7) can be represented

by

u(x, t) =

∫ ∞
0

G(x, t; ξ, 0)ϕ(ξ)dξ.
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The important thing here is that we must make sure the solution satisfies the boundary

condition u|x=0 = 0. ∀ξ ∈ (0,+∞), if the initial data is δξ(x), we need to find the odd

extension of it, i.e., −δ−ξ(x), to balance the boundary condition. Now we can choose the

initial data as

δξ(x)− δ−ξ(x),

and solve the Cauchy problem with this initial data. Since the problem is linear, our the

solution is exactly

K(x, t; ξ, 0)−K(x, t;−ξ, 0).

Thus the Green’s function for half space problem (3.7) can be written as

G(x, t; ξ, 0) = K(x, t; ξ, 0)−K(x, t;−ξ, 0),

and the solution of (3.7) is expected to be u(x, t) =

∫ ∞
0

G(x, t; ξ, 0)ϕ(ξ)dξ.

Theorem 3.8. ϕ is a bounded smooth function on (0,+∞) and ϕ(0) = 0, u(x, t) =∫ ∞
0

G(x, t; ξ, 0)ϕ(ξ)dξ is the solution of (3.7).

The proof of this theorem is left to the reader.

Remark 3.15. For inhomogeneous problem

ut − uxx = f, x ∈ (0,+∞), t > 0,

u|t=0 = ϕ, x ∈ [0,+∞),

u|x=0 = 0, t > 0.

The formal solution is

u(x, t) =

∫ ∞
0

G(x, t; ξ, 0)ϕ(ξ)dξ +

∫ t

0
dτ

∫ ∞
0

G(x, t; ξ, τ)f(ξ, τ)dξ.

Remark 3.16. Similarly, one can find the Green’s function for half space problem with

homogeneous Neumann boundary condition.

3.4. Initial boundary value problem. The initial boundary value (with homogeneous

Dirichlet boundary condition) problem for heat equation in 1-d space variable is

ut − uxx = f, x ∈ (0, 1), t > 0,

u|t=0 = ϕ, x ∈ (0, 1), (3.8)

u|x=0 = u|x=1 = 0, t > 0.

The method of separation of variables is easy to be applied here.
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3.4.1. Separation of variables. First by solving the eigenvalue problem

X ′′ + λX = 0, x ∈ (0, 1),

X(0) = X(1) = 0,

we have

λn = (nπ)2, Xn = sinnπx.

Then if the solution u(x, t) has form

u(x, t) =
∞∑
n=1

Tn(t) sinnπx,

Tn(t) will solve the initial value problem of an ODE

T ′n + (nπ)2Tn = fn(t),

Tn(0) = ϕn,

where

fn(t) = 2

∫ 1

0
f(x, t) sinnπxdx, ϕn = 2

∫ 1

0
ϕ(x) sinnπxdx.

This ODE problem has a solution

Tn(t) = e−(nπ)2tϕn +

∫ t

0
e−(nπ)2(t−τ)fn(τ)dτ, n = 1, 2, · · · .

Thus the formal solution for problem (3.8) can be written as

u(x, t) =

∞∑
n=1

sinnπx
(
e−(nπ)2tϕn +

∫ t

0
e−(nπ)2(t−τ)fn(τ)dτ

)
. (3.9)

A natural question to ask is under what condition is (3.9) a C2,1((0, 1)× (0,∞)) solution.

Here we give a result with sufficient assumption on the given data.

Theorem 3.9. If ϕ(x) ∈ C[0, 1] and f, ft, fxxt ∈ C2,1((0, 1) × (0,∞)) and have compact

support in x, then the formula given by (3.9) is in C2,1((0, 1)× (0,∞)) and is a solution of

the problem (3.8).

Proof. The uniform convergence of the formula u(x, t) is omitted here. The more difficult

steps are shown in the following, i.e., to prove that uxx and ut also converge uniformly in

x, t.

If we take twice derivatives in x or derivative in t in the formula (3.9) on each term in

the summation, we will have (nπ)2. Therefore, in order to prove that it is the solution, we

only need to show that ∀t > 0, the following series converge uniformly in x and t, i.e.,
∞∑
n=1

(nπ)2 sinnπxe−(nπ)2tϕn;

∞∑
n=1

(nπ)2 sinnπx

∫ t

0
e−(nπ)2(t−τ)fn(τ)dτ.
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The convergence of the first series is obvious because of the exponential term e−(nπ)2t. To

deal with the second series, we need to “produce” a factor
1

(nπ)2
by using integration by

parts on the integrals involved in the formula.∫ t

0
e−(nπ)2(t−τ)fn(τ)dτ

=
fn(t)

(nπ)2
− e−(nπ)2tfn(0)

(nπ)2
−
∫ t

0

1

(nπ)2
e−(nπ)2(t−τ)f ′n(τ)dτ.

Therefore, the second series can be rewritten into

∞∑
n=1

(nπ)2 sinnπx

∫ t

0
e−(nπ)2(t−τ)fn(τ)dτ

=

∞∑
n=1

sinnπx
(
fn(t)− e−(nπ)2tfn(0)−

∫ t

0
e−(nπ)2(t−τ)f ′n(τ)dτ

= f(x, t)− fn(0)
∞∑
n=1

sinnπxe−(nπ)2t −
∞∑
n=1

sinnπx

∫ t

0
e−(nπ)2(t−τ)f ′n(τ)dτ,

where the convergence of the last series can be done by using exactly the same method

as for the convergence of u(x, t) itself. Namely, with the assumption that f has compact

support, we do integration by parts twice,

f ′n(τ) = 2

∫ 1

0
ft(x, τ) sinnπxdx

= − 2

(nπ)2

∫ 1

0
fxxt(x, τ) sinnπxdx =: −2Bn(τ)

(nπ)2
.

Due to the fact that
∑∞

n=1B
2
n <∞, we have∣∣∣− ∞∑

n=1

sinnπx

∫ t

0
e−(nπ)2(t−τ)f ′n(τ)dτ

∣∣∣
≤

∞∑
n=1

2| sinnπx|
(nπ)2

∫ t

0
e−(nπ)2(t−τ)|Bn(τ)|dτ

≤
∞∑
n=1

2

(nπ)2

∫ t

0
(1 +B2

n(τ))dτ <∞.

�

Basic properties of the solution of heat (or more generally, parabolic) equa-

tion, In the case of no external source, i.e., f = 0, the solution has “Infinitely differen-

tiablility inside of the domain”. It is mainly due to that e−(nπ)2t decays exponentially in n

for any positive time t. More precisely, ∀(x, t) ∈ (0, 1)× (0,∞), for any nonnegative integer
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k, l, the solution given by (3.9) is (k + l) times differentiable at (x, t). For example, we

know that

∂k+lu(x, t)

∂xk∂tl
=
∞∑
n=1

(−1)l(nπ)k+2lϕne
−(nπ)2t sin(nπx+

kπ

2
)

converges uniformly in x and positive t.

3.4.2. Energy estimates. We will give the energy estimate for initial boundary value prob-

lem of heat equation in multi-dimension. Ω is a bounded open subset of Rn. Let QT =

Ω× (0, T ).

ut −∆u = f, (x, t) ∈ QT ,
u|t=0 = ϕ, x ∈ Ω, (3.10)

u|∂Ω = 0, t > 0.

Theorem 3.10. If u ∈ C2,1(QT ) ∩ C(Q̄T ) is a solution of problem (3.10), then ∃M > 0

depends only on T , s.t.

sup
0≤t≤T

‖u(·, t)‖L2(Ω) + ‖∇u‖L2(QT ) ≤M(‖ϕ‖L2(Ω) + ‖f‖L2(QT )). (3.11)

Proof. By multiplying the equation by u, integrating it over Qt and integrating by parts in

x, we have

1

2

∫
Ω
u2dx− 1

2

∫
Ω
ϕ2dx+

∫ t

0

∫
Ω
|∇u|2dxdt =

∫ t

0

∫
Ω
fudxdt.

Young’s inequality gives∫
Ω
u2dx+ 2

∫ t

0

∫
Ω
|∇u|2dxdt ≤

∫ t

0

∫
Ω
u2dxdt+

∫
Ω
ϕ2dx+

∫ t

0

∫
Ω
f2dxdt

Then (3.11) can be obtained directly from Gronwall’s inequality.

�

Remark 3.17. The discussion on uniqueness and stability of the solution by energy estimates

is similar to what we have done for the wave equation.

Remark 3.18. For homogeneous Neumann boundary condition u · γ|∂Ω = 0, where γ is the

unit outer normal vector of ∂Ω, the energy estimate can be done similarly.

Remark 3.19. For inhomogeneous boundary condition, i.e., u|∂Ω = ψD, one can try to

homogenize it or just use u− ψD as test function.

3.5. Maximum principle. In this subsection, we introduce one of the basic tools, the

so-called maximum principle, for second order elliptic or parabolic equation. It is easy to

get the main idea from handling the heat equation.

In the following, we assume that Ω is a bounded open subset of Rn. Let QT = Ω× (0, T ],

the parabolic boundary of QT be ∂pQT = Ω× {t = 0} ∪ ∂Ω× (0, T ] and Lu = ut −∆u.
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3.5.1. Weak maximum principle.

Theorem 3.11. If u ∈ C2,1(QT ) ∩ C(Q̄T ) and Lu ≤ 0 in QT , then the maximum of u in

Q̄T must be achieved on ∂pQT , i.e.,

max
Q̄T

u(x, t) = max
∂pQT

u. (3.12)

Proof. We first assume Lu < 0 in QT . If (3.12) is not true, which means ∃(x0, t0) ∈ QT
such that

u(x0, t0) = max
Q̄T

u(x, t),

then we know that ∇u(x0, t0) = 0, ∆u(x0, t0) ≤ 0 and ut(x0, t0) ≥ 0. Therefore,

f(x0, t0) = Lu(x0, t0) ≥ 0,

which is a contradiction with the assumption Lu < 0.

If Lu ≤ 0, we introduce an auxiliary function

v(x, t) = u(x, t)− εt, ∀0 < ε << 1.

Then the application of the heat operator on v gives

Lv = Lu− ε = f − ε < 0.

By the conclusion we obtained above, we have

max
Q̄T

v = max
∂pQT

v.

Going back to the variable u,

max
Q̄T

u(x, t) = max
Q̄T

(v + εt) ≤ max
Q̄T

v + εT

≤ max
∂pQT

v + εT = max
∂pQT

(u− εt) + εT

≤ max
∂pQT

u+ εT.

In the end, taking ε→ 0 finishes the proof, i.e., we have (3.12). �

By the same discussion or letting v = −u, we will have

Corollary 3.1. If Lu ≥ 0, then

min
Q̄T

u(x, t) = min
∂pQT

u.

A combination of the above two results gives

Corollary 3.2. If Lu = 0, then both the maximum and the minimum of u are achieved on

the parabolic boundary.

Now we will have the very useful tool, the comparison principle, as a corollary

Corollary 3.3. If u, v ∈ C2,1(QT ) ∩ C(Q̄T ), Lu ≤ Lv and u|∂pQT ≤ v|∂pQT , then

u(x, t) ≤ v(x, t), in Q̄T .
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3.5.2. Dirichlet boundary value problem. The initial boundary value problem of heat equa-

tion with Dirichlet boundary condition is

ut −∆u = f(x, t), in QT ,

u|t=0 = ϕ(x), (3.13)

u|∂Ω = g(x, t).

Theorem 3.12. If u ∈ C2,1(QT ) ∩ C(Q̄T ) is a solution of (3.13), then

max
Q̄T
|u| ≤ FT +B, (3.14)

where F = maxQ̄T |f |, B = max{maxΩ |ϕ|,max∂Ω×[0,T ] |g|}.

Proof. The proof will be obtained by using comparison principle. We introduce auxiliary

function w(x, t) = Ft+B ± u(x, t). It is easy to check that

Lw = F ± f ≥ 0,

w|∂pQT ≥ Ft+B ± g|∂pQT ≥ 0.

By comparison principle, Corollary 3.3, we have w(x, t) ≥ 0 in QT , which implies

|u| ≤ FT +B, in QT .

�

This maximum estimate can be used to prove the uniqueness and stability of classical

solutions.

Corollary 3.4. C2,1(QT ) ∩ C(Q̄T ) solution of (3.13) is unique.

Corollary 3.5. C2,1(QT ) ∩ C(Q̄T ) solution of (3.13) is stable in the following sense. If

u1, u2 ∈ C2,1(QT ) ∩ C(Q̄T ) are solutions separately with data ϕ1, f1, g1 and ϕ2, f2, g2, then

max
Q̄T
|u1 − u2| ≤ ‖f1 − f2‖∞T + ‖ϕ1 − ϕ2‖∞ + ‖g1 − g2‖∞.

3.6. Long time behavior of the solution. In this subsection, we give further discussion

of the long time behavior of the solution to heat equation based on energy or entropy

estimates.

3.6.1. Poincaré’s inequalities. First, we introduce Poincaré type of inequalities. Ω is a

connected open bounded domain in Rn

Lemma 3.1. (Poincaré’s inequality for C1
0 (Ω) functions) For all u ∈ C1

0 (Ω), it holds

‖u‖L2(Ω) ≤ 2d‖∇u‖L2(Ω),

where d = diam Ω.
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Proof. For all u ∈ C1
0 (Ω), without loss of generality we assume

Ω ⊂ {x|0 ≤ xi ≤ 2d, 1 ≤ i ≤ n} = Q̄.

