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The classical isoperimetric inequality

Ï Its statement: Among all bounded smooth domains of Rn with the same
fixed perimeter k > 0, it is the ball that maximizes the volume.

Ï Ak := {
bounded, smooth domains E ⊂Rn, with Per(E)= k

}
.

Hence Vol(E)≤Vol(Brk ) ∀ E ∈Ak , where rk = (
k/nωn

)1/(n−1) and
ωn =Vol(B1) (recall here that
Per(Br )= nωnrn−1 ⇒Per(Brk )= nωn

k
nωn

= k ).

Ï But Vol(Br )=ωnrn, therefore Vol(E)≤ωn
(
k/nωn

)n/(n−1) ⇒(
Vol(E)

)(n−1)/n ≤ω1−1/n
n k/nωn = k/(nω1/n

n ). Conclusion:

Per(E)≥ nω1/n
n

(
Vol(E)

)(n−1)/n ∀ bounded smooth domain E ⊂Rn.

Ï This result is true for any L n-measurable set provided Vol(E) is
replaced by L n(E)= ∫

E 1dL n and Per(E) by

P (E) := sup
{∫

E divφ dL n : φ ∈C1
c (R

n;Rn), |φ| ≤ 1 in Rn
}
<∞.

Ï Note that if a bounded domain E has Lipschitz boundary then
P (E)=H n−1(∂E) and if it has C 1 boundary then P (E) agrees with
the usual surface area Per(E) of E from calculus.
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Densities

Ï Given positive functions v ,w on Rn, we define the weighted volume and
weighted perimeter of a smooth bounded domain E ⊂Rn as
Vol(E ;v) := ∫

E v(x)dx , and

Per(E ;w) := ∫
∂E w(x)dS(x).

Ï If E is just L n-measurable then we may define the above quantities as
L n(E ;v) := ∫

E vdL n,

and (under some integrability conditions on w ; see Baldi, A. Weighted
BV functions. Houston J. Math. 2001)

P (E ;w) := sup
{∫

E divφ dx : φ ∈C1
c (R

n;Rn), |φ| ≤w in Rn
}
<∞

Ï Such positive functions v ,w are called densities on Rn.
Ï Iso-problem with densities: for the case of a single density; i.e. v =w

(e.g. in the classical isoperimetric inequality we have v =w = 1) much is
known (recent highlight: proof of Brakke’s log-convex density conjecture
by Chambers). The iso-problem with double density has attracted
attention recently (Alvino, Betta, Brock, Cabré, Chiacchio, Csató, Howe,
Mercaldo, Posteraro, Pratelli, Ros-Oton, Saracco, Serra). E.g.: the case
of the two different radial densities v(x)= 1

|x |b , w(x)= 1
|x |a with

0> a> b−1 (see Csató D.I.E. 2015 and Alvino et al. JMAA 2017).
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Its equivalent functional formulation and its weighted generalization

Ï In 1960 Federer and Fleming and at the same time Maz’ya showed that
it is equivalent with the sharp form of an inequality originally due to
Gagliardo and Nirenberg:∫
Rn |∇f | dx ≥ nω1/n

n

(∫
Rn |f |n/(n−1) dx

)(n−1)/n
∀ f ∈C1

c (R
n).

Ï In 2007 Maz’ya and Shaposhnikova proved that if 0≤ a< n−1 and
an/(n−1)≤ b ≤ a+1, then∫
Rn

|∇f |
|x |a dx ≥Cn,a,b

(∫
Rn

|f |(n−b)/(n−1−a)

|x |b dx
)(n−1−a)/(n−b)

∀ f ∈C1
c (R

n),

Cn,a,b := (
nωn(n−b)(n−1−a)/(1+a−b))(1+a−b)/(n−b) is sharp.

Ï Taking a= b = 0 we recover the sharp GN.
Ï Correspondingly, this turns out to be equivalent with a weighted

isoperimetric inequality: for any L n-measurable set E ⊂Rn there holds

P (E ; |x |−a)≥Cn,a,b
(
L n(E ; |x |−b)

)(n−1−a)/(n−b)
,

P (E ; |x |−a) := sup
{∫

E divφ dx : φ ∈C1
c (R

n;Rn), |φ| ≤ |x |−a in Rn
}
<∞

and L n(E ; |x |−b) := ∫
E |x |−bdx .
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A substitute for the case a= n−1, b = n

Ï What is going wrong with the end point case a= n−1? The
assumptions for the parameter b gives b = n in this case and so the
right hand side is infinite unless f is supported away from the origin.

