Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 28/09/2020

Advanced analysis - HWS 2020/2021

Homework assignment #01

For the first three exercises, *X* stands for a nonempty set.

Exercise 1 Show that Dirac's delta set-function with mass concentrated at $x \in X$; that is

$$\delta_x(A) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \quad \text{for any } A \subseteq X,$$

is a measure.

Exercise 2 (first Borel-Cantelli lemma) Let μ be a measure on X and suppose that $\{A_k \subseteq X\}_{k \in \mathbb{N}}$ satisfies $\sum_{k \in \mathbb{N}} \mu(A_k) < \infty$. Prove that $\mu(\limsup_{k \to \infty} A_k) = 0$ (see the back page for definitions). [2pt]

Exercise 3 Define the following function on subsets A of X

$$\mu(A) = \begin{cases} 1 & \text{if } A \neq \emptyset, \\ 0 & \text{if } A = \emptyset. \end{cases}$$

Prove that μ is a measure on X and find all μ -measurable subsets of X. [2pt]

Exercise 4 Prove that $\mathscr{L}^n(I) = \operatorname{vol}(I)$ for any *n*-dimensional interval *I*. [2pt]

The following two exercises are taken from undergraduate analysis and are asked here for future use.

Exercise 5 Prove that the distance of a compact set $K \subset \mathbb{R}^n$ to a disjoint closed set $F \subset \mathbb{R}^n$ is positive. [1pt]

Exercise 6 For compact $K \subset \mathbb{R}^n$, show there exists a non-increasing sequence $\{F_k \supseteq K\}_{k \in \mathbb{N}}$ with $K = \bigcap_{k \in \mathbb{N}} F_k$ and each of F_k consists of a finite union of non-overlapping intervals. [1pt]

Upload the solutions on ILIAS by 12/10/20 before 12:00.

[2pt]

Abstract sets and sequences of abstract sets

Let *X* be a nonempty set and 2^X be the set of all subsets of *X*.

1. Writing A^c for the *complement* of $A \subseteq X$, that is $A^c := X \setminus A$, there holds

$$\left(\bigcup_{A\in\mathscr{F}}A\right)^c = \bigcap_{A\in\mathscr{F}}A^c \text{ and } \left(\bigcap_{A\in\mathscr{F}}A\right)^c = \bigcup_{A\in\mathscr{F}}A^c,$$

for any family of sets $\mathscr{F} \subseteq 2^X$.

2. A sequence $\{A_k \subseteq X\}_{k \in \mathbb{N}}$ is said to *non-decrease* (to $\bigcup_{k \in \mathbb{N}} A_k$) if $A_k \subseteq A_{k+1}$ for all $k \in \mathbb{N}$, and to *non-increase* (to $\bigcap_{k \in \mathbb{N}} A_k$) if $A_k \supseteq A_{k+1}$ for all $k \in \mathbb{N}$.

3. For a sequence $\{A_k \subseteq X\}_{k \in \mathbb{N}}$ and $j \in \mathbb{N}$, let

$$\overline{M}_j := \bigcup_{k \ge j} A_k$$
 and $\underline{M}_j := \bigcap_{k \ge j} A_k$.

Then $\{\overline{M}_j\}_{j\in\mathbb{N}}$ is non-increasing, $\{\underline{M}_j\}_{j\in\mathbb{N}}$ is non-decreasing and we set

$$\limsup_{k o \infty} A_k := igcap_{j \in \mathbb{N}} \overline{M}_j \ \ ext{and} \ \ \liminf_{k o \infty} A_k := igcup_{j \in \mathbb{N}} \underline{M}_j.$$

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 12/10/2020

Advanced analysis

Homework assignment #02

Exercise 1 Let μ be a regular measure on X. Prove that if $A_k \subseteq A_{k+1}$ for all $k \in \mathbb{N}$, then $\lim_{k\to\infty} \mu(A_k) = \mu(\bigcup_{k\in\mathbb{N}}A_k)$. [2pt]

Exercise 2: A set $A \subseteq X$ is called σ -*finite* with respect to μ if

 $A = \bigcup_{k \in \mathbb{N}} A_k$, where A_k are μ -measurable and $\mu(A_k) < \infty \quad \forall k \in \mathbb{N}$.