Let ũ =

{
u, x ∈ Ω̄

0, x ∈ Q̄\Ω̄ . It is obvious that ũ is a piecewise C1 function, and

ũ|∂Q̄ = 0.

By Newton-Leibnitz formula

ũ(x1, x2, · · · , xn) =

∫ x1

0

∂ũ

∂x1
dx1,

then

ũ2 =
(∫ x1

0

∂ũ

∂x1
dx1

)2
≤ x1

∫ x1

0

( ∂ũ
∂x1

)2
dx1 ≤ 2d

∫ 2d

0

∣∣∣∣ ∂ũ∂x1

∣∣∣∣2 dx1.

By taking integration over Q, we have∫
Q
ũ2dx ≤ 2d

∫
Q

∫ 2d

0

∣∣∣∣ ∂ũ∂x1

∣∣∣∣2 dx1dx ≤ 4d2

∫
Q
|∇ũ|2dx.

Therefore,

‖u‖L2(Ω) ≤ 2d‖∇u‖L2(Ω).

�

Lemma 3.2. (Poincaré’s inequality for C1(Ω) functions) For all u ∈ C1(Ω), it holds

‖u− ū‖L2(Ω) ≤ C(Ω)‖∇u‖L2(Ω),

where ū =
1

|Ω|

∫
Ω
udx and C is a constant depending on Ω.

Proof. We only prove the case Ω = (0, 1). The more general case can be proved by using

Sobolev embedding theorem. Since u is a continuous function, there exists x0 ∈ (0, 1) such

that u(x0) = ū. Then by Newton-Leibnitz formula,

(u(x)− ū)2 =
(∫ x

x0

u′(y)dy
)2
≤ (x− x0)

∫ x

x0

|u′(y)|2dy.

Therefore the inequality is obtained by taking integration over (0, 1). �

A more general version is given in the following. We will skip the proof here.

Lemma 3.3. (Gaussian Poincaré’s inequality for C1(Rn) functions with measure dµ =

Gdx) For all u ∈ C1(Rn), it holds

‖u− ū‖L2(Rn,dµ) ≤ ‖∇u‖L2(Rn,dµ),

where ū =

∫
Rn
udµ and dµ = G(x)dx = (2π)−

n
2 e−

x2

2 dx.
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3.6.2. Heat equation with Dirichlet boundary condition. Next we use these two inequalities

to prove the long time behavior of the solution to heat equation.

Theorem 3.13. If u ∈ C2,1(Ω× (0,∞))∩C(Ω̄× [0,∞)) is a solution of the problem (3.10)

with f = 0, then ∃C(Ω) such that

‖u(x, t)‖L2(Ω) ≤ ‖ϕ‖L2(Ω)e
−Ct,

furthermore for any fixed x, u(x, t)→ 0 as t→∞.

Proof. Use u as test function in the heat equation and notice that u|∂Ω = 0, we have

1

2

d

dt

∫
Ω
u2(x, t)dx+

∫
Ω
|∇u|2dx = 0.

With the help of lemma 3.1, we have

d

dt

∫
Ω
u2(x, t)dx+

1

d

∫
Ω
|u|2dx ≤ 0.

Therefore, ∫
Ω
u2(x, t)dx ≤ e−

t
d

∫
Ω
ϕ2.

�

3.6.3. Heat equation with Neumann boundary condition***.

Theorem 3.14. If u ∈ C2,1(Ω× (0,∞)) ∩ C(Ω̄× [0,∞)) is a solution of the problem

ut −∆u = 0, ∇u · γ|Ω = 0, u|t=0 = ϕ(x),

then ∃C(Ω) such that

‖u(x, t)− ϕ̄‖L2(Ω) ≤ ‖ϕ− ϕ̄‖L2(Ω)e
−Ct,

furthermore for any fixed x, u(x, t)→ ϕ̄ as t→∞.

Proof. A very important fact of the heat equation with homogeneous boundary condition

is that ∫
Ω
u(x, t)dx ≡

∫
Ω
ϕ(x)dx,

which can be obtained immediately by integrating the equation over Ω, where the diffusion

term disappears because of the Neumann boundary condition. Thus ū ≡ ϕ̄, which is

independent of time.

Use u−ū as test function in the heat equation and notice that u satisfies the homogeneous

Neumann boundary condition, we have

1

2

d

dt

∫
Ω

(u(x, t)− ū)2dx+

∫
Ω
|∇u|2dx = 0.

With the help of lemma 3.2, we have

d

dt

∫
Ω

(u(x, t)− ū)2dx+
2

C

∫
Ω

(u(x, t)− ū)2dx ≤ 0.
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Therefore, ∫
Ω

(u(x, t)− ū)2dx ≤ e−
2t
C

∫
Ω

(ϕ− ϕ̄)2.

�

3.6.4. Heat equation, Cauchy problem. In this part we concentrate on the Cauchy problem

of heat equation and by using different scaling of the variable to observe more details of

the solution behavior.

Let u(y, τ) ∈ C2,1 be the solution of

uτ =
1

2
∆yu,

and with the initial data u0 such that
∫
u0dx = 1. Note that the fundamental solution is

K(y, τ) = C
1

τ
n
2

e−
y2

2τ , we do a new space-time rescaling, i.e., t = log(1 + τ), x = y

(1+τ)
1
2

and

let

u(y, τ) = v(x, t)(1 + τ)−
n
2

to perserve the total mass of the solution, i.e.,

∫
Rn
v(x, t)dx =

∫
Rn
u(y, t)dy. v satisfies the

following so called Fokker-Planck equation

vt =
1

2
∆xv +

1

2
∇ · (xv) =

1

2
∇ · (v(∇ ln v + x)).

It is obvious that G = π−n/2e−
x2

2 is a stationary solution of it.

If we take further w = v
G , w satisfies the following so called Ornstein-Uhlenbeck equation

(a symmetrically weighted heat equation)

wt =
1

2
G−1∇ · (G∇w).

Notice that all of the transformation keeps the total mass, i.e.,∫
Rn
wdµ =

∫
Rn
v(x, t)dx =

∫
Rn
u(y, t)dy = 1.

Theorem 3.15 (Energy estimate). Let u(y, τ) be a solution of the heat equation and initial

data satisfies

∫
Rn
|u0 −G|2dx <∞, then there exists a constant C such that∫

Rn

∣∣∣u(y, τ)−G
( y

(1 + τ)
1
2

)
(1 + τ)−

n
2

∣∣∣2 1

G( y

(1+τ)
1
2

)
dy ≤ C

(1 + τ)
n
2

+1
.

Proof. We start with an energy estimate for w. Let F(w(t)) =

∫
Rn
|w − 1|2dµ, then

dF(w(t))

dt
= −

∫
Rn
|∇w|2G(x)dx =: −D(w(t)).



LETCURE NOTES FOR INTRODUCTION TO PDES30 59

By the Gaussian Poincaré’s inequality in lemma 3.3 with measure dµ = G(x)dx, we have∫
Rn
|w − 1|2dµ ≤

∫
Rn
|∇w|2dµ.

Therefore ∫
Rn
|w − 1|2dµ ≤ e−t

∫
Rn
|w0 − 1|2dµ = e−t

∫
Rn
|u0 −G|2dx. (3.15)

The result is obtained by changing back to the original variable, u(y, τ) = v(x, t)(1+τ)−
n
2 =

w(x, t)G(x, t)(1 + τ)−
n
2 , namely,∫

Rn
|w(t)− 1|2dµ =

∫
Rn
|v(x, t)−G(x)|2 1

G(x)
dx

=

∫
Rn

∣∣∣u(y, τ)(1 + τ)
n
2 −G

( y

(1 + τ)
1
2

)∣∣∣2 1

G( y

(1+τ)
1
2

)

dy

(1 + τ)
n
2

= (1 + τ)
n
2

∫
Rn

∣∣∣u(y, τ)−G
( y

(1 + τ)
1
2

)
(1 + τ)−

n
2

∣∣∣2 1

G( y

(1+τ)
1
2

)
dy

and the right hand side with variable τ is

e−t
∫
Rn
|u0 −G|2dx = C

1

1 + τ
,

which completes the proof. �

Remark 3.20. From (3.15), instead of changing back to the variable immediately, we can

use the estimate from weighted heat equation

‖w − 1‖∞ ≤ C‖w − 1‖L2 .

We can get

‖w − 1‖∞ ≤ Ke−t.
Therefore, we get a point-wise estimate,

(1− C

1 + τ
)(1 + τ)

n
2G(

y

(1 + τ)
1
2

) ≤ u(y, τ) ≤ (1 +
C

1 + τ
)(1 + τ)

n
2G(

y

(1 + τ)
1
2

).

Remark 3.21. One can also proceed to do the entropy estimate. We start with an entropy

estimate for v. Let

E(v(t)) =

∫
Rn

v

G
log

v

G
dµ =

∫
Rn
v log vdx+

1

2

∫
Rn
x2v + C,

then
dE(v(t))

dt
= −

∫
Rn
v
∣∣∣∇v
v

+ x
∣∣∣2dx = −

∫
Rn
v
∣∣∣∇ log(

v

G
)
∣∣∣2dx =: −I(v(t)).

By using the logarithmic Sobolev inequality, i.e.

∫
f2 log fdx ≤

∫
|∇f |2dx, we have

E ≤ 1

2
I.
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Therefore,

dE
dt

+ 2E ≤ 0 =⇒ E(t) ≤ e−2tE(0).

3.7. Problems.

(1) Find the formal solution of the following problem by Fourier transform

i∂tu+ ∆u = 0, (x, t) ∈ Rn × (0,+∞),

u|t=0 = g(x), x ∈ Rn.

(2) Find the formal solution of the following problems

(a)

ut −∆u+ 2u = f(x, t), (x, t) ∈ Rn × (0,∞),

u|t=0 = ϕ(x), x ∈ Rn.

(b)

ut − uxx + xu = 0, (x, t) ∈ R× (0,∞),

u|t=0 = ϕ(x), x ∈ R.

(c)

ut = a2uxx, (x, t) ∈ (0,+∞)× (0,∞),

u|t=0 = 0, x ∈ (0,+∞),

ux|x=0 = −1, t > 0.

(3) Find the Green’s function of half line problem

ut − uxx = f, x ∈ (0,+∞), t > 0,

u|t=0 = ϕ, x ∈ (0,+∞),

ux|x=0 = 0, t > 0.

And give the formal solution formula of this problem.

(4) Ω is a bounded open subset of Rn, Q = Ω × (0, T ]. If u ∈ C2,1(Q) ∩ C(Q̄) is a

solution of the following initial boundary value problem

ut −∆u = f(x, t), (x, t) ∈ Q,
u|t=0 = ϕ(x), x ∈ Ω,

u|∂Ω = 1.

Try to prove there exists a constant C (depending on T and |Ω| =
∫

Ω dx) such that

the following inequality holds

sup
0≤t≤T

∫
Ω
u2(x, t)dx+

∫ T

0

∫
Ω
|∇u|2dxdt ≤ C

(∫
Ω
ϕ2dx+

∫ T

0

∫
Ω
f2dxdt+ 1

)
.
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(5) Find the formal solution of the following problem by using separation of variables

ut = a2uxx, (x, t) ∈ (0, 1)× (0,∞),

u|t=0 = x2(1− x), x ∈ (0, 1),

ux|x=0 = u|x=1 = 0, t > 0.

(6) Ω is a bounded open subset of Rn, QT = Ω × [0, T ). c(x, t) ≥ −c0 with some

constant c0 > 0. If u ∈ C(Q̄T ) ∩ C2,1(QT ) satisfies

ut − a2∆u+ c(x, t)u ≤ 0, (x, t) ∈ QT ,
u|∂pQT ≤ 0.

Try to prove that u ≤ 0 in QT . (Hint: try to use auxiliary function e−c0tu)
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4. Poisson’s equation

4.1. Fundamental solution. The Poisson’s equation in Rn reads

−∆u = f, in Rn. (4.1)

We will first try to find some special solution formally. Since the Laplace operator is

radially symmetric, it is natural to expect radially symmetric solutions. Assume u(x) =

v(|x|) = v(r), where r = |x|, then

uxi = vr
∂r

∂xi
= vr

xi
r
, uxixj = vrr

x2
i

r2
+ vr(

1

r
− x2

i

r3
),

thus we can put this radially symmetric function into the homogeneous Poisson’s equation

∆u = 0, i.e.

∆u = vrr +
n− 1

r
vr = 0, ⇒ (log vr)r =

1− n
r

, in che case of vr 6= 0.

Consequently, there exist constants C and C ′ such that vr = Cr1−n and

v(r) =

 C log r + C ′, n = 2,
C

rn−2
+ C ′, n ≥ 3.

Therefore, u(x) = v(|x|) are solutions of Poisson’s equation at any point but not at x = 0.

Motivated by this formal computation, we give the following definition.

Definition 12. Let

Φ(x) =


− 1

2π
log |x|, n = 2,

1

n(n− 2)α(n)

1

|x|n−2
, n ≥ 3,

where α(n) is the volumn of n dimension ball. Φ(x) is called the fundamental solution

of Poisson’s equation.

Properties

(1) |∇Φ| ≤ C

|x|n−1
, |D2Φ| ≤ C

|x|n
for x 6= 0.

(2) ∆Φ = 0 for x 6= 0 and ∆Φ(x− y) = 0 for x 6= y, ∀y ∈ Rn.

