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We proved Lemma 2.3.10 and explained its relation to Remark 6.0.2, both from our online lecture
notes on measure theory.

Lp-SPACES

Let µ be a measure on a set X 6= /0.

Notation. From now on we write {g > α} for {x ∈ X | g(x)> α}, etc.

Definition - essential supremum. For a µ-measurable g : X → R̄ we set

ess supX g :=


0 if µ(X) = 0,

∞ if µ
(
{g > α}

)
> 0 ∀α ∈ R,

inf{α ∈ R | µ
(
{g > α}

)
= 0} otherwise.

Remark. Suppose µ
(
{g > α}

)
> 0 for all α ∈ R. Then @ α ∈ R such that µ

(
{g > α}

)
= 0;

that is, @ α ∈ R such that g(x) ≤ α for µ-a.e. x ∈ X ; in other words, g = ∞ on a set of positive
µ-measure. This justifies the middle definition of ess sup. On the other hand, if ∃ α ∈ R such that
µ
(
{g > α}

)
= 0, then g(x)≤ α for µ-a.e. x∈ X ; that is α is an upper bound for g (except possibly

on a subset of X of µ-measure 0). Hence it is natural to define ess sup as the least upper bound in
this case.

Recall that g : X → R̄ is called µ-summable if it is µ-integrable and
∫

X |g|dµ < ∞.

Definition - Lp spaces.

L∞ ≡ L∞(X ,µ) := {all µ-measurable functions f : X → R̄ such that ess sup | f | is finite}.

For p ∈ (0,∞):

Lp ≡ Lp(X ,µ) := {all µ-measurable functions f : X → R̄ such that | f |p is µ-summable}.

Theorem (proved). Suppose µ(X)< ∞. Then

(i) 0 < p1 < p2 ≤ ∞ implies Lp2 ⊂ Lp1 ,

(ii) limp→∞

(∫
X | f |p dµ

)1/p
= ess supX | f |.

Proof. If f ∈ Lp2 and p2 < ∞ then write∫
X
| f |p1 dµ =

∫
{| f |≤1}

| f |p1 dµ +
∫
{| f |>1}

| f |p1 dµ

≤ µ({| f | ≤ 1})+
∫
{| f |>1}

| f |p2 dµ ≤ µ(X)+
∫

X
| f |p2 dµ < ∞.
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If f ∈ Lp2 and p2 = ∞ then write∫
X
| f |p1 dµ ≤

(
ess supX | f |

)p1
µ(X)< ∞.

this proves (i). For (ii), let µ(X)> 0 and assume first that ∃ α ∈ [0,∞) such that µ
(
{| f |>α}

)
= 0.

This implies (see the remark following the definition of ess sup) that

ess supX | f |= inf{α ∈ R | µ
(
{| f |> α}

)
= 0}=: M ∈ [0,∞).

If α = 0 or M = 0 then f = 0 µ-a.e. in X and the result true. If M > 0, observe that(∫
X
| f |p dµ

)1/p
≤M

(
µ(X)

)1/p⇒ limsup
p→∞

(∫
X
| f |p dµ

)1/p
≤M. (I)

On the other hand, given M′ < M we have µ
(
{| f |> M′}

)
> 0, hence(∫

X
| f |p dµ

)1/p
≥
(∫
{| f |>M′}

| f |p dµ

)1/p
≥M′

(
µ({| f |> M′})

)1/p⇒

liminf
p→∞

(∫
X
| f |p dµ

)1/p
≥M′.

But this holds true for any M′ < M, hence

liminf
p→∞

(∫
X
| f |p dµ

)1/p
≥M. (II)

Inequalities (I) and (II) readily imply the result. In the case where µ
(
{| f | > α}

)
> 0 for all

α ∈ [0,∞), then by definition ess sup | f | = ∞. By the remark following the definition of ess sup
we know | f | = ∞ on a set of positive measure, hence

∫
X | f |pdµ = ∞ and the result follows.

Finally, the case where µ(X) = 0 is also clear since ess sup | f | = 0 by its definition, and also∫
X | f |pdµ = 0.

Theorem - Hölder’s inequality (proved). Let p,q ∈ [1,∞] satisfying 1/p+ 1/q = 1. If f ∈ Lp,
g ∈ Lq then

∫
X
| f g| dµ ≤


(

ess supX |g|
)∫

X | f | dµ if p = 1,(∫
X | f |p dµ

)1/p(∫
X |g|q dµ

)1/q
if 1 < p < ∞,(

ess supX | f |
)∫

X |g| dµ if p = ∞.

Proof. Let 1 < p < ∞ (the cases p = 1 and p = ∞ are trivial). We know the convexity inequality
|ab| ≤ 1

p |a|
p + 1

q |b|
q for all a,b ∈ R (prove it!). Hence if

∫
X | f |p dµ =

∫
X |g|q dµ = 1 we get∫

X
| f g|dµ ≤ 1

p

∫
X
| f |p dµ +

1
q

∫
X
|g|q dµ =

1
p
+

1
q
= 1 =

(∫
X
| f |p dµ

)1/p(∫
X
|g|q dµ

)1/q
.

If
∫

X | f |p dµ,
∫

X |g|q dµ > 0, normalize f ,g as follows

f̃ :=
f(∫

X | f |p dµ
)1/p

, g̃ :=
g(∫

X |g|q dµ
)1/q

.

Then
∫

X | f̃ |p dµ =
∫

X |g̃|q dµ = 1 and as before we have
∫

X | f̃ g̃|dµ ≤ 1. Substituting f̃ and g̃ gives
the result.
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Theorem - Minkowski’s inequality (proved). If f ,g ∈ Lp with p ∈ [1,∞), then(∫
X
| f +g|p dµ

)1/p

≤
(∫

X
| f |p dµ

)1/p

+

(∫
X
|g|p dµ

)1/p

.

If f ,g ∈ L∞ then ess supX | f +g| ≤ ess supX | f |+ ess supX |g|.

