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Partial Differential Equations and the Universe

“The book of Nature is written in mathematical language.”

Galileo Galilei, 1564-1642

Updated version:

“The book of Nature is (mostly) written in the language of Partial
Differential Equations.”

Partial Differential Equations (PDEs) are widely used in the applied
sciences to describe a lot of phenomena.

The analysis of PDEs is a very active and challenging field of
Mathematics.
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Some classes of PDEs that have caught my attention

Evolution equations: describe how relevant physical quantities change
with time (transient systems).

Diffusion equations: evolution mainly driven by tendency of particles to
move in opposition to concentration gradients (“diffusion”).

Reaction-diffusion systems: important role played by “reaction terms”,
arising from many different physical phenomena, like e.g. chemical
reactions.

Cross-diffusion: diffusion of a species influenced by the density gradient
of other species.

Nonlocal diffusion: diffusion effect at some point influenced by the
values of concentration gradients in the whole spatial domain.

Of course, other types of PDEs exist (hyperbolic conservation laws,
stationary elliptic problems . . . )
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Some classes of PDEs that have caught my attention

Evolution equations: describe how relevant physical quantities change
with time (transient systems).

Diffusion equations: evolution mainly driven by tendency of particles to
move in opposition to concentration gradients (“diffusion”).

Reaction-diffusion systems: important role played by “reaction terms”,
arising from many different physical phenomena, like e.g. chemical
reactions.

→ Cross-diffusion: diffusion of a species influenced by the density
gradient of other species.

Nonlocal diffusion: diffusion effect at some point influenced by the
values of concentration gradients in the whole spatial domain.

Today I will focus on (reaction-)cross-diffusion PDEs.

Nicola Zamponi Entropy versus diffusive PDEs



Cross-diffusion PDEs in the applied sciences

Some examples of cross-diffusion PDEs from applied sciences:

• the Shigesada-Kawasaki-Teramoto (SKT) model in biology governs
the interaction of two competing species in the same environment;

• the Maxwell-Stefan equations in gas dynamics describe diffusion in
multicomponent fluids under the assumption of steady state;

• models for ion transport in fluid mixtures describing the time
evolution of systems of electrically charged particles;

• models for tumor growth analyzing in a quantitative way the
development of cancerous cells conglomerates.
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Cross-diffusion systems

Heat equation:

∂tu = ∆u, t > 0, x ∈ Ω ⊂ Rd .

Reaction-diffusion system with diagonal diffusion: for i = 1, . . . , n,

∂tui = div (ai (ui )∇ui ) + fi (u), t > 0, x ∈ Ω ⊂ Rd .

Reaction-cross-diffusion systems: for i = 1, . . . , n,

∂tui =
n∑

j=1

div (Aij(u)∇uj) + fi (u), t > 0, x ∈ Ω ⊂ Rd ,

where u = (u1, . . . , un) : Ω× (0,∞)→ Rn is the unknown of the system
(tipically a vector of densities or concentrations of species),
A = A(u) ∈ Rn×n is the diffusion matrix, and f = f (u) ∈ Rn is the
reaction term.
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Cross-diffusion systems

Reaction-cross-diffusion systems (compact notation):

∂tu = div (A(u)∇u) + f (u), t > 0, x ∈ Ω ⊂ Rd , (1)

where u = (u1, . . . , un) : Ω× (0,∞)→ Rn is the unknown of the system
(tipically a vector of densities or concentrations of species),
A = A(u) ∈ Rn×n is the diffusion matrix, and f = f (u) ∈ Rn is the
reaction term.

Some interesting analytical questions:

• existence of solutions (global in time, weak solutions);

• uniform boundedness, nonnegativity, other algebraic constraints;

• the long-time behaviour of solutions (convergence to steady state);

• uniqueness of solutions.
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Mathematical challenges of cross-diffusion

The analytical study of cross-diffusion PDEs is challenging!

Cross-diffusion ⇒ strong coupling between the equations.

Diffusion matrix A(u) in general not positive (semi)definite
⇒ standard coercivity-based approaches ineffective (straightforward
monotonicity properties not available).

No general maximum/minimum principle ⇒ showing upper/lower bounds
for the solution of the system is often a very difficult problem.
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The “entropy method”

[Burger-Di Francesco-Pietschmann-Schlake ’10, Jüngel ’15, Jüngel ’16].

If a convex functional H = H[u] exists (usually termed mathematical
entropy) such that (1) can be (formally) restated as

∂tu = div (B∇H′[u]) + f (u), t > 0, x ∈ Ω ⊂ Rd , (2)

with H′ Fréchet derivative of H and B a positive semi-definite matrix,
then we say that (1) possesses an entropy structure.