Remark 4.1. The special choice of constants in the fundamental solution will be observed

clearly in the following theorem.

Then we are able to represent the solution of Poisson’s equation by using fundamental

solution. More precisely we have the following theorem.

Theorem 4.1. If f ∈ C2
0 (Rn), then u = Φ ∗ f is a solution of problem (4.1)

Proof. First we prove that u ∈ C2(Rn). In fact,

u(x+ hei)− u(x)

h
=

∫
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy.
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Due to the fact that f has compact support,
∂f(x− y)

∂xi
= lim

h→0

f(x+ hei − y)− f(x− y)

h
and Φ is locally integrable, by letting h→ 0, we have

∂u

∂xi
=

∫
Rn

Φ(y)
∂f

∂xi
(x− y)dy.

By similar discussions, we can show that u is twice differentiable and

∂2u

∂xi∂xj
=

∫
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y)dy.

Next we will prove −∆u = f . ∀ε > 0 small enough,

−∆u(x) =

∫
Rn

Φ(y)∆xf(x− y)dy

=

∫
Bε(0)

Φ(y)∆xf(x− y)dy +

∫
Rn\Bε(0)

Φ(y)∆xf(x− y)dy

=: Iε + Jε.

where

|Iε| ≤ C‖D2f‖L∞
∫
Bε(0)

|Φ(y)|dy ≤
{
Cε2| log ε| n = 2

Cε2 n ≥ 3
.

Integrating Jε by parts, we have

Jε = −
∫
Rn\Bε(0)

∇yΦ(y)∇yf(x− y)dy −
∫
∂Bε(0)

Φ(y)∇yf(x− y) · γdSy := Kε + Lε,

where Lε can be estimated by

|Lε| ≤ ‖Df‖L∞
∫
∂Bε(0)

|Φ(y)|dSy ≤
{
Cε| log ε|, n = 2,

Cε, n ≥ 3
.

In the end, we can see that Kε contributes the main part of the calculation. When ε goes to

0, this term plays a role as a Delta function applied on f . Due to the fact that ∆Φ(y) = 0

for y 6= 0, we have

Kε =

∫
Rn\Bε(0)

∆Φ(y)f(x− y)dy +

∫
∂Bε(0)

∇Φ · γf(x− y)dSy =

∫
∂Bε(0)

∇Φ · γf(x− y)dSy.

Now we can calculate that on ∂Bε(0),

∇yΦ(y) · γ = − 1

nα(n)

y

|y|n
y

|y|
= − 1

nα(n)εn−1
.

Thus we have

Kε = − 1

nα(n)εn−1

∫
∂Bε(0)

f(x− y)dSy = − 1

nα(n)εn−1

∫
∂Bε(x)

f(y)dSy.

In the end, taking ε→ 0 gives

Kε → f(x).

�
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Remark 4.2. From the above proof, the delicate choosing of the constants that appear in

the definition of the fundamental solution is now apparent and understandable.

By using the same method, we can prove that −∆Φ = δ0(x) in the sense of distribution.

Theorem 4.2.

Φ(x, y) = Φ(x− y) =


− 1

2π
log |x− y|, n = 2

1

n(n− 2)α(n)

1

|x− y|n−2
, n ≥ 3

(4.2)

is a solution of

−∆Φ = δy(x)

in the sense of distribution. More precisely, ∀ϕ ∈ C∞0 (Rn), it holds

〈−∆Φ(x− y), ϕ(x)〉 = −
∫
Rn

Φ(x− y)∆ϕ(x)dx = ϕ(y) = 〈δy(x), ϕ(x)〉 = ϕ(y).

4.2. Properties of harmonic functions. Let Ω be an open subset of Rn.

Definition 13. If ∆u = 0 in Ω with u ∈ C2(Ω), then u is called a harmonic function in

Ω.

4.2.1. Mean value theorem.

Theorem 4.3. If u ∈ C2(Ω) is harmonic, then ∀ ball B(x, r) ∈ Ω, it holds that

u(x) =

∫
∂B(x,r)
− udSy =

∫
B(x,r)
− udy. (4.3)

Proof. Let

w(r) =

∫
∂B(x,r)
− u(y)dSy =

∫
∂B(0,1)
− u(x+ rz)dSz

Then by taking the derivative with respect to r, we have

w′(r) =

∫
∂B(0,1)
− ∇u(x+ rz) · zdSz

=

∫
∂B(x,r)
− ∇u(y) · y − x

r
dSy =

r

n|B(x, r)|

∫
B(x,r)

∆u(y)dy = 0,

which implies that w(r) is a constant. Thus we have

w(r) = lim
s→0

w(s) = lim
s→0

∫
∂B(x,s)
− u(y)dSy = u(x).

For the mean value on B(x, r), we know that∫
B(x,r)

u(y)dy =

∫ r

0

(∫
∂B(x,s)

u(y)dSy

)
ds

= u(x)

∫ r

0
nα(n)sn−1ds = α(n)rnu(x),
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which is exactly

u(x) =

∫
B(x,r)
− u(y)dy.

�

Theorem 4.4. If u ∈ C2(Ω) such that

u(x) =

∫
∂B(x,r)
− u(y)dSy, ∀B(x, r) ⊂ Ω,

then u is harmonic in Ω, i.e., ∆u = 0 in Ω.

Proof. If ∆u 6≡ 0, there must exist a ball B(x, r) ⊂ Ω such that ∆u > 0 in B(x, r). On the

other hand,

0 = w′(r) =
r

n

∫
B(x,r)
− ∆u(y)dy > 0,

which gives a contradiction. �

4.2.2. Strong maximum principle.

Theorem 4.5. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic in Ω, then

(1) max
Ω̄

u = max
∂Ω

u

(2) If Ω is connected and ∃x0 ∈ Ω such that

u(x0) = max
Ω̄

u(x),

then u is constant within Ω.

Proof. The first statement is easy, we only prove that second one here.

Let

UM = {x ∈ Ω̄|u(x) = M = max
Ω̄

u(x)} ⊂ Ω̄.

Then the set UM is nonempty, furthermore it is a closed set because of the continuity of u.

If UM ⊂⊂ Ω̄, then ∃x1 ∈ ∂UM ⊂ Ω and ∀0 < r < dist(x1, ∂Ω) such that u(x1) = M and

M = u(x1) =

∫
B(x1,r)
− u(y)dy < M,

where the mean value property has been applied. We have arrived at a contradiction. �

Corollary 4.1. If u ∈ C2(Ω) ∩ C(Ω̄) is harmonic and u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

Corollary 4.2. (Uniqueness) Dirichlet boundary value problem −∆u = f in Ω and u = g

on ∂Ω admits at most one C2(Ω) ∩ C(Ω̄)- solution.
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4.2.3. Regularity.

Theorem 4.6. If u ∈ C(Ω) satisfies mean value property for all ball B(x, r) in Ω, then

u ∈ C∞(Ω).

Remark 4.3. The smoothness up to ∂Ω is usually not true, which depends on the regularity

of the boundary.

Proof. We use mollification to the proof of regularity. Let j(x) ∈ C∞0 (Rn) and

∫
Rn
j(x)dx =

1. ∀ε > 0, we introduce the scaling

jε(x) =
1

εn
j(
x

ε
).

Let

Ωε = {x ∈ Ω|dist(x, ∂Ω) > ε}.
Therefore ∀x ∈ Ωε, uε(x) = jε(x) ∗ u(x) ∈ C∞(Ωε), and with the help of the mean value

property, we have

uε(x) =

∫
B(x,ε)

1

εn
j(
x− y
ε

)u(y)dy

=
1

εn

∫ ε

0

[
j(
r

ε
)

∫
∂B(x,r)

u(y)dSy

]
dr

=
1

εn
u(x)

∫ ε

0
j(
r

ε
)nα(n)rn−1dr

= u(x)

∫
B(0,ε)

jε(y)dy = u(x).

Thus u(x) = uε(x) ∈ C∞(Ωε), ∀ε > 0. �

4.2.4. Liouville theorem.

Theorem 4.7. If u : Rn → R is harmonic and bounded, then u is a constant.

Proof. *** The proof will use local regularity estimates for harmonic function which was

not talked about in this course. ∀x0 ∈ Rn, r > 0,

|Du(x0)| ≤ C1

rn+1
‖u‖L1(B(x0,r)) ≤

C1α(n)

r
‖u‖L∞(Rn) → 0, as r →∞.

Then Du ≡ 0, which implies u is a constant. �

Corollary 4.3. If f ∈ C2
0 (Rn), n ≥ 3, then any bounded solution of −∆u = f in Rn has

the form

u(x) =

∫
Rn

Φ(x− y)f(y)dy + C.

Proof. First we know that

∫
Rn

Φ(x − y)f(y)dy is a bounded solution since Φ(x) → 0 as

|x| → ∞. If there is another bounded solution ũ, then w = u − ũ is harmonic, thus by

Liouville’s theorem, w is a constant. �
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4.3. Green’s Function. The main goal of this subsection is to get the representation

formula for the solution of boundary value problem

−∆u = f, in Ω, (4.4)

u|∂Ω = ϕ.

Is the fundamental solution useful in getting a solution formula to the above Dirichlet

problem?

Let’s start from a formal calculation, ∀x ∈ Ω,

u(x) = 〈δx(y), u(y)〉 = 〈−∆yΦ(x, y), u(y)〉

∼ −
∫

Ω
∆yΦ(x, y)u(y)dy

=

∫
Ω

Φ(x, y)(−∆yu(y))dy −
∫
∂Ω
∇yΦ(x, y) · γu(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy.

Then formally, if u|∂Ω = ϕ and −∆u = f , we have

u(x) =

∫
Ω

Φ(x, y)f(y)dy −
∫
∂Ω
∇yΦ(x, y) · γϕ(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy,

where however the last term is still unknown. We will try to consider another function

G(x, y) to replace the fundamental solution Φ(x, y). And this G(x, y) satisfies, for any

fixed y ∈ Ω,

−∆yG(x, y) = δx(y), ∀y ∈ Ω,

G(x, y)|y∈∂Ω = 0.

A good candidate of G(x, y) is Φ(x, y)+g(x, y) with g(x, y) satisfing the following Dirichlet

boundary value problem

−∆yg(x, y) = 0, ∀x, y ∈ Ω,

g|y∈∂Ω = −Φ(x, y)|y∈∂Ω.

Once we can solve the above problem for g(x, y), we will have the solution representation

of (4.4),

u(x) =

∫
Ω
G(x, y)f(y)dy −

∫
∂Ω
∇yG(x, y) · γϕ(y)dSy.

We will give a proof of the above discussion after the following definition.

Definition 14. (Green’s function)

G(x, y) = Φ(x, y) + g(x, y)

is called the Green’s function of (4.4), where g(x, y) ∈ C2(Ω × Ω) is a solution of the

following boundary value problem

−∆yg(x, y) = 0, ∀x, y ∈ Ω,

g(x, y)|y∈∂Ω = −Φ(x, y)|y∈∂Ω.
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Theorem 4.8. If Ω is an open subset of Rn, ∂Ω is piecewise smooth and u ∈ C2(Ω)∩C1(Ω̄),

then ∀x ∈ Ω,

u(x) =

∫
Ω

Φ(x, y)(−∆yu(y))dy −
∫
∂Ω
∇yΦ(x, y) · γu(y)dSy +

∫
∂Ω

Φ(x, y)∇yu(y) · γdSy.(4.5)

Proof. ∀ε > 0 small enough, we have∫
Ω

Φ(x, y)(−∆yu(y))dy = lim
ε→0+

∫
Ω\Bε(x)

Φ(x, y)(−∆yu(y))dy

= lim
ε→0+

∫
Ω\Bε(x)

−∆yΦ(x, y)u(y)dy − lim
ε→0+

∫
∂Ω

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy

− lim
ε→0+

∫
∂B(x,ε)

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy

= 0− lim
ε→0+

∫
∂Ω

(Φ(x, y)∇u(y) · γ −∇Φ(x, y) · γu(y))dSy + u(x),

where we have used the facts that∣∣∣∣∣
∫
∂B(x,ε)

Φ(x, y)∇u(y) · γdSy

∣∣∣∣∣ ≤ Cε max
∂B(x,ε)

|∇u| → 0, as ε→ 0,

and ∫
∂B(x,ε)

u(y)∇Φ(x, y) · γdSy =

∫
∂B(x,ε)
− u(y)dSy → u(x), as ε→ 0.

�

Theorem 4.9. (Green’s function is symmetric in its two variables)

G(x, y) = G(y, x), ∀x, y ∈ Ω.

***Sketch of the proof. The technical point is the same as the proof of theorem 4.8.

∀ε > 0 small enough such that B(x, ε) ∪ B(y, ε) ⊂ Ω and B(x, ε) ∩ B(y, ε) = ∅, take

Ωε = Ω\(B(x, ε) ∪B(y, ε)). Notice that G(x, z) = G(y, z) = 0 on z ∈ ∂Ω,

0 =

∫
Ωε

(G(y, z)∆zG(x, z)−G(x, z)∆zG(y, z))dz

=

∫
∂Ωε

(G(y, z)∇zG(x, z) · γ −G(x, z)∇zG(y, z) · γ)dSz

=

∫
∂B(x,ε)∪∂B(y,ε)

(G(y, z)∇zG(x, z) · γ −G(x, z)∇zG(y, z) · γ)dSz.