Proof. For 1 < p < ∞ use the triangle inequality to get∫
X
| f +g|p dµ ≤

∫
X
| f || f +g|p−1 dµ +

∫
X
|g|| f +g|p−1 dµ.

The proof follows by applying Hölder’s inequality with exponents p and p/(p−1) on both terms
of the right hand side and then rearranging terms in the resulting inequality.

Hence, if p ∈ [1,∞], the function ‖ · ‖p : Lp→ [0,∞] given by

‖ f‖p ≡ ‖ f‖Lp ≡ ‖ f‖Lp(X ,µ) :=

{ (∫
X | f |p dµ

)1/p
if p ∈ [1,∞)

ess supX | f | if p = ∞

, f ∈ Lp,

defines a norm on the linear space Lp.

Friday, 13/11/2020 (12:00-13:30)

Theorem - Lp is a Banach space (proved) - LL§2.7. Let 1 ≤ p ≤ ∞ and suppose fk : X → R̄,
k ∈ N, is a Cauchy sequence in Lp. There exists then a subsequence { flk}k∈N such that

(i) | flk | ≤ F for all k ∈ N, µ-a.e. in X, and some nonnegative F ∈ Lp,

(ii) flk → f as k→ ∞, µ-a.e. in X, and some f : X → R̄.

In particular, applying Fatou’s lemma to the sequence gk := | flk |p gives f ∈ Lp. Applying then the
dominated convergence theorem for the sequence hk := | flk − f |p, we deduce ‖ flk − f‖p→ 0, as
k→ ∞. This, together with the fact that { fk}k∈N is Cauchy in Lp, imply ‖ fk− f‖p→ 0, as k→ ∞.

THE DUAL OF Lp

Lemma (not proved). Assume p ∈ (1,∞) and for s ∈ (0,1], t ≥ 0 set

φ(s, t) := h(s)+ k(s)t p, where

{
h(s) := (1+ s)p−1 +(1− s)p−1

k(s) := (1/s+1)p−1− (1/s−1)p−1.

Then for any t ≥ 0 we have

φ(s, t)≤ (1+ t)p + |1− t|p for 1 < p < 2

φ(s, t)≥ (1+ t)p + |1− t|p for p > 2.

With this at hand we proved

Theorem - Hanner’s inequalities (proved) - LL§2.5. If f ,g ∈ Lp with p ∈ [1,2), then

‖ f +g‖p
p +‖ f −g‖p

p ≥
(
‖ f‖p +‖g‖p

)p
+
∣∣‖ f‖p−‖g‖p

∣∣p.(
‖ f +g‖p +‖ f −g‖p

)p
+
∣∣‖ f +g‖p−‖ f −g‖p

∣∣p ≤ 2p(‖ f‖p
p +‖g‖p

p
)
.
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If p = 2 we have equality throughout, and if p > 2 the inequalities are reversed.

Proof. Fix f ,g ∈ Lp, 1 < p < 2, and w.l.o.g. assume that ‖ f‖p ≥ ‖g‖p > 0. Take t = |g|/| f |,
f 6= 0, in the above lemma. Multiplying with | f |p we deduce

h(s)| f |p + k(s)|g|p ≤
(
| f |+ |g|

)p
+
∣∣| f |− |g|∣∣p = | f +g|p + | f −g|p ⇒

‖ f +g‖p
p +‖ f −g‖p

p ≥ h(s)‖ f‖p
p + k(s)‖g‖p

p.

Now compute the right hand side with s = ‖g‖p/‖ f‖p to get

‖ f +g‖p
p +‖ f −g‖p

p ≥
(
‖ f‖p +‖g‖p

)p
+
(
‖ f‖p +‖g‖p

)(
‖ f‖p−‖g‖p

)p−1

≥
(
‖ f‖p +‖g‖p

)p
+
(
‖ f‖p−‖g‖p

)p
.

The second inequality follows from the first one by replacing f by f + g and g by f − g. The
proofs of the counterpart inequalities when p > 2 follow the same steps starting from the second
inequality of the previous lemma.

Lemma (proved). Let p≥ 1. Then for all a,b ∈ R there holds
(
|a|+ |b|

)p ≤ 2p−1(|a|p + |b|p).
Proof. We know f (t) = t p, t ≥ 0, is convex. In particular, f

(
|a|/2+ |b|/2

)
≤ 1/2

(
f (|a|)+ f (|b|)

)
which gives the result.

Monday, 16/11/2020 (10:15-11:45)

Theorem - Derivative of the norm (proved) - LL§2.6. If f ,g ∈ Lp with p ∈ (1,∞), then the map
N[ f ,g] : R→ [0,∞) given by N[ f ,g](t) := ‖ f + tg‖p

p satisfies

N′[ f ,g](0) = p
∫

X
| f |p−2 f g dµ.

Remark on the proof (exercise 21 in LL). In the proof we used the difference quotient function

q(t) :=
| f + tg|p−| f |p

t
, 0 < |t| ≤ 1,

and in particular its property that: q(−1)≤ q(t)≤ q(1) for all 0 < |t| ≤ 1. Here is the proof of this
fact: First, using the above lemma we get

|2 f |p = | f − tg+ f + tg|p ≤ 2p−1(| f − tg|p + | f + tg|p
)
⇒

2| f |p ≤ | f − tg|p + | f + tg|p. (1)

From the convexity of t 7→ |t|p we have | f − tg|p = |(1− t) f + t( f −g)|p ≤ (1− t)| f |p+ t| f −g|p.
Inserting this in (1) readily gives q(−1) ≤ q(t) for all t ∈ (0,1]. On the other hand, the convex-
ity of t 7→ |t|p also gives | f + tg|p = |(1− t) f + t( f + g)|p ≤ (1− t)| f |p + t| f + g|p which says
q(t) ≤ q(1) for all t ∈ (0,1]. We have showed q(−1) ≤ q(t) ≤ q(1) for all t ∈ (0,1]. To get the
same estimate for t ∈ [−1,0), apply this with −t in place of t and −g in place of g.