H[u] =
∫

Ω
h(u)dx ⇒ H′[u] = h′(u) ≡ w entropy variable.

Example (heat equation):

∂tu = div (u∇ log u), log u = H′[u], H[u] =

∫
Ω

(u log u − u)dx .
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The “entropy method”, 2

If (1) admits an entropy structure (and f ≡ 0) then

d

dt
H[u] = −

n∑
i=1

∫
Ω

∂xiw · B(w)∂xiw dx ≤ 0,

i.e. H is nonincreasing along the (smooth) solutions to (1).

• It can be generalized to the case f 6= 0 with suitable additional
assumptions on f .

• Suitable lower bounds for − d
dtH[u] ⇒ crucial a-priori estimates for

the solution u to (1).

Example (heat equation):

d

dt
H[u] = −

∫
Ω

u|∇ log u|2dx , H[u] =

∫
Ω

(u log u − u)dx .
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The “entropy method”, 3

If h′ : D ⊂ Rn → Rn is globally invertible:

u = u(w) = (h′)−1(w) ⇒ u ∈ D on {|w | <∞}.

⇒ If D is bounded and w is a.e. finite, then u is bounded with bounds
that only depend on D.

Example: “Fermi-Dirac” entropy:

H[u] =

∫
Ω

(u log u + (1− u) log(1− u))dx .

w = H′[u] = log
u

1− u
⇒ u =

ew

1 + ew
∈ D ≡ (0, 1).
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Existence argument

Three steps in existence argument.

1 Formulation of an approximated problem. Time semi-discretization
+ regularization. Obtain family (u(τ))τ>0 of approximated solutions.

2 Entropy inequality for approximated problem ⇒ estimates for u(τ) in
Sobolev spaces.

3 Aubin-Lions, Div-Curl lemma ⇒ compactness for u(τ) ⇒ u(τ) → u
as τ → 0, and u is solution to original PDEs.

Sometimes the bounds for u(τ) are not sufficient to get compactness.
The bounds might become ineffective when u(τ) approaches some critical
value or set → Degeneracy.

Possible solution to degeneracy: generalize Aubin-Lions Lemma to
degenerate case. Example: [NZ-Jüngel, Ann. Inst. H. Poinc. (C) 2017].
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About long-time behaviour

Idea: the solution u(t) should converge to some “steady state” u∞ in
some norm. Use relative entropy H[u(t)|u∞] to measure distance
between solution and steady state.

Key tool: relative entropy inequality

d

dt
Hrel [u|u∞] + I [u,∇u] ≤ 0.

Crucial point: relate the entropy dissipation I [u,∇u] and the entropy
Hrel [u|u∞] (remember Fokker-Planck).
Gronwall’s lemma ⇒ upper bound for H[u(t)|u∞] which decays in time.
⇒ u(t)→ u∞ in some norm.

Much more difficult for (cross-diffusion) systems than in the scalar case.
No log-Sobolev inequality for systems!

Result: in [NZ-Jüngel, Ann. Inst. H. Poinc. (C) 2017] we proved
algebraic convergence to the steady state for degenerate cross-diffusion
system.
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About uniqueness

[Gajewsky 1994]: take two solutions u, v with the same initial datum and
consider the “relative entropy” H rel [u, v ] between them:

H rel [u, v ] = H[u] + H[v ]− 2H

[
u + v

2

]
.

I H convex ⇒ H rel [u, v ] ≥ 0 and H rel [u, v ] = 0 if and only if u = v .

I H rel [u, v ]|t=0 = 0 since u = v at initial time.

I So, if one can prove that d
dtH

rel [u(t), v(t)] ≤ 0 for t > 0, it follows
that u(t) = v(t) for t > 0.

Very difficult for cross-diffusion systems!

Idea: argument can be applied to “partially decoupled” systems together
with H−1 method [NZ-Jüngel, Ann. Inst. H. Poinc. (C) 2017].
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A particular cross-diffusion PDEs system

A class of multi-species population models with degenerate
cross-diffusion [NZ-Jüngel, Ann. Inst. H. Poinc. (C) 2017]:

∂tui =
n∑

j=1

div (Aij(u)∇uj) in Ω× (0,T ), i = 1, . . . , n,

Aij(u) = q(un+1)2 ∂

∂uj

(
uipi (u)

q(un+1)

)
, i , j = 1, . . . , n,

where

u = (u1, . . . , un) : Ω× (0,T )→ Rn proportions of subpopulations,

un+1 = 1−
n∑

i=1

ui = proportion of unoccupied space.

Constraints: ui ≥ 0, i = 1, . . . , n, and un+1 ≥ 0 if q(un+1) 6≡ 1.