We take ∂B(y, ε) as an example,∣∣∣∣∣
∫
∂B(y,ε)

G(y, z)∇zG(x, z) · γdSz

∣∣∣∣∣ ≤ C(ε+ εn−1)→ 0,

−
∫
∂B(y,ε)

G(x, z)∇zG(y, z) · γdSz =

∫
∂B(y,ε)
− G(x, z)dSz + o(εn−1)→ −G(x, y).
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We can proceed the discussion in a similar manner for the integral on ∂B(x, ε) and conclude

that it converges to G(y, x).

4.3.1. Half space problem. The half space we study here is Rn+ = {x = (x1, · · · , xn) ∈
Rn|xn > 0}.
∀x = (x1, · · · , xn−1, xn) ∈ Rn+, we call x̃ = (x1, · · · , xn−1,−xn) is x’s reflection in the

plane {xn = 0}.
We study the following boundary value problem

−∆u = f, in Rn+,
u|∂Rn+ = ϕ.

Our goal here is to find Green’s function G(x, y) of this problem and write the solution

by using formula

u(x) =

∫
Ω
G(x, y)f(y)dy −

∫
∂Ω
∇yG(x, y) · γϕ(y)dSy.

∀x ∈ Rn+, the Green’s function should be a solution of

−∆yG = δx(y), y ∈ Rn+,
G|y∈∂Rn+ = 0.

Then the Green’s function of half space problem is easy to obtain, i.e.,

G(x, y) = Φ(x, y)− Φ(x̃, y), x, y ∈ Rn+, x 6= y,

and
∂G

∂yn
(x, y) =

∂Φ

∂yn
(y − x)− ∂Φ

∂yn
(y − x̃) =

−1

nα(n)

(yn − xn
|y − x|n

− yn + xn
|y − x̃|n

)
.

Therefore, ∀y ∈ ∂Rn+,

∂G

∂γ
(x, y) = − ∂G

∂yn
(x, y) = − 2xn

nα(n)

1

|x− y|n
.

Then the solution of the boundary value problem in case f ≡ 0 can be represented by

u(x) =
2xn
nα(n)

∫
∂Rn+

ϕ(y)

|x− y|n
dy, ∀x ∈ Rn+,

which is called the Poisson’s formula of half space problem.

The function

K(x, y) :=
2xn
nα(n)

1

|x− y|n
, x ∈ Rn+, y ∈ ∂Rn+

is called the Poisson kernel for Rn+.

Theorem 4.10. Assume ϕ ∈ C(Rn−1) ∩ L∞(Rn−1) and u is defined by the Poisson’s

formula. Then u ∈ C∞(Rn+) ∩ L∞(Rn+), −∆u = 0 in Rn+ and ∀x0 ∈ ∂Rn+,

lim
x∈Rn+,x→x0

u(x) = ϕ(x0).
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Proof. The facts that −∆u = 0 and ∀x ∈ Rn+,∫
∂Rn+

K(x, y)dy = 1,

are easy to check.

Since ∀x 6= y, K(x, y) is a smooth function in x, we know directly that u ∈ C∞(Rn+) and

∆u(x) =

∫
∂Rn+

∆xK(x, y)ϕ(y)dy = 0, ∀x ∈ Rn+.

For boundary condition, ∀x0 ∈ ∂Rn+, ∀ε > 0, choose δ > 0 small enough such that

∀y ∈ ∂Rn+ and |y − x0| < δ, we have

|ϕ(y)− ϕ(x0)| < ε.

Then ∀x ∈ Rn+ and |x− x0| < δ/2, we have

|u(x)− ϕ(x0)| =
∣∣∣ ∫

∂Rn+
K(x, y)(ϕ(y)− ϕ(x0))dy

∣∣∣
≤

∫
∂Rn+∩B(x0,δ)

K(x, y)|ϕ(y)− ϕ(x0)|dy +

∫
∂Rn+\B(x0,δ)

K(x, y)|ϕ(y)− ϕ(x0)|dy

≤ ε+ 2‖ϕ‖L∞
∫
∂Rn+\B(x0,δ)

K(x, y)dy

≤ ε+
2n+1‖ϕ‖L∞xn

nα(n)

∫
∂Rn+\B(x0,δ)

1

|y − x0|n
dy → 0, as xn → 0+.

�

4.3.2. Problem in a ball. We will give an exact formula for the Green’s function in a ball.

∀x ∈ Bn(0, 1), the n dimensional unit ball. We need that G(x, y) = 0, ∀y ∈ ∂Bn(0, 1).

Let x̃ be the inversion of x, i.e., x̃ =
x

|x|2
, thus

|x̃− y| · |x| = |x− y|, ∀y ∈ ∂Bn(0, 1)

and in order that G(x, y) satisfies the zero boundary condition, we set

G(x, y) = Φ(|x− y|)− Φ(|y − x|) = Φ(|y − x|)− Φ(|x| · |y − x̃|), ∀y ∈ ∂Bn(0, 1).

Since Φ is the fundamental solution,

−∆yΦ(|x| · |y − x̃|) = 0, ∀y 6= x̃.

As a consequence,

G(x, y) = Φ(|y − x|)− Φ(|x| · |y − x̃|), ∀y ∈ Bn(0, 1)

is called the Green’s function for Bn(0, 1).

Now we will give the Poisson’s formula for Bn(0, 1).

−∆u = 0, in Bn(0, 1),

u|∂B(0,1) = h.
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By Green’s formula the solution is

u(x) = −
∫
∂B(0,1)

h(y)∇G(x, y) · γdSy.

We will explicitly calculate this formula.

∇yΦ(y − x) = − 1

nα(n)

y − x
|x− y|n

,

∇yΦ(|x|(y − x

|x|2
)) = − 1

n(n− 2)α(n)
∇y

1

|x|n−2|y − x
|x|2 |n−2

=
−1

nα(n)

1

|x|n−2

y − x
|x|2

|y − x
|x|2 |n

=
−1

nα(n)

y|x|2 − x
[|x|(y − x

|x|2 )]n

=
−1

nα(n)

y|x|2 − x
|x− y|n

,

where we have used the fact that y ∈ ∂B(0, 1) and |x| · |y − x
|x|2 | = |x− y|. Furthermore,

∇yG(x, y) · γ|∂B(0,1) =
−1

nα(n)

( y − x
|x− y|n

− y|x|2 − x
|x− y|n

)
· y
∣∣∣
y∈∂B(0,1)

=
−1

nα(n)

|y|2 − x · y − |y|2|x|2 + x · y
|x− y|n

∣∣∣
|y|=1

=
−1

nα(n)

|y|2(1− |x|2)

|x− y|n
∣∣∣
|y|=1

=
−1

nα(n)

1− |x|2

|x− y|n
.

Thus the solution formula is

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

h(y)

|x− y|n
dSy.

For problems on B(0, r), by doing scaling ũ(x) = u(rx), h̃(x) = h(rx), we will have the

Poisson’s formula

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

h(y)

|x− y|n
dSy, ∀x ∈ B(0, r). (4.6)

We call

r2 − |x|2

nα(n)r

1

|x− y|n

the Poisson kernel for B(0, r).

Theorem 4.11. If h ∈ C(∂B(0, r)), then the function u given by (4.6) is in C∞(B(0, r)),

−∆u = 0 and lim
x→x0

u(x) = h(x0), ∀x0 ∈ ∂B.
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4.4. Maximum principle. Here we consider more general equations. Let Ω be a bounded

open subset of Rn and

Lu = −∆u+ c(x)u, in Ω.

Theorem 4.12. (Weak maximum principle) Let 0 ≤ c(x) ≤ c̄ in Ω, if u ∈ C2(Ω) ∩ C(Ω̄)

and Lu ≤ 0 in Ω, then

max
Ω̄

u(x) ≤ max
∂Ω

u+(x),

where u+(x) = max{u(x), 0}.

Proof. Assume Lu < 0 in Ω. If ∃x0 ∈ Ω such that

0 ≤ u(x0) = max
Ω̄

u,

then

−∆u|x=x0 + c(x0)u(x0) ≥ 0,

which is a contradiction.

If Lu ≤ 0 in Ω, we introduce an auxiliary function

w(x) = u(x) + εeax1 ,

where a is chosen such that −a2 + c̄ < 0. Therefore

Lw = Lu+ εeax1(−a2 + c(x)) < 0.

By using the above discussion, we have max
Ω̄

w ≤ max
∂Ω

w+, then the weak maximum principle

follows by taking ε→ 0.

�

Remark 4.4. If c ≡ 0, then max
∂Ω

u+ in the theorem can be replaced by max
∂Ω

u.

Remark 4.5. If Lu ≥ 0 in Ω, then min
Ω̄
u ≥ min

∂Ω
(−u−) where u−(x) = max{−u(x), 0}.

Next, by using the above weak maximum principle, we will get a maximum estimate for

the following boundary value problem

−∆u = f, in Ω,

u = ϕ, on ∂Ω. (4.7)

Theorem 4.13. If u ∈ C2(Ω) ∩ C(Ω̄) is a solution of (4.7), then

max
Ω̄
|u| ≤ Φ + CF,

where Φ = max
∂Ω
|ϕ|, F = sup

Ω̄

|f |, C is a constant depending on n and diamΩ.
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Proof. Without loss of generality, let x = 0 ∈ Ω and

w(x) = ±u+
F

2n
(d2 − |x|2) + Φ,

then

−∆w = ±f + F ≥ 0, w|∂Ω ≥ Φ± ϕ ≥ 0.

By comparison principle, we have w ≥ 0 in Ω̄, which implies

max
Ω
|u| ≤ Φ +

F

2n
d2.

�

4.5. Variational problem. We show in this part that the solvability of the boundary

value problem of Poisson’s equation is equivalent to the solvability of a variational problem.

Namely

−∆u = f, in Ω, (4.8)

u = g, on ∂Ω

is equivalent to the following problem

J(u) = inf
v∈Mg

J(v), (4.9)

J(v) =
1

2

∫
Ω
|∇v|2dx−

∫
Ω
fvdx,

Mg = {v ∈ C1(Ω̄)|v = g on ∂Ω}.

4.5.1. Dirichlet principle.

Theorem 4.14. (Dirichlet principle) Assume u ∈ C2(Ω) ∩ C1(Ω̄), then u is a solution of

(4.8) if and only if u is a solution of (4.9).

Proof. “⇒”. ∀v ∈Mg, we choose u− v as test function in (4.8),∫
Ω
−∆u(u− v) =

∫
Ω
f(u− v).

Integration by parts with boundary condition u− v = 0 on ∂Ω shows∫
Ω
∇u · ∇(u− v) =

∫
Ω
f(u− v).

Equivalently,∫
Ω
|∇u|2 −

∫
Ω
fu =

∫
Ω
∇u · ∇v −

∫
Ω
fv ≤ 1

2

∫
Ω
|∇u|2 +

1

2

∫
Ω
|∇v|2 −

∫
Ω
fv.

Then we have
1

2

∫
Ω
|∇u|2 −

∫
Ω
fu ≤ 1

2

∫
Ω
|∇v|2 −

∫
Ω
fv,

which is

J(u) ≤ J(v), ∀v ∈Mg.
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“⇐” ∀v ∈ M0, we have u + εv ∈ Mg. Let j(ε) = J(u + εv), since u is a solution of (4.9),

we know that j′(ε)|ε=0 = 0. More precisely,

d

dε

[∫
Ω

1

2
|∇(u+ εv)|2 −

∫
Ω
f(u+ εv)

] ∣∣∣
ε=0

=

∫
Ω
∇(u+ εv)|ε=0 · ∇v −

∫
Ω
fv =

∫
Ω
∇u · ∇v −

∫
Ω
fv =

∫
Ω

(−∆u− f)v,

which holds for any v ∈ C1
0 (Ω). Thus u is a solution of (4.9).

�

The equation −∆u = f in Ω is called the Euler-Lagrange equation of the variational

problem (4.9).

In the 19th century, it is thought that variational problem always has a solution in the

given set of functions. But Weierstrass gave an example which shows that the infimum can

not be achieved by a function in the given set, i.e., the minimizer doesn’t exist. Here is the

example,

Example 12. *** (Weierstrass) Variational problem. Let M = {ϕ(x) ∈ C[0, 1]|ϕ′(x) is

continuous except finite removable or jump discontinuous points and ϕ(0) = 1, ϕ(1) = 0}.
The functional is

J(ϕ) =

∫ 1

0
[1 + (ϕ′)2]

1
4dx.

It is obvious that inf
ϕ∈M

J(ϕ) = 1. In fact, we only need to prove ∀δ > 0, ∃ϕδ ∈M such that

J(ϕδ) ≤ 1 + δ,

where we can choose

ϕδ =

{
1
δ2

(δ2 − x), 0 ≤ x ≤ δ2

0, δ2 < x ≤ 1
.

On the other hand, we couldn’t find any ϕ ∈ M such that J(ϕ) = 1. Otherwise, ϕ′ = 0

a.e., then ϕ ≡ C, which contradicts with ϕ(0) = 1, ϕ(1) = 0.

Another fact is that even if the boundary value problem (4.8) has a solution in C2(Ω) ∩
C(Ω̄), it may not be obtained by solving the variational problem (4.9). Here is an example

by Hadamard.

Example 13. *** Ω = B(0, 1), f ≡ 0, ϕ(θ) =
∞∑
n=1

sinn4θ

n2
∈ C(∂Ω), 0 ≤ θ ≤ 2π.