Lemma - Projection on convex sets (proved) - LL§2.8. Let K be a closed convex subset of Lp,
where p ∈ (1,∞). For any f ∈ Lp there exists h ∈ K such that

inf
g∈K
‖ f −g‖p = ‖ f −h‖p.

Moreover, there holds N′[ f−h,h−g](0)≥ 0 for all g ∈ K.
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Friday, 20/11/2020 (12:00-13:30)

In what follows, unless otherwise stated, we assume that p ∈ [1,∞].

Definition - Continuous linear functionals of Lp. A linear functional of Lp is a map ` : Lp→ R
for which

`(α f +βg) = α`( f )+β`(g) ∀ f ,g ∈ Lp, ∀ α,β ∈ R.

Such a functional ` is called continuous if

lim
k→∞

`( fk)→ 0 whenever fk→ 0 in Lp,

and bounded if

|`( f )| ≤ K‖ f‖p ∀ f ∈ Lp.

Proposition (proved). A linear functional ` of Lp is continuous if and only if

(i) ∀ ε > 0, ∃ δ > 0 such that |`( f )| ≤ ε whenever ‖ f‖p ≤ δ ,

(ii) it is bounded.

Proof. (i) Let ` be a continuous linear functional of Lp and suppose in contrary that there exists
ε > 0 such that:

∀ δ > 0, ∃ fδ ∈ Lp with ‖ fδ‖p ≤ δ but |`( fδ )|> ε.

Taking δ = 1/k, k∈N, we obtain a sequence { fk}k∈N such that ‖ fk‖p≤ 1/k but |`( fk)|> ε . Letting
k→ ∞ we see that fk→ 0 in Lp but |`( fk)|> ε for all k ∈ N, a contradiction to the continuity of `.
For the reverse statement, let ε > 0 and suppose ` is a linear functional of Lp such that

∃ δ (ε)> 0 such that |`( f )| ≤ ε whenever ‖ f‖p ≤ δ (ε). (1)

For a sequence such that fk→ 0 in Lp, we know

∃ k(δ (ε)) ∈ N such that ‖ fk‖p ≤ δ (ε) ∀ k ≥ k(δ (ε)) =⇒(1)

∃ k(δ (ε)) ∈ N such that |`( fk)| ≤ ε ∀ k ≥ k(δ (ε)).

Hence, given ε > 0 we have found k̃(ε) := k(δ (ε)) ∈ N such that |`( fk)| ≤ ε for all k ≥ ˜k(ε); this
means `( fk)→ 0.

(ii) Let ` be a continuous linear functional of Lp. From (ii) with ε = 1, we get

∃ δ > 0 such that |`( f )| ≤ 1 whenever ‖ f‖p ≤ δ .

But for any f ∈ Lp\{0}we have that f̃ := δ f/‖ f‖p satisfies ‖ f̃‖p = δ . Hence |`( f̃ )| ≤ 1; this gives
|`( f )| ≤ (1/δ )‖ f‖p. Since this estimate is true also when f = 0, we conclude that |`( f )| ≤ K‖ f‖p
for all f ∈ Lp, where K = 1/δ ; that is, ` is bounded. For the reverse statement, if ` is a bounded
linear functional of Lp then given any { fk ∈ Lp}k∈N we know |`( fk)| ≤ K‖ fk‖p for all k ∈ N. In
particular, if fk→ 0 in Lp, then |`( fk)| → 0 as k→ ∞; hence ` is continuous.

Definition - Dual space. The set of all bounded linear functionals of Lp is called the dual of Lp

and is denoted by
(
Lp)∗. It is a normed linear space with the norm

‖`‖= sup{|`( f )|
∣∣ ‖ f‖p ≤ 1}.
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Theorem - The dual of Lp - LL§2.14.

(i) (proved) If p ∈ (1,∞) then (Lp)∗ = Lp/(p−1) in the sense that

∀ ` ∈ (Lp)∗, ∃! v` ∈ Lp/(p−1) such that `(g) =
∫

X
v`g dµ ∀ g ∈ Lp.

(ii) If p = 1 then (L1)∗ = L∞ in the above sense provided that X is σ -finite with respect to µ .

(iii) (proved) If p ∈ [1,∞], a functional ` : Lp→ R defined for all g ∈ Lp by

`(g) =
∫

X
vg dµ for some v ∈ Lq where 1/p+1/q = 1, (2)

is always a member of (Lp)∗ and moreover ‖`‖= ‖v‖q.

Remark 0.1. Assertions (i) and (ii) say that when p ∈ [1,∞) then all bounded linear functionals
you can find are of the form (2) (provided some σ -finiteness condition on X when p = 1). From
assertion (iii) we understand in particular that when p = ∞, functionals of the form (2) with v∈ L1

are members of the dual space (L∞)∗, but these are not all one can find; that is (L∞)∗ ) L1.1

Monday, 23/11/20 (10:15-11:45)

We proved part (ii) of the above theorem.

WEAK CONVERGENCE IN Lp:

Definition - Weak convergence in Lp - LL§2.9. Let 1≤ p≤ ∞. A sequence { fk ∈ Lp}k∈N is said
to converge weakly in Lp to f ∈ Lp, denoted by fk ⇀ f in Lp, whenever

`( fk)→ `( f ) for all ` ∈ (Lp)∗.

Observe that for 1 < p < ∞, by the “dual of Lp” Theorem we get that fk ⇀ f in Lp means exactly
that

lim
k→∞

∫
X
( fk− f )g dµ = 0 for all g ∈ Lq, where q is given by 1/p+1/q = 1,

and that the same is true for p = 1 provided that X is σ -finite with respect to µ .

Proposition (proved) - LL§2.10. Let f ∈ Lp, p ∈ [1,∞). Then

l( f ) = 0 ∀ l ∈ (Lp)∗ =⇒ f = 0 µ-a.e. in X .

This holds true also in case p = ∞ provided X is σ -finite.

Corollary (proved) - LL§2.10. Let p ∈ [1,∞) and fk ⇀ g in Lp, fk ⇀ h in Lp. Then g = h µ-a.e.
in X. This holds true also in case p = ∞ provided X is σ -finite.