Employed to model spatial segregation of interacting populations,
motility of biological cells, ion transport through nanopores.
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The analytical problem

Goal: study existence, uniqueness and long-time behaviour of solutions
to the initial-boundary value problem:

find u : Ω× (0,T )→ D = {u ∈ (0, 1)n :
∑n

i=1 ui < 1} such that:

∂tu = div (A(u)∇u) in Ω× (0,T ), (PB.1)

∂νu = 0 on ∂Ω× (0,T ), (PB.2)

u(·, 0) = u0 on Ω, (PB.3)

with A(u) given by:

Aij(u) = q(un+1)2 ∂

∂uj

(
uipi (u)

q(un+1)

)
, un+1 = 1−

n∑
i=1

ui .

Entropy structure with entropy functional: H[u] =
∫

Ω
h(u)dx ,

h(u) =
n∑

i=1

(ui log ui − ui + 1) +

∫ un+1

a

log q(s) ds + χ(u) u ∈ D.

Hypothesis: q(0) = 0 ( + other technical assumptions).
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Existence of bounded weak solutions

We proved global-in-time existence of uniformly bounded weak
solutions u : Ω× (0,T )→ D such that H[u(t2)] ≤ H[u(t1)] for t1 ≤ t2.

Key point: a-priori estimates for approximate solution u(τ):

n∑
i=1

‖q(u
(τ)
n+1)1/2∇(u

(τ)
i )1/2‖2

L2(Ω) + ‖∇q(u
(τ)
n+1)1/2‖2

L2(Ω) ≤ C .

q(0) = 0: Degeneracy! Compactness?

Novel idea: generalize Aubin-Lions lemma to the degenerate case.

I Bounds for ∇q(u
(τ)
n+1)1/2 and ∂tu

(τ)
n+1 ⇒ compactness for u

(τ)
n+1.

I Strong convergence for u
(τ)
n+1

+ Bounds for q(u
(τ)
n+1)1/2∇(u

(τ)
i )1/2 and ∂tu

(τ)
i

⇒ compactness for q(u
(τ)
n+1)1/2f (u(τ)) for every f continuous.

This is enough to pass to the limit τ → 0 in the approximate equations.
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Long-time behaviour of solutions

Constant Dirichlet boundary conditions u = uD .
⇒ u → u∞ ≡ uD in L1(Ω) with algebraic rate:

‖u(t)− u∞‖L1(Ω) ≤
C√

1 + t
∀t > 0.

Key idea: relative entropy inequality:

d

dt
H[u(t)|u∞] ≤ −

∫
Ω

n+1∑
i=1

|∇Φi (u)|2dx

(Poincaré) ≤ −cP
∫

Ω

n+1∑
i=1

|Φi (u)− Φi (u
∞)|2dx

(Computations) ≤ −cH[u(t)|u∞]2

Algebraic decay rate from Gronwall argument.
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Uniqueness of solutions

Uniqueness of weak solutions. No higher regularity assumptions!

Assume that pi (u) ≡ 1, i = 1, . . . , n. Then the weak solution u with the
properties stated in the existence theorem is unique.

Equations become:

∂tui − div (q(un+1)∇ui − ui∇q(un+1)) = 0 (i = 1, . . . , n).

“Partially decoupled equations”: summing equations in i yields equation
for un+1 alone. Two steps:

1. Prove uniqueness for un+1 (H−1 method).

2. Prove uniqueness for ui , i = 1, . . . , n (relative entropy).

Gajewsky method with “relative entropy between to solutions u, v”:

Ξ = S [u] + S [v ]− 2S

[
u + v

2

]
, S [u] =

n∑
i=1

∫
Ω

ui log uidx .

Convexity of the Fisher information functional ⇒ Ξ(t) nonincreasing.
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Summary and outlook

Summary.

• We explained a method, based on the idea of mathematical entropy,
employed for the analysis of nonlinear PDEs systems.

• We adapted the method to a multi-species population model with
degenerate cross-diffusion.

• Key original ideas:

I generalized Aubin-Lions Lemma to cope with degeneracy;
I algebraic decay rate to steady state for degenerate

cross-diffusion system;
I uniqueness for “partially decoupled” cross-diffusion PDEs.

Outlook.

• Strongly degenerate PDEs systems. Example: model for gang
dynamics in a city (coop. with A. Barbaro, N. Rodriguez).

• Hölder regularity for cross-diffusion systems via Campanato iteration
employing entropy functional (coop. with C. Raithel, M. Braukhoff).

• Apply entropy method to nonlocal diffusion PDEs systems
(coop. with M. Gualdani).
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