We know that (4.8) has a unique solution u0 ∈ C(Ω̄) ∩ C2(Ω) with expression

u0(ρ, θ) =

∞∑
n=1

sinn4θ

n2
ρn

4
.

On the other hand we can prove that

J(u0) = +∞.
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In fact,

J(u0) = lim
r→1−

∫ ∫
ρ≤r
|∇u0|2dxdy = lim

r→1−

∫ ∫
ρ≤r

[(∂u0

∂ρ

)2
+

1

ρ2

(∂u0

∂θ

)2]
ρdρdθ

= lim
r→1−

2π

∫ r

0

∞∑
n=1

n4ρ2n4−1dρ = lim
r→1−

π
∞∑
n=1

r2n4
= +∞.

4.6. Sobolev space H1(Ω) and H1
0 (Ω). The Sobolev space H1(Ω) is defined by

H1(Ω) = {u ∈ D′(Ω)|u,Du ∈ L2(Ω)},

where the inner product and the norm are given respectively by

〈u, v〉H1 =

∫
Ω
uv +

∫
Ω
∇u · ∇v, ‖u‖H1 = ‖u‖L2 + ‖∇u‖L2 .

H1 is a Hilbert space.

H1
0 (Ω) is the completion of C∞0 (Ω) with H1-norm, so it is a subspace of H1(Ω).

Remark 4.6. The Poincaré’s inequality implies that ‖u‖H1 and ‖∇u‖L2 are equivalent norms

in H1 space.

*****The most important property for Sobolev spaces is the compact embedding theo-

rem. For bounded Ω with uniform cone condition, H1(Ω) is compactly embedded in L2(Ω).

Therefore, (−∆)−1 with homogenous Dirichlet boundary condition is a compact operator

in L2(Ω), since

(−∆)−1 : L2(Ω)→ H1(Ω) ↪→↪→ L2(Ω).

Definition 15. If ∃u ∈ H1
0 (Ω) such that

J(u) = inf
v∈H1

0

(1

2

∫
Ω
|∇v|2 −

∫
Ω
fv
)

we call u is a solution of (4.9).

Definition 16. If ∃u ∈ H1
0 such that ∀v ∈ H1

0 (Ω),∫
Ω
∇u · ∇v =

∫
Ω
fv,

then we call u a weak solution of (4.8).

Theorem 4.15. If u ∈ H1
0 (Ω), then u is a weak solution of (4.8) if and only if u is a

solution of (4.9).

The proof of this theorem is left to readers.
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4.7. Solvability of variational problem. Our goal in this subsection is to prove the

unique solvability of variational problem (4.9).

Theorem 4.16. Solution of (4.9) in H1
0 (Ω) is unique.

Proof. Let u1, u2 ∈ H1
0 (Ω) be two solutions of (4.9), i.e.,

J(u1) = J(u2) = m = inf
v∈H1

0 (Ω)
J(v),

then

0 =
1

2

∫
Ω
|∇u1|2 −

1

2

∫
Ω
|∇u2|2 −

∫
Ω

(u1 − u2)f.

Noticing the fact that∣∣∣∣∇(u1 − u2)

2

∣∣∣∣2 +

∣∣∣∣∇(u1 + u2)

2

∣∣∣∣2 =
1

2
|∇u1|2 +

1

2
|∇u2|2,

we have ∫
Ω

∣∣∣∣∇(u1 − u2)

2

∣∣∣∣2 =

∫
Ω

1

2
|∇u1|2 +

∫
Ω

1

2
|∇u2|2 −

∫
Ω

∣∣∣∣∇(u1 + u2)

2

∣∣∣∣2
−
∫

Ω
u1f −

∫
Ω
u2f + 2

∫
Ω

u1 + u2

2
f

= J(u1) + J(u2)− 2J(
u1 + u2

2
) ≤ 0

which implies that

‖∇(u1 − u2)‖L2 = 0.

Poincaré’s inequality gives

‖u1 − u2‖L2 = 0 ⇒ u1 = u2 a.e. in Ω.

�

Theorem 4.17. (Existence) f ∈ L2(Ω), then (4.9) has a solution u ∈ H1
0 (Ω).

Proof. First we prove that J(u) has a lower bound. In fact, by Young’s and Poincaré’s

inequality,

J(v) =
1

2
‖∇v‖2L2 −

∫
Ω
fv ≥ 1

2
‖∇v‖2L2 −

1

4
‖∇v‖2L2 − C‖f‖2L2 ≥ −C(d)‖f‖2L2 .

Let

m = inf
v∈H1

0 (Ω)
J(v).

Let {vk}∞k=1 ⊂ H1
0 (Ω) be a minimizing sequence such that

J(vk) ≤ m+
1

k
.
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Actually, {vk} is a Cauchy sequence in H1(Ω) because of the following inequality which

comes from similar discussions to the proof of uniqueness, for k, l→∞,∥∥∥∥∇(vk − vl)
2

∥∥∥∥2

L2

= J(vk) + J(vl)− 2J(
vk + vl

2
) ≤ m+

1

k
+m+

1

l
− 2m ≤ 1

k
+

1

l
→ 0.

Due to the completeness of H1
0 , there must ∃u ∈ H1

0 (Ω) such that

vk → u, in H1(Ω).

Taking limit as k →∞, we have J(vk)→ J(u) and J(u) = m.

�

4.8. ***Lax-Milgram theorem and existence. We first list the Lax-Milgram theorem

from functional analysis, then prove the existence of weak solution of (4.8).

Theorem 4.18 (Lax-Milgram theorem). Let H be a Hilbert space. Assume a(u, v) is a

bi-linear mapping from H ×H to R and satisfies

• Bounded. ∃M ≥ 0 such that |a(u, v)| ≤M‖u‖ · ‖v‖, ∀u, v ∈ H.

• Coercive. ∃δ > 0 such that a(u, u) ≥ δ‖u‖2, ∀u ∈ H.

Then for any bounded linear functional F (v) on H, there exists a unique u ∈ H such that

F (v) = a(u, v), ∀v ∈ H.

and

‖u‖ ≤ 1

δ
‖F‖.

Proof. For any fixed u ∈ H, Riesz representation theorem implies that ∃Au ∈ H such that

a(u, v) = (Au, v), ∀v ∈ H.

The linearity of Au in u is obvious due to the fact that a(u, v) is linear in u. Furthermore,

(Au, v) ≤M‖u‖ · ‖v‖, ⇒ ‖Au‖ ≤M‖u‖.

Coercivity gives that ∀u ∈ H,

δ‖u‖2 ≤ a(u, u) = (Au, u) ≤ ‖Au‖ · ‖u‖, ⇒ ‖Au‖ ≥ δ‖u‖.

Thus A−1 exists. We claim that R(A) = H.

FirstR(A) is closed. In fact, choose any Cauchy sequence {Auk} inR(A), then limk→∞Auk =

v. By coercivity, we have

δ‖uk − ul‖ ≤ ‖Auk −Aul‖,
which means {uk} is also a Cauchy sequence in H. ∃u ∈ H such that

lim
k→∞

uk = u.

Thus

Au = lim
k→∞

Auk = v.

If R(A) 6= H, ∃w 6= 0 in H such that

(Au,w) = 0, ∀u ∈ H,
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which contradicts with coercivity if we choose w = u. Thus R(A) = H.

For any linear functional F (v) on H, by Riesz representation theorem, we have a unique

w ∈ H s.t.

F (v) = (w, v).

Let u = A−1w, we have

‖u‖ ≤ ‖A−1‖ · ‖w‖ ≤ 1

δ
‖F‖

and

F (v) = (Au, v).

�

Theorem 4.19. For f ∈ L2(Ω), there exists a solution u ∈ H1
0 (Ω) of (4.8).

Proof. Let the bilinear functional be defined by

a(u, v) =

∫
Ω
∇u · ∇v.

Then it is coercive

a(u, u) ≥ ‖∇u‖2L2 ≥ C‖u‖2H1 .

Lax-Milgram theorem implies that ∀f ∈ L2(Ω), there exists a unique u ∈ H1
0 (Ω) such that

a(u, v) = 〈f, v〉, ∀v ∈ H1
0 (Ω).

�

4.9. Energy Estimate. Energy methods for Poisson’s equation is easy. I will not talk

about it here, but leave it as an exercise. The energy estimate also shows that −∆u = f

in Ω and u = h on ∂Ω has at most one solution in C2(Ω) ∩ C1(Ω̄).

4.10. Problems.

(1) Try to derive energy estimates for Dirichlet problem of Possion equation.

(2) Modify the proof of the mean value formulas to show for n ≥ 3 that

u(0) = −
∫
∂B(0,r)

gdS +
1

n(n− 2)α(n)

∫
B(0,r)

(
1

|x|n−2
− 1

rn−2

)
fdx,

provided

{
−∆u = f, x ∈ B(0, r)

u = g, x ∈ ∂B(0, r)
.

(3) We say v ∈ C2(Ω̄) is subharmonic if −∆v ≤ 0 in Ω.

(a) Prove for subharmonic v that

v(x) ≤ −
∫
B(x,r)

vdy, for all B(x, r) ⊂ Ω.

(b) Prove that therefore maxΩ̄ v = max∂Ω v.

(c) Let φ : R → R be smooth and convex. Assume u is harmonic and v := φ(u).

Prove v is subharmonic.

(d) Prove v := |Du|2 is subharmonic, whenever u is harmonic.
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(4) Let B+(R) = {(x, y) : x2 + y2 < R2, y > 0}, try to find the Green’s function of the

following problem
−∆u = f(x, y), (x, y) ∈ B+(R),

u|∂B+(R)∩{y>0} = ϕ(x, y),

uy|y=0 = ψ(x, 0), −R ≤ x ≤ R.
Furthermore, give the representation formula of solution.

(5) Ω is a bounded open subset of Rn, u(x) is a classical solution of{
−∆u+ c(x)u = f(x), x ∈ Ω,

(∇u · γ + α(x)u)|Γ1 = ϕ1, u|Γ2 = ϕ2

where Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅, Γ2 6= ∅.
If c(x) ≥ 0, α(x) ≥ α0 > 0, try to prove the following estimate,

max
Ω
|u(x)| ≤ C(α0, diamΩ)

[
sup

Ω
|f |+ sup

Γ1

|ϕ1|+ sup
Γ2

|ϕ2|
]
.

(6) Try to get the Euler-Lagrange equation of the following variational problem

J(u) = min
v∈M0

J(v), with M0 = {u ∈ C2(Ω) ∩ C1(Ω̄) : u|∂Ω = 0},

(a) J(v) =

∫
Ω

(
1

p
|∇v|p − fv)dx, p > 1

(b) J(v) =

∫
Ω

(
1

2m
|∇vm|2 − fv)dx, m > 0

(c) j(v) =

∫
Ω

(
√

1 + |∇v|2dx+ vp)dx, p > 1

(7) If u ∈ H1
0 (Ω) is a weak solution of

−∆u+ u = f,

prove that u is a solution of variational problem

J(u) = min
v∈H1

0 (Ω)
J(v),

where J(v) =
1

2

∫
Ω |∇v|

2dx+
1

2

∫
Ω v

2dx−
∫

Ω fvdx.

(8) Assume f ∈ L2(Ω), ϕ ∈ H1(Ω), c(x) ≥ 0 and c(x) ∈ C(Ω̄), prove that variational

problem

J(u) = min
v∈Mϕ

J(v)

has a unique solution in Mϕ = {u ∈ H1(Ω) : u− ϕ ∈ H1
0 (Ω)}, where

J(v) =
1

2

∫
Ω

(|∇v|2 + c(x)v2 − fv)dx.

Furthermore, show that the solution of variational problem is a weak solution of

−∆u+ c(x)u = f in Ω, u = ϕ on ∂Ω.
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5. Conservation Laws

Let u(x, t) be the density and q(u(x, t)) be the flux function of a flow. In 1-dimensional

case, for any interval (x1, x2) ∈ R, we know that the change of total mass in (x1, x2) with

respect to t equals to the difference between the flux function at the endpoint, i.e.,

d

dt

∫ x2

x1

u(x, t)dx = −q(u(x2, t)) + q(u(x1, t)).

If furthermore u and q are smooth functions, we have∫ x2

x1

(
ut + [q(u(x, t))]x

)
dx = 0.

Now because of the arbitrariness of (x1, x2), we have the one dimensional conservation law

in the differential form,

ut + [q(u)]x = 0, in R, (5.1)

• If q(u) = vu, with v being a given function, then the equation is a linear transport

equation which was introduced in the beginning of this course.

• If q(u) = −κ∇u, then the equation is reduced into the heat equation. This relation

is from Fourier’s law in physics, i.e., the local heat flux density q(u) is equal to

the product of thermal conductivity κ and the negative local temperature gradient

−∇u, where the heat flux density is the amount of energy that flows through a unit

area per unit time.

• If q(u) is a given nonlinear function of u, then the equation is called nonlinear

conservation law. We will give two examples in this part: Burger’s equation and

the traffic flow equation.

– Burger’s equation. q(u) =
1

2
u2.

– Traffic flow problem. q(u) = v(u)u, with v(u) = vm(1− u

um
), where vm is the

maximum speed of the cars and um is the maximum density.

5.1. Local existence and smooth solutions. We will take Burger’s equation as an

example to show the local existence, and similar results hold also for traffic flow problem.

ρt + ρρx = 0, x ∈ R, t > 0, (5.2)

ρ|t=0 = g(x), x ∈ R.