Friday, 27/11/2020 (12:00-13:30)

Theorem - Lower semi-continuity of norms (proved) - LL§2.11. Suppose that fk ⇀ g in Lp,
p ∈ [1,∞]. Then

1For the exact characterization of (L∞)∗ we refer to Dunford, N.; Schwartz, J. T. - Linear Operators. Part I:
General Theory. (pg 296, 15 Definition & 16 Theorem) and Yosida, K. - Functional Analysis. 6th edition. (pg 118,
Example 5).
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(i) if p ∈ [1,∞), then liminfk→∞ ‖ fk‖p ≥ ‖ f‖p,

(ii) if p = ∞ the same is true provided X is σ -finite,

(iii) if p ∈ (1,∞) and limk→∞ ‖ fk‖p = ‖ f‖p, then fk→ f in Lp.

Theorem - Uniform boundedness principle (proved) - LL§2.12. Let p ∈ [1,∞] and suppose
{ fk ∈ Lp}k∈N is such that {l( fk)}k∈N is bounded for any l ∈ (Lp)∗. Then {‖ fk‖p}k∈N is also
bounded.

Monday, 30/11/2020 (10:15-11:45)

Suppose that fk ⇀ f in Lp, where p ∈ [1,∞]; that is limk→∞ `( fk) = `( f ) for all ` ∈ (Lp)∗ and so
{l( fk)}k∈N is bounded for any l ∈ (Lp)∗. It follows from the uniform boundedness principle that
{‖ fk‖p}k∈N is bounded. Thus,

fk ⇀ f in Lp =⇒{‖ fk‖p}k∈N is bounded.

Our next target is to establish the converse of this fact, modulo passing to a subsequence, in the
special case where µ = L n, X ⊆ Rn is L n-measurable and p ∈ (1,∞]. To do so we need the
following important assertion:

Theorem2 - Separability of Lp - LL§2.17. Let X ⊆ Rn be L n-measurable. Then Lp(X ,L n) for
1≤ p < ∞ is separable, i.e., it contains a countable dense subset (this fails for p = ∞).

Accepting this, we proved first

Theorem - Weak compactness in Lp/Banach-Alaoglu theorem (proved) - LL§2.18. Let X ⊆Rn

be L n-measurable and p ∈ (1,∞). If { fk ∈ Lp(X ,L n)}k∈N is such that for some M > 0 we have
‖ fk‖p ≤M for all k ∈ N, then there exists f ∈ Lp(X ,L n) and a subsequence { flk}k∈N such that
flk ⇀ f in Lp(X ,L n).

Proof. We assume initially that p ∈ (1,∞]. It is only the last argument of the proof that does not
work for p = ∞. Since p ∈ (1,∞] implies q ∈ [1,∞), we get from the “separability of Lp”-theorem
that Lq(X ,L n) = S where S := {g j}k∈N ⊂ Lq(X ,L n). Now for each j ∈ N consider the sequence
of numbers

Fk(g j) :=
∫

X
fkg j dL n, k ∈ N. (1)

Holder’s inequality implies

|Fk(g j)| ≤ ‖ fk‖p‖g j‖q ≤M‖g j‖q ∀ k ∈ N. (2)

Start with j = 1 and proceed as follows:

• (2) says that the sequence of numbers {Fk(g1)}k∈N is bounded. It contains thus a convergent
subsequence, denoted by {F(1)

k (g1)}k∈N. Because of (1), we have in fact obtained a subsequence

{ f (1)k }k∈N such that the sequence of numbers {F(1)
k (g1) =

∫
X f (1)k g1 dL n}k∈N converges, say to

l1 ∈ R.

• (2) says that the sequence of numbers {F(1)
k (g2)}k∈N is bounded. It contains thus a convergent

subsequence, denoted by {F(2)
k (g2)}k∈N. Because of (1), we have in fact obtained a subsequence

2We proved this after the Banach-Alaoglu theorem and we had time only for the first part of its proof; i.e.
Lp(X ,L n)∩L∞(X ,L n) when L n(X)< ∞ is separable.
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{ f (2)k }k∈N such that the sequence of numbers {F(2)
k (g2) =

∫
X f (2)k g2 dL n}k∈N converges, say to

l2 ∈ R.

• Note that {F(2)
k (g1)}k∈N is a subsequence of {F(1)

k (g1)}k∈N and hence converges to l1 too.

This way we arrive to a sequence of subsequences
{
{ f (m)

k }k∈N
}

m∈N such that for any m ∈ N: (i)

{ f (m+1)
k }k∈N is a subsequence of { f (m)

k }k∈N and (ii) {F(m)
k (g j) =

∫
X f (m)

k g j dL n}k∈N converges

for all j = 1, ...,m. In particular, if lm := limk→∞ F(m)
k (gm), then limk→∞ F(m)

k (g j) = l j for all
j = 1, ...,m−1. For instance, we get for j = 1:
F(1)

1 (g1) F(1)
2 (g1) F(1)

3 (g1) ... converges to l1
F(2)

1 (g1) F(2)
2 (g1) F(2)

3 (g1) ... converges to l1
F(3)

1 (g1) F(3)
2 (g1) F(3)

3 (g1) ... converges to l1
... ... ...
Clearly, the diagonal sequence {Gk(g1) := F(k)

k (g1)}k∈N converges to l1 too. In the same fashion

we construct convergent sequences {Gk(g j) := F(k)
k (g j) =

∫
X f (k)k g j dL n}k∈N for all j ∈ N.

Now, for a given g ∈ Lq(X ,L n) set Gk(g) :=
∫

X f (k)k g dL n. Fix ε > 0 and let g j ∈ S be such that
‖g−g j‖p < ε . Since {Gk(g j)}k∈N converges, it is Cauchy; that is

|Gk(g j)−Gm(g j)|< ε ∀ k,m≥ Nε .

Therefore, using (2) twice,

|Gk(g)−Gm(g)| ≤ |Gk(g−g j)|+ |Gm(g−g j)|+ |Gk(g j)−Gm(g j)|
≤M‖g−g j‖p +M‖g−g j‖p + ε

≤ (2M+1)ε ∀ k,m≥ Nε .