Prove that if $A \subseteq X$ is σ -finite with respect to μ , then there exist *disjoint* μ -measurable sets B_k , $k \in \mathbb{N}$, such that $A = \bigcup_{k \in \mathbb{N}} B_k$ and $\mu(B_k) < \infty$ for all $k \in \mathbb{N}$. [2pt]

Exercise 3 [Lebesgue measure is a Radon measure] In the lectures we have seen by applying Caratheodory's criterion that the Lebesgue measure on \mathbb{R}^n is a Borel measure.

- (i) Prove it is finite on compact subsets of \mathbb{R}^n . [2pt]
- (iii) Prove that $\mathscr{L}^n(A) = \inf{\{\mathscr{L}^n(G) \mid \text{open } G \supseteq A\}}.$ [2pt]
- (iii) Use (ii) to prove it is Borel regular (i.e. $\forall A \subset \mathbb{R}^n$, \exists Borel $B \supseteq A$ with $\mathscr{L}^n(B) \leq \mathscr{L}^n(A)$).

[2pt]

Upload the solutions on ILIAS by 19/10/20 before 12:00.

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 19/10/2020

Advanced analysis

Homework assignment #03

Exercise 1 Let $f, g : \mathbb{R}^n \to \mathbb{R}^n$ be Borel measurable. Show that $f \circ g$ is Borel measurable. [3pt]

Exercise 2: Let μ be a measure on the set $X \neq \emptyset$. A set $A \in 2^X$ is called an *atom* for μ if $0 < \mu(A) < \infty$ and for any $F \subseteq A$ we have either $\mu(F) = 0$, or $\mu(A \setminus F) = 0$. In particular, for any μ -measurable $F \subseteq A$ we have then either $\mu(F) = 0$, or $\mu(F) = \mu(A)$. For example let X be any countable set and take μ to be the counting measure on X; singletons $A = \{x\}, x \in X$, are atoms for μ .

Show the Lebesgue measure \mathscr{L}^n has no atoms by proving that given $A \subset \mathbb{R}^n$ with $0 < \mathscr{L}^n(A) < \infty$ and $0 < \beta < \mathscr{L}^n(A)$, there is a set $B \subseteq A$ with $\mathscr{L}^n(B) = \beta$. [3pt]

[Hint: You can prove the function $f : [0, \infty] \to [0, \mathscr{L}^n(A)]$ given by $f(r) := \mathscr{L}^n(A \cap B_r(0))$ is continuous.]

Exercise 3 Let $f : [0, \infty) \to [0, \infty)$ be concave; that is, for any $\lambda \in [0, 1]$ and all $x, y \in [0, \infty)$ there holds

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y).$$

Prove

(i)
$$g: (0,\infty) \to [0,\infty)$$
 defined by $g(x) = f(x)/x$ is decreasing. [2pt]

(ii) f is sub-additive; that is
$$f(x+y) \le f(x) + f(y)$$
 for all $x, y \ge 0$. [2pt]

Upload the solutions on ILIAS by 26/10/20 before 12:00.

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 26/10/2020

[1pt]

Advanced analysis

Homework assignment #04

Exercise 1 Let $E \subset \mathbb{R}^n$ be \mathscr{L}^n -measurable with $\mathscr{L}^n(E) < \infty$ and let $f : E \to \mathbb{R}$ be an \mathscr{L}^n -measurable function. Define $\mu_{E,f} : \mathbb{R} \to [0,\infty)$ by