Formally, by using characteristic method, the Cauchy problem of Burger’s equation is

reduced into
d

dt
ρ(x(t, x0), t)) = 0, ρ(x(0), 0) = g(x0),

where the characteristic lines x(t, x0) satisfies

dx

dt
= ρ(x, t), x|t=0 = x0. ⇔ x = x0 + ρ(x, t)t
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Then the solution of Burger’s equation satisfies an equation

ρ(x, t) = g(x− ρ(x, t)t).

Theorem 5.1. If the initial data g(x) ∈ C1(R) and

min
x∈R

g′(x) ≥ −a > −∞, for some a ≥ 0,

then problem (5.2) has a unique C1-solution in the domain {(x, t) : x ∈ R, 0 ≤ t < 1/a}.

Proof. For any given small ε > 0, let F (x, t, ρ) = ρ−g(x−ρt), the partial derivative of F in ρ

can be estimated in the following inequality, ∀(x, t) ∈ Q̄aε = {(x, t) : x ∈ R, 0 ≤ t ≤ 1/a−ε},

Fρ(x, t, ρ) = 1 + g′(x− ρt)t ≥ 1− at ≥ aε > 0.

With the help of implicit function theorem, we conclude that

F (x, t, ρ) = 0

has a unique solution ρ ∈ C1(Q̄aε). Therefore the unique solvability of the problem is

obtained by arbitrariness of ε. �

For general equations, the Cauchy problem is

ut + [q(u)]x = 0, x ∈ R, t > 0, (5.3)

u|t=0 = g(x), x ∈ R.

The smooth solution exists globally in the case that the second derivative of q and the first

derivative of g have the same sign, which means that the characteristics don’t interact each

other.

Theorem 5.2. If q ∈ C2, g ∈ C1 and either q′′ ≥ 0 and g′ ≥ 0 or q′′ ≤ 0 and g′ ≤ 0, then

the C1 solution is uniquely determined by

u(x, t) = g(x− q′(u)t). (5.4)

With the method of characteristics we know that the first discontinuity appears at time

t such that

1 + tq′′(u)g′(x− q′(u)t) = 0.

For example, in the case q(u) = u− u2 and g(x) = arctanx,

q′(u) = 1− 2u, q′′(u) = −2 < 0, g(x) = arctanx, g′(x) =
1

1 + x2
> 0.

For any (x, t) ∈ R× (0,+∞), let x0 be the initial point that can be connected to (x, t) by

characteristics. Since u(x, t) is constant along characteristics, i.e. u(x, t) = g(x0), we have

q′′(u(x, t))g′(x− q′(u(x, t))t) = q′′(g(x0))g′(x0) =
−2

1 + x2
0

.

The first time that the continuity of the solution breaks down appears at time t such that

1 + t
( −2

1 + x2
0

)
= 0.
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This means the possible time is ts = 1
2 at point x0 = 0.

At time 0 ≤ t < 1
2 , we know the solution is uniquely determined by

u− arctan(x− (1− 2u)t) = 0.

At time t > 1
2 , it would appear multi-valued functions near ts = 1

2 .

This example also tells us that we need more theory on conservation law with discon-

tinuous initial data. In this course, we only introduce the Cauchy problem with simplest

discontinuous initial data, which is called Riemann problem. We will explain the theory of

Riemann problem for traffic flow equation in the next section. The same theory holds for

Burger’s equation.

5.2. Riemann problem for traffic flow and Burger’s equation. We will explain the

theory of Riemann problem for traffic flow equation in the first subsection in detail, and

leave the corresponding detailed analysis for Burger’s equation to the readers.

5.2.1. Traffic flow problem. we will use ρ to represent the density of cars. The Cauchy

problem is

ρt + vm(1− 2ρ

ρm
)ρx = 0, in R× (0,+∞),

ρ|t=0 = g(x), (5.5)

where ρm is the maximum density and vm is the maximum velocity.

By the method of characteristics, formally we know that the density is conserved along

the characteristics. We can rewrite (5.5) into the following equivalent problems

d

dt
ρ(x(t, x0), t) = 0, ρ(x(0, x0), 0) = g(x0),

ẋ(t) = vm

(
1− 2ρ

ρm

)
, x|t=0 = x0,

which means ρ(x(t), t) = g(x0) and

ẋ(t) = vm

(
1− 2g(x0)

ρm

)
,

⇒ x(t) = vm

(
1− 2g(x0)

ρm

)
t+ x0,

⇒ x0 = x− vm
(

1− 2g(x0)

ρm

)
t.

Thus the formal solution of traffic flow problem is

ρ(x, t) = g
(
x− vm

(
1− 2g(x0)

ρm

)
t
)
, (5.6)

where vm

(
1− 2g(x0)

ρm

)
= q′(g(x0)) is the traveling wave propagation speed.

From here one can see that the existence of classical solution totally depends on the

shape of initial data g(x).
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We will study the two typical initial data.

Green light problem Initial data

g(x) =

{
ρm, x ≤ 0,

0, x > 0.
(5.7)

In this case, the wave speed is

q′(g(x)) =

{
−vm, x ≤ 0,

vm, x > 0.
(5.8)

It means that in (x, t) plan, the solution can be determined in the domains on the right

hand side of x > vmt and on the left hand side of x < −vmt, i.e.,

ρ(x, t) =


ρm, x < −vmt,
?, −vmt ≤ x ≤ vmt,
0, x > vmt.

The above analysis shows that by the method of characteristics, we don’t know how to

determine the value of solution in the domain −vmt < x < vmt. One way to find the

reasonable representation of solution inside of this domain is to use an approximation of

the initial data. More precisely, we will use function gε(x) instead of the initial data g(x),

gε(x) =


ρm, x ≤ 0,

ρm(1− x
ε ), 0 < x < ε,

0, x > ε.

(5.9)

It is easy to calculate the characteristics of this problem, i.e.,

x =


−vmt+ x0, x0 < 0,

−vm(1− 2x0ε )t+ x0, 0 ≤ x0 < ε,

vmt+ x0, x0 ≥ ε.

The characteristics inside of the region 0 ≤ x0 < ε looks like a rarefaction fan.

Now the solution of traffic flow problem with initial data (5.9) (by using characteristic

method) is

ρε(x, t) =


ρm, x < −vmt,
ρm(1− x+vmt

2vmt+ε
), −vmt < x < vmt+ ε,

0, x > vmt+ ε.

(5.10)

Letting ε→ 0 yields

ρ(x, t) =


ρm, x < −vmt,
ρm
2 (1− x

vmt
), −vmt < x < vmt,

0, x > vmt.

(5.11)

We can see that the solution in the “fan” is a self-similar solution of the equation.
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Figure 4. Rarefactionwave

Remark 5.1. For general equations, the self-similar solution also exists. More precisely, for

the following 1-d conservation law

ut + [q(u)]x = 0,

if we put the ansatz u(x, t) = ū(ξ) = ū(x/t), we will have

− x
t2
ūξ + (q(ū))ξ

1

t
= 0, ⇒ ūξ(q

′(ū)ξ − ξ2) = 0, ⇒ q′(ū(ξ)) = ξ,

from which the self-similar solution can be obtained directly.

In the traffic flow problem, we have q(u) = vm(1− u
ρm

)u and

q′(u) = vm(1− 2u

ρm
), ⇒ vm(1− 2u(ξ)

ρm
) = ξ,

which exactly gives the rarefaction wave solution

u(ξ) =
1

2
ρm(1− ξ

vm
) =

ρm
2

(1− x

vmt
).

Red light problem (or traffic jam) Initial data

g(x) =

{
1
8ρm, x < 0,

ρm, x > 0.
(5.12)

In this case, the wave speed is

q′(g(x0)) =

{
3
4vm, x0 < 0,

−vm, x0 > 0.
(5.13)

It is obvious to see that some characteristic lines will hit together for t > 0. Then the main

problem is how to define the solution with jump discontinuity. We will find the discontinuity

curve of the solution by the integral version of the equation, i.e.,

d

dt

∫ x2

x1

ρ(x, t)dx = −q(ρ(x2, t)) + q(ρ(x1, t)).
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If ρ is smooth except a line x = s(t) for t ∈ [t1, t2], then

d

dt

(∫ s(t)

x1

ρ(x, t)dx+

∫ x2

s(t)
ρ(x, t)dx

)
+ q(ρ(x2, t))− q(ρ(x1, t)) = 0.

By taking the derivative with respect to t,

d

dt

∫ s(t)

x1

ρ(x, t)dx =

∫ s(t)

x1

ρt(x, t)dx+ ρ−(s(t), t)
ds

dt
,

d

dt

∫ x2

s(t)
ρ(x, t)dx =

∫ x2

s(t)
ρt(x, t)dx− ρ+(s(t), t)

ds

dt
,

where ρ±(s(t), t) = lim
y→s(t)±

ρ(y, t), we arrive at∫ x2

x1

ρt(x, t)dx+
(
ρ−(s(t), t)− ρ+(s(t), t)

)ds
dt

= q(ρ(x1, t))− q(ρ(x2, t)).

Let x2 → s(t)+ and x1 → s(t)−, it follows that(
ρ−(s(t), t)− ρ+(s(t), t)

)ds
dt

= q(ρ−(s(t), t))− q(ρ+(s(t), t)).

Therefore,

ds

dt
=
q(ρ+(s(t), t))− q(ρ−(s(t), t))

ρ+(s(t), t)− ρ−(s(t), t)
=:

[q(ρ)]

[ρ]
. (5.14)

which is called the Rankine-Hugoniot condition.

Usually, we call the discontinuity propagating of solution shock wave.

Now in the traffic flow problem with red light initial data (5.12), ρ+ = ρm, ρ− = ρm
8 ,

q(ρ+) = 0, q(ρ−) = 7
64vmρm, so

ds

dt
=
q(ρ+)− q(ρ−)

ρ+ − ρ−
= −1

8
vm.

Therefore the solution is given by

ρ(x, t) =

{
1
8ρm, x < −1

8vmt,

ρm, x > −1
8vmt.

(5.15)

5.2.2. Burger’s equation. Riemann problem of Burger’s equation,

ut + uux = 0, u|t=0 =

{
ul, x < 0,

ur, x > 0.

The difference between the traffic flow equation and the Burger’s equation is the flux func-

tion q(u), which is concave in traffic flow but convex in Burger’s equation.

Then the situations to have rarefaction wave and shock wave in Burger’s equation are

exactly opposite to those in traffic flow problem. More precisely, we will have rarefaction

wave when ul < ur and shock wave when ul > ur.
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Figure 5. Shockwave

In the case of ul < ur, the rarefaction wave solution is given by

u(x, t) =


ul, x < ult,

x/t, ult ≤ x ≤ urt,
ur x > ur.

In the case of ul > ur, the shock wave solution is

u(x, t) =

{
ul, x < ul+ur

2 t,

ur, x > ul+ur
2 t.

5.3. ***Weak Entropy Solution. In general, we cannot expect global existed smooth

solution for conservation laws, no matter how smooth the initial data is. The only possible

case to have a global classical solution is that the characteristics don’t interact each other.

Therefore, a weaker definition of the solution is expected, so that we can still solve the

problem in a weaker sense.

We give the definition of weak solution in the sense of distribution

Definition 17. If u is a bounded function defined on R × [0,+∞), and ∀v ∈ C∞0 (R ×
[0,+∞)), the following holds∫ +∞

0

∫
R

(uvt + q(u)vx)dxdt+

∫
R
g(x)v(x, 0)dx = 0, (5.16)

then u is called a weak solution of (5.3).

With this definition, a series of questions arise

• If u has a discontinuity, is it determined by the weak formula? (Answer: R-H

condition)

• Is the weak solution unique? (Answer: No.)

• If it is not unique, how to choose the physically correct solution? (Answer: Entropy

condition)
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5.3.1. Rankine-Hugoniot condition. We answer the first question. Let V be an open subset

in R × [0,+∞). If u is piecewise smooth in V̄ = V̄ + ∪ V̄ − and u ∈ C1(V̄ +), u ∈ C1(V̄ −).

Let Γ = V̄ + ∩ V̄ −,

u±(x0, t0) = lim
(y,t)∈V ±→(x0,t0)

u(y, t), ∀(x0, t0) ∈ Γ.

We assume that u+ 6= u−. Then by the definition of weak solution, ∀v ∈ C∞0 (K) where K

is a compact subset in V , we have

0 =

∫ +∞

0

∫
R

[uvt + q(u)vx]dxdt

=

∫
V +

[uvt + q(u)vx]dxdt+

∫
V −

[uvt + q(u)vx]dxdt

= −
∫
V +

[ut + (q(u))x]vdxdt−
∫
V −

[ut + (q(u))x]vdxdt

+

∫
Γ
v(u+, q(u+))T · γdl −

∫
Γ
v(u−, q(u−))T · γdl,

where γ is the unit outer normal vector of V + on Γ. Then by the arbitrariness of v, we

have

(u+ − u−, q(u+)− q(u−))T · γ = 0 along Γ,

which means that the discontinuity of u, which is Γ, is a curve whose slope is given by

ṡ(t) =
q(u+(s, t)− q(u−(s, t))

u+(s, t)− u−(s, t)
.

This is called the Rankine-Hugoniot condition for shock curve Γ. The R-H condition for

jump discontinuity is usually abbreviated by

ṡ(t) =
[q(u)]

[u]
. (5.17)

Figure 6. Domains in the integral in getting R-H condition
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5.3.2. Nonuniqueness of weak solution. We will use Burger’s equation to give an example,

ut + uux = 0, u|t=0 =

{
0, x < 0,

1, x > 0.