It follows that for any g ∈ Lq(X ,L n) the sequence {Gk(g)}k∈N is Cauchy and hence convergent.
Write F(g) := limk→∞ Gk(g), g ∈ Lq(X ,L n). It is elementary to see that F is a bounded lin-
ear functional of Lq. By the “dual of Lp”-theorem we obtain f ∈ Lp(X ,L n) such that F(g) =∫

X f g dL n for all g ∈ Lq(X ,L n). Consequently,
∫

X f g dL n = limk→∞

∫
X f (k)k g dL n for all

g ∈ Lq(X ,L n); that is, we ’ve found f ∈ Lp(X ,L n) and a subsequence { flk := f (k)k }k∈N such
that

lim
k→∞

∫
X
( flk− f )g dL n = 0 ∀ g ∈ Lq(X ,L n). (?)

If p 6= ∞, again by the “dual of Lp”-theorem, (?) means precisely that flk ⇀ f in Lp(X ,L n).

Thursday, 03/12 (10:15-11:45)

We finished the proof of the “Separability” of Lp theorem.

Corollary (proved) - Density of Cc in Lp. Let X ⊆ Rn be L n-measurable. Then Cc(X) is dense
in Lp(X ,L n) for 1≤ p < ∞.

THE FOURIER TRANSFORM, LL-§5:

Definition - Fourier transform in L1. For f ∈ L1(Rn), the Fourier transform f̂ of f is given by

f̂ (k) :=
∫
Rn

e−2πik·x f (x) dL n(x), k ∈ Rn.

Proposition (proved) - Properties of f̂ - LL§5.1 & §5.2.
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(i) f̂ ∈ L∞(Rn) with ‖ f̂‖∞≤‖ f‖1. In particular, for nonnegative f we clearly have f̂ (0)= ‖ f‖1,
hence ‖ f̂‖∞ = ‖ f‖1 in this case.

(ii) ̂α f +βg = α f̂ +β ĝ for all f ,g ∈ L1(Rn) and all α,β ∈ C.

(iii) f̂ ∗g(k) = f̂ (k)ĝ(k) for all f ,g ∈ L1(Rn), where f ∗g(x) :=
∫
Rn f (x− y)g(y) dy.

(iv)
∫
Rn f̂ g dL n =

∫
Rn f ĝ dL n for all f ,g ∈ L1(Rn).

(v) τ̂h f (k) = e−2πik·h f̂ (k) for all h ∈ Rn, where
(
τh f
)
(x) := f (x−h).

(vi) δ̂λ f (k) = λ n f̂ (λk) for all λ ∈ (0,∞), where
(
δλ f

)
(x) := f (x/λ ).

(vii) ̂e2πiy·xg(y)(k) = τx
(
ĝ(k)

)
for all x ∈ Rn and all g ∈ L1(Rn).

(viii) f̂ ∈C(Rn).

(ix) lim|k|→∞ f̂ (k) = 0.

(x) ̂e−πλ |x|2(k) = λ−n/2e−π|k|2/λ for all λ ∈ (0,∞).

proof of (x). 3 By direct computation

̂e−πλ |x|2(k) =
∫
Rn

e−2πik·x−πλ |x|2 dx = e−π|k|2/λ

∫
Rn

e−|i
√

π/λk+
√

πλx|2 dx

= (πλ )−n/2e−π|k|2/λ

∫
Rn

e−|y|
2

dy = (πλ )−n/2e−π|k|2/λ

(∫
R

e−t2
dt
)n

.

Finally notice that
∫
R e−t2

dt =
√

π .

Lemma (proved) - Continuity of the translation operator in Lp. Let p ∈ [1,∞). For any f ∈
Lp(Rn,L n) we have limh→0 ‖τh f − f‖p = 0.

Friday, 04/12 (12:00-13:30)

By using the dominated convergence theorem, the continuity of the translation operator in L1, as
well as a couple of the aforementioned properties of the Fourier transform of L1 functions, we
proved the following:

Proposition - Invertibility of the Fourier transform (proved). If f , f̂ ∈ L1(Rn) then

f (x) =
∫
Rn

e2πik·x f̂ (k) dk
(
= ˆ̂f (−x)

)
, for a.e. x ∈ Rn.

Note however that f ∈ L1(Rn); f̂ ∈ L1(Rn) (consider for instance f = χ(α,β ) in R).

Proof. For any ε > 0 and any x ∈ Rn we set

Jε(x) :=
∫
Rn

e2πik·x−επ|k|2 f̂ (k) dL n(k).

3more direct than the one in the book but requires complex integration
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Using first property (iv), then property (vii) with g(y) := e−επ|k|2 and finally property (x) with
λ = ε , we deduce

Jε(x) = ε
−n/2

∫
Rn

e−π|k−x|2/ε f (k) dL n(k).

Because of Fubini’s theorem and the continuity of the translation operator in L1, we can see that
Jε(x) converges to f (x) in L1(Rn) (see below, in the proof of “Approximation in Lp theorem”, for
the details). Hence, for some subsequence δ (ε) we know Jδ (ε)(x)→ f (x) for L n-a.e. x ∈ Rn, as
ε→ 0. On the other hand, the integrand of Jδ (ε)(x) converges to e2πik·x f̂ (k) as ε→ 0, for all x∈Rn.
Moreover, this same integrand is dominated by | f̂ (k)|which is (by assumption) an L1(Rn,dL n(k))
function. So the dominated convergence theorem applies to end the proof.

Lemma (not proved) - Continuous version of the Minkowski inequality. Let p ∈ [1,∞). For
any f ∈ Lp(Rn×Rn,L n) we have(∫

Rn

(∫
Rn
| f (x,y)| dL n(y)

)p
dL n(x)

)1/p

≤
∫
Rn

(∫
Rn
| f (x,y)|p dL n(x)

)1/p
dL n(y).