$$\mu_{E,f}(s) := \mathscr{L}^n(\{x \in E \mid f(x) > s\}).$$

Prove the following assertions

- (i) $\mu_{E,f}$ is bounded, non-increasing, $\mu_{E,f}(-\infty) = \mathscr{L}^n(E)$ and $\mu_{E,f}(\infty) = 0.$ [1pt]
- (ii) $\mu_{E,f}(s) \mu_{E,f}(t) = \mathscr{L}^n(\{x \in E \mid s < f(x) \le t\})$ whenever s < t. [1pt]
- (iii) $\lim_{s \to t^+} \mu_{E,f}(s) = \mu_{E,f}(t)$ (thus $\mu_{E,f}$ is right-continuous).
- (iv) $\lim_{s \to t^{-}} \mu_{E,f}(s) = \mathscr{L}^{n}(\{x \in E \mid f(x) \ge t\}) = \mu_{E,f}(t) + \mathscr{L}^{n}(\{x \in E \mid f(x) = t\}) \text{ (thus } \mu_{E,f}(t) + \mathscr{L}^{n}(\{x \in E \mid f(x) = t\}) = 0).$ [1pt]
- (v) $\mu_{E,f}$ is constant in the interval (s,t) if and only if $\mathscr{L}^n(\{x \in E \mid s < f(x) < t\}) = 0$. [1pt]

Exercise 2: Let $f, f_k : X \to \mathbb{R}^n, k \in \mathbb{N}$, be μ -summable, such that

$$\lim_{k\to\infty}\int_X |f_k-f|\mathrm{d}\mu=0.$$

Prove that there exists a subsequence $\{f_{l_k}\}_{k\in\mathbb{N}}$ such that $f_{l_k} \to f \mu$ -a.e. in X.

[Hint: Setting $\alpha_k := \int_X |f_k - f| d\mu$, extract first a subsequence $\{\alpha_{\ell_k}\}_{k \in \mathbb{N}}$ such that $\sum_{k \in \mathbb{N}} \alpha_{\ell_k} \le 1$. Apply then the monotone convergence theorem to the sequence $g_k := \sum_{j=1}^k |f_{\ell_j} - f|$.] [3pt]

Exercise 3 Prove that if $f: X \to \mathbb{R}$ is μ -summable then

$$\mu(\{x \in X \mid |f(x)| \ge s\}) \le \frac{1}{s} \int_X |f| \, \mathrm{d}\mu \quad \text{whenever } s > 0.$$

Use this to prove that $\int_X |f| d\mu = 0$ if and only if $f = 0 \mu$ -a.e. in X. [2pt]

Upload the solutions on ILIAS by 02/11/20 before 12:00.

Tutor: Matthew Liew

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Monday 02/11/2020

Advanced analysis

Homework assignment #05

Exercise 1 Let μ be a measure on the set *X* and $\mu(X) = 1$. Let $u: X \to [0, \infty]$ be μ -summable.

(i) If $\int_X u \, d\mu = 1$, prove that

$$\int_X u \log u \, \mathrm{d}\mu \ge 0.$$
[2pt]

(ii) Prove that for all $p \ge 1$ there holds

$$\frac{1}{\int_X \frac{1}{u^p} \, \mathrm{d}\mu} \le \Big(\int_X u \, \mathrm{d}\mu\Big)^p.$$
[2pt]

(iii) Prove that

$$\sqrt{1 + \left(\int_X u \, \mathrm{d}\mu\right)^2} \le \int_X \sqrt{1 + u^2} \, \mathrm{d}\mu \le 1 + \int_X u \, \mathrm{d}\mu.$$
[2pt]

Exercise 2: Let $\alpha > 0$. Given a summable function $f : (0, \alpha) \to \overline{\mathbb{R}}$, define $g : (0, \alpha) \to \overline{\mathbb{R}}$ by

$$g(x) := \int_x^\alpha \frac{f(t)}{t} \, \mathrm{d}t.$$

Prove that g is also a summable and satisfies

$$\int_0^\alpha g(x) \, \mathrm{d}x = \int_0^\alpha f(x) \, \mathrm{d}x.$$
[2pt]

Exercise 3 Compute the following limit

$$\lim_{k\to\infty}\int_0^\infty \frac{\sin(x/k)}{(1+x/k)^k} \,\mathrm{d}x.$$

[1pt]

Exercise 4 Prove that

$$\lim_{k \to \infty} \int_0^1 \left(1 - e^{-x^2/k} \right) x^{-1/2} \, \mathrm{d}x = 0.$$
[1pt]

Upload the solutions on ILIAS by 09/11/20 before 12:00.