Ï Set X (t) := (1− log t)−1, t ∈ (0,1], and observe limt→0+ X (t)= 0. A direct
computation shows that given R > 0, for any δ ∈ (0,R] one has∫
Bδ(0) |x |

−nX1+θ( |x |
R

)
dx <∞⇔ θ > 0.

Ï Theorem Suppose Ω is a bounded domain in Rn, containing the origin
and set RΩ := supx∈Ω |x |. For all γ ∈ (0,n−1] and any f ∈C1

c (Ω), it holds
that∫
Ω

|∇f |
|x |n−1

Xγ
( |x |
RΩ

)
dx ≥Cn,γ

(∫
Ω

|f |n/(n−1)

|x |n X1+γn/(n−1)
( |x |
RΩ

)
dx

)1−1/n
,

where Cn,γ := nω1/n
n

(
γ/(n−1)

)1−1/n is sharp.
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A substitute for the case a= n−1, b = n

Ï Whenever E ⊆Ω is L n-measurable, recall once more that we set
L n(

E ; |x |−nX1+γn/(n−1)(|x |/RΩ)
)
:= ∫

E |x |−nX1+γn/(n−1)(|x |/RΩ) dx ,

P (E ; |x |1−nXγ(|x |/RΩ)) :=
sup

{∫
E divϕ dx : ϕ ∈C1

c (Ω;R
n), |ϕ(x)| ≤ |x |1−nXγ(|x |/RΩ) in Ω

}
<∞.

Theorem For all γ ∈ (0,n−1] there holds

P
(
E ; |x |1−nXγ(|x |/RΩ)

)≥Cn,γ

(
L n(

E ; |x |−nX1+γn/(n−1)(|x |/RΩ)
))1−1/n

,

for any L n-measurable set E ⊆Ω with P (E ; |x |1−nXγ(|x |/RΩ))<∞.
Moreover, equality holds if E is a ball centered at the origin.

Ï From now on we write w(x)= |x |1−nXγ(|x |/RΩ) and
v(x)= |x |−nX1+γn/(n−1)(|x |/RΩ).
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proof of the inequality

Ï Consider the best constant in Bn :=B1(0)

C := inf
f∈C1

c (B
n)

f 6≡0

∫
Bn |∇f |w dx(∫

Bn |f |n/(n−1)v dx
)1−1/n

.

Ï Change variables by f (x)= h(τ,θ), τ :=X−γ(|x |), θ := x/|x |, to get

C= γ1−1/n inf
h∈A

∫ ∞
1

∫
Sn−1 τ

−1
(
h2
τ +

(
γτ1−1/γ)−2|∇θh|2

)1/2
dS(θ)dτ(∫ ∞

1
∫
Sn−1 τ−1−n/(n−1)|h|n/(n−1) dS(θ)dτ

)1−1/n
,

where A := {
g ∈C1([1,∞)×Sn−1)\ {0} : g(1,θ)= 0

}
.

Ï The sharp GN inequality in Bn is

nω1/n
n = inf

f∈C1
c (B

n)
f 6≡0

∫
Bn |∇f | dx(∫

Bn |f |n/(n−1) dx
)1−1/n

.
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proof of the inequality

Ï To compare the two infima we observe that since γ ∈ (0,n−1] and τ≥ 1,
we know

γτ1−1/γ ≤ (n−1)τ.

Hence we may combine these equations to conclude

C≥ nω1/n
n

( γ

n−1

)1−1/n
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p-version and Pólya-Szegö

Ï Theorem If 1≤ p < n, then for all α ∈ (1−p,n+1−2p] and any f ∈C1
c (Ω),
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( |x |
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dx

)1−p/n
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(
α+p−1
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)1−1/n
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original motivation for this study: a doubly improved L1 Hardy inequality

Ï Theorem Let Ω be a bounded domain in Rn containing the origin, and
set RΩ := supx∈Ω |x |. Then for all γ> 0, s ≥ n, and any f ∈C1

c (Ω\ {0}), it
holds that ∫

Ω

|∇f |
|x |s−1

dx − (s−n)
∫
Ω

|f |
|x |s dx

≥ γ

Rs−n
Ω

∫
Ω

|f |
|x |n X1+γ( |x |

RΩ

)
dx+ Cn,γ

Rs−n
Ω

(∫
Ω

|f |n/(n−1)

|x |n X1+γn/(n−1)
( |x |
RΩ

)
dx

)1−1/n
,

where the second term as well as the first term on the right fail to
appear when γ= 0.



The End