Proof. Set F(x) :=
∫
Rn | f (x,y)| dL n(y). Then, writing

(
F(x)

)p
= F(x)

(
F(x)

)p−1, we get

I :=
∫
Rn

(
F(x)

)p dL n(x) =
∫
Rn

(∫
Rn
| f (x,y)| dL n(y)

)(
F(x)

)p−1 dL n(x)

=
∫
Rn

(∫
Rn
| f (x,y)|

(
F(x)

)p−1 dL n(x)
)

dL n(y),

from Fubini’s theorem. Applying now Hölder’s inequality on the inner integral we deduce

I≤
∫
Rn

(∫
Rn
| f (x,y)|p dL n(x)

)1/p(∫
Rn

(
F(x)

)p dL n(x)
)(p−1)/p

dL n(y)

= I(p−1)/p
∫
Rn

(∫
Rn
| f (x,y)|p dL n(x)

)1/p
dL n(y).

Hence I1/p ≤
∫
Rn

(∫
Rn | f (x,y)|p dL n(x)

)1/p
dL n(y) which is the desired inequality.

Using the last two lemmata (continuity of the translation operator in Lp and continuous version of
Minkowski’s inequality) one has the following useful approximation theorem, already used with
p = 1 in the “Invertibility of the Fourier transform”.

Theorem (proved) - Approximation in Lp. Let f ∈ Lp(Rn), p ∈ [1,∞). Then,

lim
ε→0

∥∥∥ε
−n/2

∫
Rn

e−π|k−x|2/ε f (k) dL n(k)− f (x)
∥∥∥

Lp
(
Rn,dL n(x)

) = 0.

Proof. Let

Iε :=
∥∥∥ε
−n/2

∫
Rn

e−π|k−x|2/ε f (k) dL n(k)− f (x)
∥∥∥

Lp
(
Rn,dL n(x)

).
Since ε−n/2 ∫

Rn e−π|k−x|2/ε dL n(k) = 1, we have

Iε =
∥∥∥π
−n/2

∫
Rn

e−|y|
2(

f (x+
√

ε/πy)− f (x)
)

dL n(y)
∥∥∥

Lp
(
Rn,dL n(x)

),
10



where we have also changed variables by k = x +
√

ε/πy. By the continuous version of the
Minkowski inequality, or just by the Fubini theorem in case p = 1, we arrive at

Iε ≤ π
−n/2

∫
Rn

e−|y|
2
(∫

Rn

∣∣ f (x+√ε/πy)− f (x)
∣∣p dL n(x)

)1/p
dL n(y). (?)

But h(ε) :=
√

ε/πy→ 0 as ε→ 0. Hence from the continuity of the translation operator in Lp we
get that limε→0 ‖τh(ε) f − f‖p = 0; that is, the integrand on the right term of (?) vanishes as ε→ 0.

Using Minkowski’s inequality we easily see that this same integrand is dominated by 2‖ f‖p e−|y|
2

which is an L1(Rn,dL n(y)
)

function. So the dominated convergence theorem applies to end the
proof.

We used the above theorem with p = 2 in the proof of the following fundamental result:

Theorem (proved) - Plancherel’s formula - LL§5.3. If f ∈ L1(Rn)∩L2(Rn), then f̂ ∈ L2(Rn)
with ‖ f̂‖2 = ‖ f‖2.

Monday, 07/12 (10:15-11:45)

Definition - Fourier transform in L2- LL§5.3 & §5.4 & §5.5. Given f ∈ L2(Rn), think of a se-
quence { f j ∈ L1(Rn)∩L2(Rn)} j∈N such that f j → f in L2. By Plancherel’s formula we get then
‖ f̂ j− f̂l‖2 = ‖ f j− fl‖2 for all j, l ∈ N; that is, { f̂ j} j∈N is a Cauchy sequence in L2. But L2 is
complete and thus { f̂ j} j∈N converges to a function of L2(Rn) which we call the Fourier transform
of f and denote it by f̂ .

Remark Given f ∈ L2(Rn) we can always find sequences { f j ∈ L1(Rn)∩L2(Rn)} j∈N such that
f j→ f in L2. For example, taking f j := η1/ j ∗ f , where ηε for ε > 0 is the standard mollifier, we
have { f j ∈C∞

c (Rn)} j∈N such that f j → f in L2. Another example is { f j := f χB j} j∈N. Since by
Hölder’s inequality ‖ f j‖1 ≤ ‖ f‖2[L

n(B j)]
1/2 for all j ∈ N and also ‖ f j‖2 ≤ ‖ f‖2 for all j ∈ N,

we have f j ∈ L1(Rn)∩L2(Rn) for all j ∈ N. Moreover,

‖ f j− f‖2
2 =

∫
Rn

g j dL n, where g j := (1−χB j)| f |
2.

Since lim j→∞ g j→ 0 L n-a.e. in Rn and g j ≤ | f |2 ∈ L1(Rn), the dominated convergence theorem
readily gives f j→ f in L2. This last example provides us with a fairly simple sequence of functions
whose L2-limit defines f̂ :{∫

B j

e−2πik·x f (x) dL n(x)
}

j∈N
.

Remark Although there are many sequences such that f j → f in L2, f̂ is independent of the one
we choose. Indeed, suppose { f j ∈ L1(Rn)∩L2(Rn)} j∈N satisfies lim j→∞ ‖ f j− f‖2 = 0. Then f̂ is
defined as the L2-limit of f̂ j, hence lim j→∞ ‖ f̂ j− f̂‖2 = 0. Let {g j ∈ L1(Rn)∩L2(Rn)} j∈N be one
more sequence such that lim j→∞ ‖g j− f‖2 = 0. Then

‖ĝ j− f̂‖2≤‖ĝ j− f̂ j‖2+‖ f̂ j− f̂‖2 = ‖g j− f j‖2+‖ f̂ j− f̂‖2≤‖g j− f‖2+‖ f j− f‖2+‖ f̂ j− f̂‖2,

where we have used Plancherel’s formula to get the middle equality. Thus, lim j→∞ ‖ĝ j− f̂‖2 = 0
which says f̂ is the L2-limit of {ĝ j} j∈N too.