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 09/11/2020

Advanced analysis

Homework assignment #06

Exercise 1 Let μ be a measure on *X*. Prove the *interpolation inequality* for L^p -norms: If $1 \le p \le q \le r \le \infty$, $p \ne r$, and $f \in L^p(X, \mu) \cap L^r(X, \mu)$ then

$$\|f\|_{L^q(X,\mu)} \le \|f\|^{\theta}_{L^p(X,\mu)} \|f\|^{1-\theta}_{L^r(X,\mu)}, \text{ where } \theta = \frac{1/q - 1/r}{1/p - 1/r}.$$

[4pt]

[3pt]

[3pt]

Exercise 2: (a generalization of Hölders inequality): Let μ be a measure on X. Let $k \in \mathbb{N} \setminus \{1\}$ and $p_i \in [1,\infty]$, i = 1,...,k be such that $\sum_{i=1}^{k} (1/p_i) = 1$. Prove that given $f_i \in L^{p_i}(X,\mu)$, i = 1,...,k, we have

$$\int_{X} \prod_{i=1}^{k} |f_i| \mathrm{d}\mu \leq \prod_{i=1}^{k} ||f_i||_{L^{p_i}(X,\mu)}.$$

Exercise 3 Let μ be a measure on X and $0 < \mu(X) < \infty$. Prove the function $A : (0, \infty] \to [0, \infty]$ given by

$$A(p) := \left(\frac{1}{\mu(X)} \int_X |f|^p \, \mathrm{d}\mu\right)^{1/p},$$

is nondecreasing; that is, if $0 < p_1 < p_2 \Rightarrow A(p_1) \le A(p_2)$.

Upload the solutions on ILIAS by 16/11/20 before 12:00.

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 16/11/2020

[3pt]

Advanced analysis

Homework assignment #07 - Convergence in Measure¹

Let μ be a measure on a set *X* and suppose that $\mu(X) < \infty$.

Definition: We say that a sequence $\{f_k : X \to \overline{\mathbb{R}}\}_{k \in \mathbb{N}}$ of μ -measurable functions *converges in measure* to $f : X \to \overline{\mathbb{R}}$, whenever

$$\lim_{k\to\infty} \mu(\{x\in X\mid |f_k(x)-f(x)|>\varepsilon\})=0\quad\forall\ \varepsilon>0.$$

We write this as $f_k \rightarrow^{\mu} f$.

Exercise 1 Prove that if $f_k \to f \mu$ -a.e. in *X*, then $f_k \to^{\mu} f$.

[Hint: Use Egorov's theorem.]

Exercise 2 Prove that if $f_k \to f$ in L^p , $p \ge 1$, then $f_k \to^{\mu} f$. [3pt]

Exercise 3 Prove that if $f_k \to^{\mu} f$, then there exists a subsequence $\{f_{l_k}\}_{k \in \mathbb{N}}$ such that $f_{l_k} \to f$ μ -a.e. in X.

Exercise 4 Let $f_k \to^{\mu} f$ and $g: X \to [0, \infty]$, $g \in L^p$ with $p \ge 1$, be such that $|f_k| \le g \mu$ -a.e. in X, for all $k \in \mathbb{N}$. Show that $f_k \to f$ in L^p . [2pt]

[Hint: Split $||f_k - f||_p^p$ in two integrals on suitable disjoint sets. In one of them you can use Vitali's theorem on the absolute continuity of the integral. You might want to use Exercise 3 to show that $f \in L^p$.] [2pt]

Upload the solutions on ILIAS by 23/11/20 before 12:00.

¹corrected some misprints including an exchange of the numbering of exercises 3, 4. I have enlarged the hint in 4!

Solution of Exercise 3: Let $j \in \mathbb{N}$. Taking $\varepsilon = 1/j$ in the definition of convergence in measure,

$$\lim_{k\to\infty}\mu\left(\left\{x\in X\mid |f_k(x)-f(x)|>1/j\right\}\right)=0.$$

Analyzing the limit,

$$\forall \varepsilon > 0, \exists k_{\varepsilon} \in \mathbb{N} \text{ such that } \mu(\{x \in X \mid |f_k(x) - f(x)| > 1/j\}) \leq \varepsilon \ \forall k \geq k_{\varepsilon}.$$

By taking $\varepsilon = 2^{-j}$,

$$\exists k_j \in \mathbb{N} \text{ such that } \mu(\{x \in X \mid |f_k(x) - f(x)| > 1/j\}) \leq 2^{-j} \ \forall k \geq k_j.$$