We know already that this problem has a rarefaction wave solution

u(x, t) =


0, x ≤ 0,

x/t, 0 < x < t,

1, x ≥ t.
However this problem has another weak solution (shock solution) which also satisfies the

R-H condition (5.17).

w(x, t) =

{
0, x < t/2,

1, x > t/2.

Figure 7. Nonuniqueness of weak solution, example 1

In fact the situation is even worse, for Burger’s equation with initial data

u|t=0 =

{
u−, x < 0,

u+, x > 0,
ul < ur.

There is a family of infinite number of weak solutions, i.e., ∀um ∈ [u−, u+], sm = u−+um
2 ,

u(x, t) =


u−, x ≤ smt,
um, smt ≤ x ≤ umt,
x/t, umt ≤ x ≤ u+t,

u+, x > u+t.

(5.18)

Definition 18. Lax Entropy condition Let q′′ > 0, a discontinuity propagating with

speed ṡ(t) given by the Rankine-Hugoniot jump condition satisfies the Lax entropy condition

if

q′(u+) < ṡ(t) < q′(u−).
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Figure 8. Nonuniqueness of weak solution, example 2

Lax Entropy condition says that ∀t > 0 once the solution jumps from x− to x+, the

value of the solution u(x, t) can only decrease, i.e., u(x−, t) > u(x+, t). The weak solutions

from (5.18) are not allowed. The similar situation holds for the case q′′ > 0 as well.

We give the following existence and uniqueness of weak entropy solution without proof.

Theorem 5.3. If q ∈ C2(R) is convex (or concave), g is bounded, there exists a unique

weak entropy solution of {
ut + (q(u))x = 0, x ∈ R, t > 0,

u|t=0 = g(x), x ∈ R.

We refer the proof of this theorem to J. Smoller’s book.

5.3.3. Riemann problem for general scalar conservation law. As a summary, we give the

entropy solution of Riemann problems to general scalar conservation law

ut + (q(u))x = 0, x ∈ R, t > 0,

u|t=0 =

{
u+, x > 0,

u−, x < 0.

where u+ 6= u− are constants.

Theorem 5.4. If q ∈ C2(R) is strictly convex and q′′ ≥ h > 0, we have the following result

• If u+ < u−, then the unique entropy solution is shock wave, i.e.,

u(x, t) =

{
u+, x/t > ṡ(t),

u−, x/t < ṡ(t),

where

ṡ(t) =
q(u+)− q(u−)

u+ − u−
.
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• If u+ > u−, then the unique entropy solution is the rarefaction wave, i.e.,

u(x, t) =


u+, x/t > q′(u+),

r(x/t), q′(u−) < x/t < q′(u+),

u−, x/t < q′(u−),

where r = (q′)−1.

Remark 5.2. The result is similar in the concave flux case for q′′ ≤ h < 0.

5.4. Viscous Burger’s equation. Vanishing viscosity method is natural from physical

point of view to study discontinuous solutions for hyperbolic equations. In fluid dynamics,

Navier-Stokes system is a viscous version of Euler system. Roughly speaking, vanishing

viscosity is to use ut + q(u) = εuxx as an approximation of ut + q(u) = 0, then take ε→ 0,

one could get desired properties of solution. Usually, parabolic equations are easier, and

the solutions have better properties.

We will focus on the viscous Burger’s equation in this subsection.

5.4.1. Cole Hopf transformation in 1950’s. In 1950’s Cole and Hopf found a transformation

independently to reduce the viscous Burger’s equation into a heat equation. This transfor-

mation is now called Cole-Hopf transformation. Then by using the fundamental solution

of heat equation, an explicit solution of viscous Burger’s equation can be obtained.

Viscous Burger’s equation is

ut + uux = εuxx, x ∈ R, t > 0.

which can be rewritten into

ut +
(1

2
u2 − εux

)
x

= 0.

This formula means that the 2 − D vector valued function (−u, 1
2u

2 − εux) is curl free.

Therefore, there exists a potential ψ(x, t) such that

ψx = −u, ψt =
1

2
u2 − εux.

So ψ solves the equation

ψt =
1

2
ψ2
x + εψxx.

A way to avoid the quadratic term ψ2
x is to use a transformation ψ = g(ϕ) with g to be

determined later, so that

ψt = g′(ϕ)ϕt, ψx = g′(ϕ)ϕx, ψxx = g′′(ϕ)(ϕx)2 + g′(ϕ)ϕxx.

Then the equation that ϕ satisfies is

g′(ϕ)[ϕt − εϕxx] = [
1

2
(g′(ϕ))2 + εg′′(ϕ)](ϕx)2.

The function g can be chosen such that the right hand side vanishes. For example, by

taking g(s) = 2ε log s, the equation for ϕ is reduced to the heat equation,

ϕt − εϕxx = 0.
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The relation between u and ϕ is

u = −ψx = −2ε
ϕx
ϕ
,

which is called the Cole-Hopf transformation.

The initial data for u(x, 0) = u0(x) is transformed into

ϕ0(x) = exp
{
−
∫ x

a

u0(z)

2ε
dz
}
, a ∈ R.

If
1

x2

∫ x

a
u0(z)dz → 0, as |x| → ∞,

Then the Cauchy problem for ϕ has a unique smooth solution,

ϕ(x, t) =
1√

4πεt

∫ +∞

−∞
ϕ0(y) exp

{
− (x− y)2

4εt

}
dy.

Changing back to the original variables, we know that the Cauchy problem for viscous

Burger’s equation has solution

u(x, t) =

∫ +∞

−∞

x− y
t

ϕ0(y) exp
{
− (x− y)2

4εt

}
dy∫ +∞

−∞
ϕ0(y) exp

{
− (x− y)2

4εt

}
dy

.

5.4.2. traveling wave solution of viscous Burger’s equation. The viscous Burger’s equation

is

ut + [q(u)]x = εuxx. (5.19)

u|t=0 = 0.

In case ε = 0, we know that the solution has form u(x, t) = u0(x − q′t) which is of the

traveling wave form, i.e., u is a function of x − q′t. For the viscous case, with the help of

the diffusion, we are interested to know where there exists a traveling wave solution which

can connect two constant states. Furthermore, is it related to the solution in the inviscid

case?

The constant states are given via

lim
x→−∞

u(x, t) = uL, lim
x→+∞

u(x, t) = uR, uL 6= uR.

We are searching for a typical type of solution u(x, t) = U(x− vt) with undetermined wave

speed v. Let ξ = x− vt, then the ODE for U is

(q′(U)− v)U ′ = εU ′′, U(−∞) = uL, U(+∞) = uR.

In addition, we assume U ′ → 0 as ξ → ±∞. Then integrating the equation once, we have

q(U)− vU +A = εU ′, q(uL)− vuL +A = 0, q(uR)− vuR +A = 0.
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Thus a consequence for wave speed v is that

v =
q(uR)− q(uL)

uR − uL
, A =

−q(uR)uL + q(uL)uR
uR − uL

.

So if a traveling wave solution exists, the wave speeding is exactly the shock speed in

Rankine-Hugoniot condition.

Now we are going to check whether the traveling wave solution exists. Back to the

equation for

εU ′ = q(U)− vU +A.

We know that this equation has two equilibria U = uR and U = uL. If q′′ < 0, from ODE

theory, we know that only the case uL < uR can be connected. If q′′ > 0, then uL > uR.

5.5. Problems.

(1) Solve Burger’s equation ut + uux = 0 with different initial data

g1(x) =


1, x ≤ 0,

1− x, 0 < x < 1,

0, x ≥ 1,

and

g2(x) =


0, x ≤ 0,

1, 0 < x < 1,

0, x ≥ 1.

(2) If g ∈ C1(R) has compact support, prove that ρt + vm(1− 2ρ

ρm
)ρx = 0, (x, t) ∈ R× (0,+∞)

ρ(x, 0) = g(x),

has a locally existed C1 solution.

(3) Show that, for every α ≥ 1, the function

uα(x, t) =


1, 2x < (1− α)t,

−α, (1− α)t < 2x < 0,

α, 0 < 2x < (α− 1)t,

−1, (α− 1)t < 2x

is a weak solution of the problem
ut + uux = 0, t > 0, x ∈ R,

u(x, 0) =

{
1, x < 0,

−1, x > 0.

Is it also an entropy solution, at least for some α?

(4) (Traffic flow in tunnel found by Greenberg in 1959) Study the traffic flow problem

with flux

q(ρ) = vmρ log
ρm
ρ
,
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and initial data

ρ(x, 0) =

{
ρl, x ≤ 0,

ρr, x > 0,

where vm is the maximum velocity, ρm is the maximum density and ρl = 1
2ρm,

ρr = 1
3ρm. Give the solution, and draw a picture for partial path of car trajectories.

(5) Find the solutions of {
ut ± uux = 0, t > 0, x ∈ R,
u(x, 0) = x, x ∈ R.

(6) Draw the characteristics and describe the evolution for t → +∞ of the solution of

the problem
ut + uux = 0, t > 0, x ∈ R,

u(x, 0) =

{
sinx, 0 < x < π,

0 x ≤ 0 or x ≥ π.
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6. ***Mean field equation

This part of the notes comes from Golse’s lecture notes in 2013.

6.1. Mean field particle model. We start with the N -particle system

d

dt
xi(t) =

1

N

N∑
j=1

K(xi(t), xj(t)), 1 ≤ i ≤ N,

where the given interaction force K : Rd × Rd → Rd satisfies

K(x, y) = −K(y, x) and K(x, x) = 0 x, y ∈ Rd.

The main features of mean field model are that the particles are not distinguishable and

the pair interaction forces are of order 1
N . When the number of the particles is very large,

one expects to derive an effective one particle model to decribe the whole dynamics, which

is called the mean filed model.

Within this chapter, we assume that the interaction force has regularity in the following

sense

Assumption for K: K ∈ C1(Rd × Rd;Rd) and there exists an L > 0 such that

sup
y
|∇xK(x, y)|+ sup

x
|∇yK(x, y)| ≤ L. (6.1)

Definition 19 (Empirical measure). Fur each N -tuple XN := (x1, · · · , xN ) the correspond-

ing empirical measure is given by

µXN =
1

N

N∑
i=1

δxi .

With the empirical measure, we can rewrite the interaction summation into

1

N

N∑
i=j

K(xi(t), xj(t)) =
1

N

N∑
i=j

〈K(xi(t), ·), δxj(t)〉

= 〈K(xi(t), ·), µXN (t)〉 =: KµXN (t)(xi(t)).

If one can show that µXN (t) converges to a probability measure µ(t), then the limit of the

N -particle system is expected to be

d

dt
x(t) =

∫
Rd
K(x(t), y)dµ(dy, t),

with given initial datum

x(0) = x ∈ Rd and µ(0) = µ0 a given probability measure.

Within the whole setting, µ(·, t) is the push-forward measure 1 of µ0 along the dynamics

x(t).

1Let (X,A) and (Y,B) be two measurable spaces and φ : (X,A) → (Y,B) be a measurable map, µ be a

measure on (X,A), then the push-forward measure φ]µ is given by φ]µ(B) = µ(φ−1(B)), ∀B ∈ B.
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Theorem 6.1. Under the assumptions on K in (6.1), the problem

d

dt
xi(t) =

1

N

N∑
j=1

K(xi(t), xj(t)), 1 ≤ i ≤ N,

xi(t) = xi,0. (6.2)

has a unique classical solution XN (t,XN,0) ∈ C1(R,RdN ), 1 ≤ i ≤ N . Furthermore, the

empirical measure µXN (t,XN,0) is a weak solution of the following Cauchy problem in the

sense of distribution

∂tµ+∇ · (µKµ) = 0,

µ|t=0 = µXN,0 . (6.3)

Proof. Due to the fact that K is uniform Lipschitz continuous, the C1 solution of ODE sys-

tem (6.2) can be obtained by nonlinear ODE theory. Next we check that the corresponding

empirical measure is a weak solution of the mean field PDE (6.3).

For arbitrary test function ϕ ∈ C∞0 (Rd;R), we have

d

dt
〈µXN (t,XN,0), ϕ〉 =

d

dt

〈 1

N

N∑
i=1

δxi(t,XN,0), ϕ
〉

=
d

dt

1

N

N∑
i=1

ϕ(xi(t,XN,0))

=
1

N

N∑
i=1

∇ϕ(xi(t,XN,0))
d

dt
xi(t,XN,0)

=
1

N

N∑
i=1

∇ϕ(xi(t,XN,0))
1

N

N∑
j=1

K(xi(t,XN,0), xj(t,XN,0))

=
1

N

N∑
i=1

∇ϕ(xi(t,XN,0))
1

N

N∑
j=1

〈
δxj(t,XN,0),K(xi(t,XN,0), ·)

〉

=
1

N

N∑
i=1

∇ϕ(xi(t,XN,0))
〈
µXN (t,XN,0),K(xi(t,XN,0), ·)

〉

=
1

N

N∑
i=1

∇ϕ(xi(t,XN,0))KµXN (t,XN,0)(xi(t,XN,0))

=
〈
µXN (t,XN,0),∇ϕKµXN (t,XN,0)

〉
=

〈
KµXN (t,XN,0)µXN (t,XN,0),∇ϕ

〉
= −

〈
∇
(
KµXN (t,XN,0)µXN (t,XN,0)

)
, ϕ
〉
.
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Notice that K is continuously differentiable, we have that KµXN (t,XN,0) is also continuously

differential. Hence KµXN (t,XN,0)µXN (t,XN,0) is a distribution. Therefore µXN (t,XN,0) is a

solution of (6.3) in the sense of distribution. �

6.2. Solvability of the mean field equation. In this subsection, we give the unique

solvability of the mean field equation with general initial data. More precisely, we consider

the following problem

∂tµ+∇ · (µKµ) = 0,

µ|t=0 = µ0. (6.4)

The corresponding characteristics of this PDE is given by

d

dt
x(t, x0, µ0) =

∫
Rd
K(x(t, x0, µ0), y)µ(dy, t),

x(0, x0, µ0) = x0, ∀x0 ∈ Rd, (6.5)

µ(·, t) = x(t, ·, µ0)]µ0.