Proposition - Properties of f̂ .

11



(i) (isometry) If f ∈ L2(Rn), then ‖ f̂‖2 = ‖ f‖2.

Proof: Suppose { f j ∈ L1(Rn)∩L2(Rn)} j∈N satisfies lim j→∞ ‖ f j− f‖2 = 0, hence ‖ f‖2 =

lim j→∞ ‖ f j‖2. But f̂ is defined as the L2-limit of f̂ j; that is, lim j→∞ ‖ f̂ j− f̂‖2 = 0, hence
‖ f̂‖2 = lim j→∞ ‖ f̂ j‖2. Now the proof follows by Plancherel’s formula: ‖ f̂ j‖2 = ‖ f j‖2 by
letting j→ ∞.

(ii) (linearity) If f ,g ∈ L2(Rn) and α,β ∈ C, then ̂α f +βg = α f̂ +β ĝ.

(iii) (Parseval’s formula) If f ,g ∈ L2(Rn), then 〈 f ,g〉= 〈 f̂ , ĝ〉, where

〈 f ,g〉 :=
∫
Rn

f̄ g dL n.

(iii) (invertibility) If f ∈ L2(Rn), then f (x) = ˆ̂f (−x).

Proof: Suppose { f j ∈ L1(Rn)∩L2(Rn)} j∈N satisfies lim j→∞ ‖ f j− f‖2 = 0. As in the proof
of the Proposition - Invertibility of the Fourier transform, we have∫
Rn

e2πik·x−επ|k|2 f̂ j(k) dL n(k) = ε
−n/2

∫
Rn

e−π|k−x|2/ε f j(k) dL n(k) ∀ j ∈N, ∀ ε > 0. (?)

By Hölder’s inequality,∣∣∣ε−n/2
∫
Rn

e−π|k−x|2/ε
(

f j(k)− f (k)
)

dL n(k)
∣∣∣≤ ε

−n/2
(∫

Rn
e−2π|k−x|2/εdk

)1/2
‖ f j− f‖2→ 0,

as j→ ∞. Also f̂ is defined as the L2-limit of f̂ j; that is, lim j→∞ ‖ f̂ j− f̂‖2 = 0. Hence,∣∣∣∫
Rn

e2πik·x−επ|k|2( f̂ j(k)− f̂ j(k)
)

dL n(k)
∣∣∣≤ (∫

Rn
e−2επ|k|2dk

)1/2
‖ f̂ j− f̂‖2→ 0,

as j→ ∞. So taking the limit as j→ ∞ in (?),∫
Rn

e2πik·x−επ|k|2 f̂ (k) dL n(k) = ε
−n/2

∫
Rn

e−π|k−x|2/ε f (k) dL n(k) ∀ ε > 0. (∗)

From Theorem - Approximation in Lp with p = 2, we know the rhs of (∗) converges to f (x)
in L2. Hence there is a subsequence (that we don’t rename) such that the rhs of (∗) converges
to f (x) for L n-a.e. x ∈ Rn. To see that the lhs of (∗) converges (up to a subsequence) to
ˆ̂f (−x) for L n-a.e. x ∈ Rn, set first gε(k) := e−επ|k|2 f̂ (k) and observe that gε ∈ L1(R)∩

L2(Rn) for all ε > 0. This allows to write lhs(∗) = ĝε(−x). Next we claim that gε converges
to f̂ in L2. Indeed, we have

‖gε − f̂‖2
2 =

∫
Rn

(
1− e−επ|k|2)2| f̂ (k)|2 dL n(k), ε > 0.

Clearly the integrand converges to 0 as ε→ 0 for L n-a.e. k ∈Rn, while it is also dominated
by 4| f̂ (k)|2 which is summable; hence the dominated convergence theorem applies to prove
the claim. Summarizing, we have {gε ∈ L1(R)∩L2(Rn)}ε>0 such that limε→0 ‖gε− f̂‖2 = 0.
By definition of the Fourier transform in L2 we readily get ˆ̂f is the L2-limit of ĝε ; or, ˆ̂f (−x)
is the L2-limit of ĝε(−x) which equals the lhs of (∗). Passing to new subsequence we get
that lhs(∗) converges to ˆ̂f (−x) for L n-a.e. x ∈ Rn.

Wednesday, 09/12 (12:00-13:30)
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THE SYMMETRIC DECREASING REARRANGEMENT, LL-§3:

Definition. Given an L n-measurable set X in Rn, we say that f : X → R vanishes at infinity
provided

(a) it is L n-measurable function, and

(b) the level sets of | f | have finite L n-measure; that is

either L n(X)< ∞, or L n(X) = ∞ and L n({x ∈ X : | f (x)|> t}
)
< ∞ ∀ t > 0.

In the case where L n(X) = ∞, (b) means that there cannot exist a δ > 0 and a K b X such that
| f (x)| ≥ δ for all x ∈ X \K. If such δ and K exist, we would have for all t ∈ (0,δ ) that

L n({x ∈ X : | f (x)|> t}
)
≥L n({x ∈ X : | f (x)| ≥ δ}

)
≥L n(X \K) = ∞,

a contradiction. This justifies the phrase “vanishing at infinity”.

Notation. In what follows we write ωn for the Lebesgue measure of a unit ball of Rn.

Definition 1. The symmetric rearrangement A?, of an L n-measurable A⊂ Rn is

A? :=


/0 if L n(A) = 0,

BRA(0) with RA :=
(
L n(A)/ωn

)1/n if L n(A)> 0,

Rn if L n(A) = ∞.

Note that in any case there holds L n(A?) = L n(A).

Definition 2. The symmetric decreasing rearrangement χ?
A of the characteristic function of an L n-

measurable A⊂ Rn with L n(A)< ∞, is

χ
?
A := χA? .

Definition 3. The symmetric decreasing rearrangement f ? of a function f : X → R that vanishes
at infinity is given by

f ?(x) :=
∫

∞

0
χ
?
{z∈X : | f (z)|>r}(x) dL 1(r)

=
∫

∞

0
χ{z∈X : | f (z)|>r}?(x) dL 1(r), by Definition 2.