For $k = k_i$,

$$\mu(\{x \in X \mid |f_{k_j}(x) - f(x)| > 1/j\}) \le 2^{-j}.$$

Summarizing,

 $\forall j \in \mathbb{N}, \exists k_j \in \mathbb{N} \text{ such that for } N_j := \{x \in X \mid |f_{k_j}(x) - f(x)| > 1/j\} \text{ we have } \mu(N_j) \le 2^{-j}.$

This implies $\sum_{j \in \mathbb{N}} \mu(N_j) = 1 < \infty$ and by the Borel-Cantelli lemma (Exercise 2, Assignment #01) we get

$$\mu\left(\limsup_{j\to\infty} N_j\right) = 0. \tag{1}$$

On the other side, if $x \in N_j^c$ we have $|f_{k_j}(x) - f(x)| \le 1/j$. Hence, given $m \in \mathbb{N}$ we know that $x \in Z_m := (\bigcup_{j\ge m} N_j)^c$ implies $|f_{k_j}(x) - f(x)| \le 1/j$ for all $j \ge m$, hence $\lim_{j\to\infty} f_{k_j}(x) = f(x)$ for all $x \in Z_m$. Since this is true for all $m \in \mathbb{N}$, we conclude

$$\lim_{j \to \infty} f_{k_j}(x) = f(x) \text{ for all } x \in \bigcup_{m \in \mathbb{N}} Z_m.$$
(2)

But $\bigcup_{m \in \mathbb{N}} Z_m = \bigcup_{m \in \mathbb{N}} \left(\bigcup_{j \ge m} N_j \right)^c = \left(\bigcap_{m \in \mathbb{N}} \left(\bigcup_{j \ge m} N_j \right) \right)^c = \left(\limsup_{j \to \infty} N_j \right)^c$ and so (1) and (2) yield

$$\lim_{j\to\infty}f_{k_j}(x)=f(x) \quad \mu\text{-a.e. } x\in X.$$

Remark on Exercise 4: Suppose $f_k \to f \mu$ -a.e. in X and $g: X \to [0, \infty]$, $g \in L^p$ with $p \ge 1$, is such that $|f_k| \le g \mu$ -a.e. in X, for all $k \in \mathbb{N}$. Then, as we have seen many times, Fatou's Lemma readily gives $f \in L^p$. Replacing a.e. convergence by convergence in measure, this remains true!² Indeed, applying Exercise 3 we obtain a subsequence $\{f_{l_k}\}_{k\in\mathbb{N}}$ converging to f in the a.e. sense. Hence, by Fatou's lemma,

$$\int_X |f|^p \mathrm{d}\mu = \int_X \lim_{k \to \infty} |f_{l_k}|^p \mathrm{d}\mu \leq \liminf_{k \to \infty} \int_X |f_{l_k}|^p \mathrm{d}\mu \leq \int_X |g|^p \mathrm{d}\mu < \infty.$$

$$\int_X g \mathrm{d}\mu = \int_X \lim_{k \to \infty} g_{m_{l_k}} \mathrm{d}\mu \leq \liminf_{k \to \infty} \int_X g_{m_{l_k}} \mathrm{d}\mu = \liminf_{k \to \infty} \int_X g_k \mathrm{d}\mu.$$

²More generally, one can prove that given a sequence $\{g_k : X \to [0,\infty]\}_{k\in\mathbb{N}}$ of μ -measurable functions such that $g_k \to^{\mu} g$ in X, then $\int_X g d\mu \leq \liminf_{k\to\infty} \int_X g_k d\mu$. To this end, pick first a subsequence $\{g_{l_k}\}_{k\in\mathbb{N}}$ such that $\lim_{k\to\infty} \int_X g_{l_k} d\mu = \liminf_{k\to\infty} \int_X g_k d\mu$, and then we may apply the above argument for $\{g_{l_k}\}_{k\in\mathbb{N}}$ as soon as we observe $g_{l_k} \to^{\mu} g$ too. Thus there exists a further subsequence $g_{m_{l_k}}$, such that $g_{m_{l_k}} \to g \mu$ -a.e. in X. So by Fatou's lemma,

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 23/11/2020

Advanced analysis

Homework assignment #08

Let μ be a measure on $X \neq \emptyset$. For a given $p \in [1, \infty]$, we write below L^p for $L^p(X, \mu)$.

