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> Note that if a bounded domain E has Lipschitz boundary then
P(E)=7#""1(0E) and if it has ¢ boundary then 2(E) agrees with
the usual surface area Per(E) of E from calculus.



Densities

> Given positive functions v, w on R", we define the weighted volume and
weighted perimeter of a smooth bounded domain E cR" as
VoI(E;v) := [g v(x)dx, and

Per(E;w) = f3£ w(x)dS(x).



Densities

> Given positive functions v, w on R", we define the weighted volume and
weighted perimeter of a smooth bounded domain E cR" as

VoI(E;v) := [g v(x)dx, and
Per(E;w) = f3£ w(x)dS(x).

> If E is just £"-measurable then we may define the above quantities as
SLNE;v):= [pvdeL,

and (under some integrability conditions on w; see Baldi, A. Weighted
BV functions. Houston J. Math. 2001)

P(E;w):=sup{ [gdivep dx: ¢pe CLRMRM), [p]<w in R} <oo



Densities

> Given positive functions v, w on R", we define the weighted volume and
weighted perimeter of a smooth bounded domain E cR" as

VoI(E;v) := [g v(x)dx, and

Per(E;w) = f3£ w(x)dS(x).
> If E is just £"-measurable then we may define the above quantities as
SLNE;v):= [pvdeL,

and (under some integrability conditions on w; see Baldi, A. Weighted
BV functions. Houston J. Math. 2001)

P(E;w):=sup{ [gdivep dx: ¢pe CLRMRM), [p]<w in R} <oo

> Such positive functions v, w are called densities on R".



Densities

>
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SLNE;v):= [pvdeL,

and (under some integrability conditions on w; see Baldi, A. Weighted
BV functions. Houston J. Math. 2001)

P(E;w):=sup{ [gdivep dx: ¢pe CLRMRM), [p]<w in R} <oo

> Such positive functions v, w are called densities on R".
> Iso-problem with densities: for the case of a single density;i.e. v=w

(e.g. in the classical isoperimetric inequality we have v=w =1) much is
known (recent highlight: proof of Brakke’s log-convex density conjecture
by Chambers). The iso-problem with double density has attracted

attention recently (Alvino, Betta, Brock, Cabré, Chiacchio, Csatd, Howe,
Mercaldo, Posteraro, Pratelli, Ros-Oton, Saracco, Serra%. E.g.: the case

of the two different radial densities v(x) = #, W(X) = i with

0>a>b-1 (see Csat6é D.I.E. 2015 and Alvino et al. JMAA 2017).
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» Correspondingly, this turns out to be equivalent with a weighted
isoperimetric inequality: for any £-measurable set E = R" there holds

P(E;1XI) = G ap(L"(E; x170)) "/ (070),
P(E;1x178) :=sup{ [g dive dx: ¢ CLR™R"), 9] <IxI"2 iR} <oo
and £"(E;|xI7?) := [ 1xI~Pdx.
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> From now on we write w(x) = x|'="X7(Ix|/Rq) and
v(x) = IxI7" X170/ (=1)(1x1/ Ry).
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proof of the inequality

> To compare the two infima we observe that since ye (0,n-1]and r =1,
we know
yr1_1/7 <(n-1)r.

Hence we may combine these equations to conclude

Q:znw:]/n(%)hﬂn.
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original motivation for this study: a doubly improved L1 Hardy inequality

> Theorem Let Q be a bounded domain in R” containing the origin, and
set Rq :=supyeq |xI. Then for all y >0, s> n, and any fe C}(Q\1{0}), it

holds that - »
LW dx-(s-n) XIS dx
Y f If] 1+y( |X|)dx+ Chy (f ||/ (n=1 )wan/(n 1)(|x|) )1—1/ny
Q

-
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where the second term as well as the first term on the right fail to
appear when y =0.
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