The solution µ(·, t) is searched in the space

P1(Rd) = {µ ∈ (Rd)|
∫
Rd
|x|µ(dx) <∞}, (6.6)

where P(Rd) is the space of all probability measures.

Theorem 6.2. Let the assumtion for K in (6.1) holds, µ0 ∈ P1, then problem (6.5) has a

unique solution x(t, x0, µ0) ∈ C1(R;Rd) and x(t, ·, µ0)]µ0 ∈ P1, ∀t > 0.

Proof. The proof is based on Picard iteration. Let C1 =
∫
Rd |x|µ0(dx) and define the

following space

X :=
{
v ∈ C(Rd;Rd)

∣∣∣ sup
x∈Rd

|v(x)|
1 + |x|

<∞
}
. (6.7)

It is obvious that X is a Banach space with norm

‖v‖X := sup
x∈Rd

|v(x)|
1 + |x|

.

As preparations, we need the following estimates for the nonlocal term by using the as-

sumption (6.1) for K. ∀v, w ∈ X we have∣∣∣ ∫
Rd
K(v(x), v(y))µ0(dy)−

∫
Rd
K(w(x), w(y))µ0(dy)

∣∣∣
≤ L

∫
Rd

(|v(x)− w(x)|+ |v(y)− w(y)|)µ0(dy)

≤ L‖v − w‖X(1 + |x|) + L‖v − w‖X
∫
Rd

(1 + |y|)µ0(dy)

≤ L(2 + C1)‖v − w‖X(1 + |x|). (6.8)
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We define the following sequence by induction

x0(t, y) = y, ∀y ∈ Rd,

xn(t, y) = y +

∫ t

0

∫
Rd
K(xn−1(s, y), xn−1(s, z))µ0(dz)ds.

Then the difference between x1 and x0 can be given by

|x1(t, y)− x0(t, y)| =
∣∣∣ ∫ t

0

∫
Rd
K(x0(s, y), x0(s, z))µ0(dz)ds

∣∣∣
=

∣∣∣ ∫ t

0

∫
Rd
K(y, z)µ0(dz)ds

∣∣∣
≤

∫ |t|
0

∫
Rd
L(|y|+ |z|)µ0(dz)ds

=

∫ |t|
0

L(|y|+ C1)ds ≤ L(1 + C1)(1 + |y|)|t|.

Furthermore ∀n ≥ 1, we have

|xn(t, y)− xn−1(t, y)|

=
∣∣∣ ∫ t

0

∫
Rd

(
K(xn−1(s, y), xn−1(s, z))−K(xn−2(s, y), xn−2(s, z))

)
µ0(dz)ds

∣∣∣
≤ L(2 + C1)

∫ |t|
0
‖xn−1(x, ·)− xn−2(s, ·)‖X(1 + |y|)ds,

hence by deviding both sides by 1 + |y|, we have

‖xn(t, ·)− xn−1(t, ·)‖X ≤ L(2 + C1)

∫ |t|
0
‖xn−1(x, ·)− xn−2(s, ·)‖Xds ≤

((2 + C1)L|t|)n

(n− 1)!
,

which implies ∀n > m→∞,

‖xn(t, ·)− xm(t, ·)‖X ≤
n−1∑
i=m

‖xi+1(t, ·)− xi(t, ·)‖X → 0.

Therefore for T > 0,

xn(t, ·)→ x(t, ·) in X uniformly in [−T, T ],

and x ∈ C(R;Rd) satisfies ∀y ∈ Rd

x(t, y) = y +

∫ t

0

∫
Rd
K(x(s, y), x(s, z))µ0(dz)ds.

According to the fundamental theorem in calculus, we know that for y ∈ Rd, x(t, y) =

C1(R;Rd) and it satisfiles

d

dt
x(t, y) =

∫
Rd
K(x(t, y), x(t, z))µ0(dz) =

∫
Rd
K(x(t, y), z′)µ(dz′, t)

where µ(·, t) is the push forward measure of µ0 along x(t, ·).
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The uniqueness will be obtained in the following. Let x, x̄ be two solutions, then by

taking the difference we have

x(t, y)− x̄(t, y) =

∫ t

0

∫
Rd

(
K(x(s, y), x(s, z))−K(x̄(s, y), x̄(s, z))

)
µ0(dz)ds.

With the help of similar estimates as before, we obtain

‖x(t, ·)− x̄(t, ·)‖X ≤ L(2 + C1)

∫ |t|
0
‖x(s, ·)− x̄(s, ·)‖Xds.

This implies that ‖x(t, ·)− x̄(t, ·)‖X = 0 by applying Gronwall’s inequality and initial data

‖x(0, ·)− x̄(0, ·)‖X = 0. �

6.3. Mean field limit (stability). We will prove the stability of mean field PDE by using

the so called Monge-Kantorovich distance (or Wasserstein distance)

Definition 20. For two measures µ, ν ∈ Pp(Rd) (p ≥ 1) with

Pp(Rd) = {µ ∈ P(Rd)|
∫
Rd
|x|pµ(dx) <∞},

the Monge-Kantonovich distance distMK,p(µ, ν) or W p(µ, ν) is defined by

distMK,p(µ, ν) = W p(µ, ν) = inf
π∈Π(µ,ν)

(∫∫
Rd×Rd

|x− y|pπ(dxdy)
) 1
p

(6.9)

where

Π(µ, ν) =
{
π ∈ P(Rd × Rd)

∣∣∣ ∫
Rd
π(·, dy) = µ(·) and

∫
Rd
π(dx, ·) = ν(·)

}
.

Remark 6.1. ∀ϕ,ψ ∈ C(Rd) such that ϕ(x) ∼ O(|x|p) for |x| � 1 and ψ(y) ∼ O(|y|p) for

|y| � 1, for π ∈ Π(µ, ν) it holds∫∫
Rd×Rd

(ϕ(x) + ψ(y))π(dxdy) =

∫
Rd
ϕ(x)µ(dx) +

∫
Rd
ψ(y)ν(dy).

Remark 6.2. It can be proved that the W 1 distance can be computed by

distMK,1(µ, ν) = W 1(µ, ν) = sup
φ∈Lip(Rd),Lip(φ)≤1

∣∣∣ ∫
Rd
φ(x)µ(dx)−

∫
Rd
φ(x)ν(dx)

∣∣∣.
Theorem 6.3 (Dobrushin’s stability). Let µ0, µ̄0 ∈ P1(Rd) and (x(t, ·, µ0), µ(·, t)), (x(t, ·, µ̄0),

µ̄(·, t)) be solutions of (6.5). Then ∀t > 0, it holds

distMK,1(µ(·, t), µ̄(·, t)) ≤ e2|t|LdistMK,1(µ0, µ̄0).

Proof. Let (x0, µ0) and (x̄0, µ̄0) be two initial data of problem (6.5) and π0 ∈ Π(µ0, µ̄0),

taking the difference of these two problems, we have

x(t, x0, µ0)− x(t, x̄0, µ̄0)

= x0 − x̄0 +

∫ t

0

∫
Rd
K(x(s, x0, µ0), y)µ(s, dy)ds−

∫ t

0

∫
Rd
K(x(s, x̄0, µ̄0), y)µ̄(s, dy)ds,
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where µ(·, t) = x(t, ·, µ0)]µ0 and µ̄(·, t) = x(t, ·, µ̄0)]µ̄0. Now we compute further and get

x(t, x0, µ0)− x(t, x̄0, µ̄0)

= x0 − x̄0 +

∫ t

0

∫
Rd
K(x(s, x0, µ0), x(s, z, µ0))µ0(dz)ds

−
∫ t

0

∫
Rd
K(x(s, x̄0, µ̄0), x(s, z̄, µ̄0))µ̄0(dz̄)ds

= x0 − x̄0 +

∫ t

0

∫∫
Rd×Rd

(
K(x(s, x0, µ0), x(s, z, µ0))

−K(x(s, x̄0, µ̄0), x(s, z̄, µ̄0))
)
π0(dzdz̄)ds.

Therefore by assumption (6.1) for K, we have

|x(t, x0, µ0)− x(t, x̄0, µ̄0)| ≤ |x0 − x̄0|

+L

∫ t

0

∫∫
Rd×Rd

(
|x(s, x0, µ0)− x(s, x̄0, µ̄0)|+ |x(s, z, µ0)− x(s, z̄, µ̄0)|

)
π0(dzdz̄)ds

≤ |x0 − x̄0|+ L

∫ t

0
|x(s, x0, µ0)− x(s, x̄0, µ̄0)|ds

+L

∫ t

0

∫∫
Rd×Rd

|x(s, z, µ0)− x(s, z̄, µ̄0)|π0(dzdz̄)ds

Next we integrate both sides in x0, x̄0 with respect to measure π0,∫∫
Rd×Rd

|x(t, x0, µ0)− x(t, x̄0, µ̄0)|π0(dx0dx̄0) ≤
∫∫

Rd×Rd
|x0 − x̄0|π0(dx0dx̄0)

+L

∫ t

0

∫∫
Rd×Rd

|x(s, x0, µ0)− x(s, x̄0, µ̄0)|π0(dx0dx̄0)ds

+L

∫ t

0

∫∫
Rd×Rd

|x(s, z, µ0)− x(s, z̄, µ̄0)|π0(dzdz̄)ds.

By denoting

D[π0](t) =

∫∫
Rd×Rd

|x(s, z, µ0)− x(s, z̄, µ̄0)|π0(dzdz̄),

we have obtained the estimate

D[π0](t) ≤ D[π0](0) + 2L

∫ t

0
D[π0](s)ds,

which implies by Gronwall’s inequality that

D[π0](t) ≤ D[π0](0)e2Lt.

Now let φt : Rd×Rd → Rd×Rd be the map such that φt(x0, x̄0) = (x(t, x0, µ0), x(t, x̄0, µ̄0))

and for arbitrary π0 ∈ Π(µ0, ν0), πt := φt]π0 be the push forward measure of π0 by φt. It

is obvious that

πt = φt]π0 ∈ Π(µ(·, t), µ̄(·, t)).
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Therefore,

distMK,1(µ(·, t), µ̄(·, t))

= inf
π∈Π(µ(·,t),µ̄(·,t))

∫∫
Rd×Rd

|z − z̄|π(dzdz̄)

≤ inf
π0∈Π(µ0,µ̄0)

∫∫
Rd×Rd

|x(t, z, µ0)− x(t, z̄, µ̄0)|π0(dzdz̄)

= inf
π0∈Π(µ0,µ̄0)

D[π0](t) ≤ inf
π0∈Π(µ0,µ̄0)

D[π0](0)e2Lt = e2LtdistMK,1(µ0, µ̄0).

�

Corollary 6.1. Let f0 be a probability density on Rd with
∫
Rd |x|f0(x)dx < ∞. Then the

Cauchy problem

∂tf +∇ · (fKf) = 0

f |t=0 = f0 (6.10)

has a unique weak solution f ∈ C(R;L1(Rd)).

Proof. Notice that if µ0 has a density f0, i.e. absolutely continuous with respect to Lebesgue

measure, then the push forward measure µ(·, t) is also absolutely continuous with respect

to Lebesgue measure, therefore, there exists an f(x, t) ∈ L1(Rd) for any fixed t, such that

µ(dx, t) = f(x, t)dx. �

Theorem 6.4 (mean field limit). For f0 ∈ L1(Rd), let µ0,N = 1
N

∑N
i=1 δxi,0 such that

distMK,1(µ0,N , f0)→ 0, as N →∞.

Let XN (t) be the solution of the N particle system (6.2) with its empiricle measure µN (t) =

µXN (t,XN,0). Then

distMK,1(µN (t), f(·, t)) ≤ e2LtdistMK,1(µ0,N , f0)→ 0, as N →∞.

And µN (t) ⇀ f(·, t) weakly in measure.

Proof. The stability result gives us already the convergence rate estimate. We are left to

prove the weak convergence in measure. ∀φ ∈ Lip(Rd), we have∣∣∣ ∫
Rd
φ(x)µN (t, dx)−

∫
Rd
φ(x)f(t, x)dx

∣∣∣
=

∣∣∣ ∫∫
Rd×Rd

(φ(x)− φ(y))πt(dxdy)
∣∣∣ where πt ∈ Π(µN (t), f(·, t))

≤ Lip(φ)

∫∫
Rd×Rd

|x− y|πt(dxdy)→ 0.

Since Lip(Rd) is dense in Cc(Rd) and because of the total mass is 1, then the argument

also holds for test function in Cb(Rd). hence the weak convergence in measure is true. �
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