Exercise 1: Let $1 \le p < \infty$ and suppose that $f_k \to f$ in L^p . Assume $\{g_k \in L^\infty\}_{k \in \mathbb{N}}$ is such that

- (*i*) $g_k \to g$ as $k \to \infty$, μ -a.e. in X,
- (*ii*) $\sup_{k\in\mathbb{N}} \|g_k\|_{\infty} \leq M$.

Prove that $f_k g_k \to fg$ in L^p .

[2pt]

Exercise 2: Let
$$1 \le p \le \infty$$
. Prove that if $f_k \to f$ in L^p , then $||f_k||_p \to ||f||_p$ as $k \to \infty$. [2pt]

Exercise 3: Let $1 \le p < \infty$. Suppose $\{f_k \in L^p\}_{k \in \mathbb{N}}$ and $f \in L^p$ satisfy $f_k \to f$ as $k \to \infty$, μ -a.e. in X, and $\|f_k\|_p \to \|f\|_p$ as $k \to \infty$. Prove $f_k \to f$ in L^p . [2pt]

Exercise 4: Let $1 \le p \le \infty$ and suppose $f_k \to f$ in L^p . Prove $f_k \rightharpoonup f$ in L^p . [2pt]

Exercise 5: Suppose $f_k \rightharpoonup f$ in L^2 and $||f_k||_{L^2} \rightarrow ||f||_{L^2}$ as $k \rightarrow \infty$. Prove $f_k \rightarrow f$ in L^2 . [2pt]

Upload the solutions on ILIAS by 30/11/20 before 12:00.

Universität Mannheim Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik

Tutor: Matthew Liew

Monday 30/11/2020

Advanced analysis

Homework assignment #09

For a given $n \in \mathbb{N}$ and $p \in [1, \infty]$, we write below L^p for $L^p(\mathbb{R}^n, \mathscr{L}^n)$.

YOUNG'S INEQUALITY (WITHOUT THE SHARP CONSTANT; SEE LL-§4.2):

Recall that the *convolution* of two \mathcal{L}^n -measurable functions f, g is defined by

$$(f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y) \, \mathrm{d}\mathscr{L}^n(y),$$

for any $x \in \mathbb{R}^n$ such that the integral exists.

Exercise 1: Let $p \in [1,\infty]$. Use Fubini's theorem and Hölder's inequality to prove the following simpler version of Young's inequality:

$$f \in L^1, \ g \in L^p \Longrightarrow f \ast g \in L^p(\mathbb{R}^n, \mathscr{L}^n) \text{ with } \|f \ast g\|_p \le \|f\|_1 \|g\|_p.$$
[3pt]

Exercise 2: More generally, let $p, q, r \ge 1$ satisfy 1/p + 1/q + 1/r = 2. Prove Young's inequality:

$$f \in L^p, \ g \in L^q, \ h \in L^r \Longrightarrow \int_{\mathbb{R}^n} f(x) \big(g * h\big)(x) \mathrm{d}\mathscr{L}^n(x) \le \|f\|_p \|g\|_q \|h\|_r.$$
[3pt]

THE FOURIER TRANSFORM IN L^1 :

Recall that for $f \in L^1(\mathbb{R}^n)$, the *Fourier transform* \hat{f} of f is defined by

$$\hat{f}(k) := \int_{\mathbb{R}^n} e^{-2\pi i k \cdot x} f(x) \, \mathrm{d}x, \quad k \in \mathbb{R}^n.$$

Exercise 3: Show that the Fourier transform of $f(x) = \chi_{(\alpha,\beta)}(x), x \in \mathbb{R}$, is given by

$$\hat{f}(k) = e^{-\pi i (\alpha + \beta)k} \frac{\sin(\pi (\beta - \alpha)k)}{\pi k}, \quad k \in \mathbb{R},$$

and that this is not an $L^1(\mathbb{R})$ function.

Upload the solutions on ILIAS by 07/12/20 before 12:00.

[4pt]