Remark. Since f vanishes at infinity, the sets Ar := {z ∈ X : | f (z)|> r}, r > 0, satisfy L n(Ar)<
∞. Consequently, Ar, r > 0, satisfy the requirements of Definition 2 for defining χ?

Ar
, involved in

Definition 3.

Remark. Compare definition 3 with the layer cake representation formula of Example 6.0.3-(i),
which asserts that

| f (x)| :=
∫

∞

0
χ{z∈X : | f (z)|>r}(x) dL 1(r). (1)

Proposition - Properties of f ?. Suppose f : X → R vanishes at infinity. Then

(i) f ? is a nonnegative measurable function,
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(ii) f ? is radially symmetric and non-increasing, that is

f ?(x) = f ?(y) whenever |x|= |y|, and f ?(x)≥ f ?(y) whenever |x| ≤ |y|,

Proof. Let x,y ∈ Rn be such that |x| = (≤) |y|. Then

χBR(0)(x) = (≥) χBR(0)(y) ∀ R ∈ (0,∞).

In particular, since f vanishes at infinity,

χ{z∈X : | f (z)|>r}?(x) = (≥) χ{z∈X : | f (z)|>r}?(y) ∀ r ∈ (0,∞).

Integrating this with respect to r we deduce f ?(x) = (≥) f ?(y).

(iii) for all t > 0 there holds {z ∈ X : f ?(z)> t}= {z ∈ X : | f (z)|> t}?.
Proof. Let x ∈ {z ∈ X : f ?(z)> t}. Assume that x is not in the ball {z ∈ X : | f (z)|> t}?,
then x is also not in any concentric ball with smaller radius, that is, x is not in any ball
{z ∈ X : | f (z)|> r}? with r > t. Thus

f ?(x) :=
∫

∞

0
χ{z∈X : | f (z)|>r}?(x) dL 1(r) =

∫ t

0
χ{z∈X : | f (z)|>r}?(x) dL 1(r)≤ t,

a contradiction. We proved {z ∈ X : f ?(z) > t} ⊆ {z ∈ X : | f (z)| > t}?. Now let x be
in the ball {z ∈ X : | f (z)| > t}?. The openness of the ball implies that x has to be also
in some concentric ball with smaller radius; that is, there exists t̃ > 0 such that t̃ > t and
x ∈ {z ∈ X : | f (z)|> t̃}?. We readily get that x is in any concentric ball with larger radius;
that is x is in any ball {z ∈ X : | f (z)|> r}? with r < t̃. Thus

f ?(x) :=
∫

∞

0
χ{z∈X : | f (z)|>r}?(x) dL 1(r)≥

∫ t̃

0
χ{z∈X : | f (z)|>r}?(x) dL 1(r) = t̃ > t,

establishing the reverse inclusion {z ∈ X : | f (z)|> t}? ⊆ {z ∈ X : f ?(z)> t}.

Remark. From the last property we deduce

L n({z ∈ X : | f (z)|> t}?
)
= L n({z ∈ X : f ?(z)> t}

)
∀ t > 0,

and recalling Definition 1, we further obtain the so called equimeasurability property

L n({z ∈ X : | f (z)|> t}
)
= L n({z ∈ X : f ?(z)> t}

)
∀ t > 0.

Using this we easily get that symmetric decreasing rearrangement preserves the Lp-norm for any
p ∈ [1,∞]. To see this for p ∈ [1,∞), we take the layer cake representation formula in the form of
Example 6.0.3-(ii) to write

‖ f‖p
p = p

∫
∞

0
rp−1L n({z ∈ X : | f (z)|> r}

)
dL 1(r)

= p
∫

∞

0
rp−1L n({z ∈ X : | f (z)|> r}?

)
dL 1(r)

= p
∫

∞

0
rp−1L n({z ∈ X : f ?(z)> r}

)
dL 1(r) = ‖ f ?‖p

p.

Theorem (proved) - Hardy-Littlewood inequality. Suppose that f ,g : X → R vanish at infinity.
Then ∫

X
| f ||g| dL n ≤

∫
X

f ?g? dL n.
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Proof. Write Ar := {z ∈ X : | f (z)|> r}, r > 0. By the layer cake representation formula and the
Fubini theorem we have∫

X
| f ||g| dL n =

∫
X

∫
∞

0
χAr(x) dL 1(r)

∫
∞

0
χAs(x) dL 1(s) dL n(x)

=
∫

∞

0

∫
∞

0

∫
X

χAr(x)χAs(x) dL n(x) dL 1(r) dL 1(s)

=
∫

∞

0

∫
∞

0
L n(Ar∩As) dL 1(r) dL 1(s).

On the other hand, by Definition 3 and the Fubini theorem we have∫
X

f ?g? dL n =
∫

X

∫
∞

0
χA?

r (x) dL 1(r)
∫

∞

0
χA?

s (x) dL 1(s) dL n(x)

=
∫

∞

0

∫
∞

0

∫
X

χA?
r (x)χA?

s (x) dL n(x) dL 1(r) dL 1(s)

=
∫

∞

0

∫
∞

0
L n(A?

r ∩A?
s ) dL 1(r) dL 1(s).

This shows it is enough to prove that L n(Ar∩As)≤L n(A?
r ∩A?

s ) for all r,s ∈ (0,∞), or even that
L n(A∩B) ≤L n(A?∩B?) for all L n-measurable A,B ⊂ Rn such that L n(A),L n(B) < ∞. But
this is true since, if for example L n(A)≤L n(B), then A? ⊆ B? and so L n(A?∩B?) =L n(A?) =
L n(A)≥L n(A∩B).

Appilcation #1 (proved). The last remark together with the above theorem easily imply that
distance in L2 does not increase after taking symmetric decreasing rearrangements of functions,
that is

‖ f ?−g?‖2 ≤ ‖ f −g‖2.

Friday, 11/12 (12:00-13:30)

Application #2 (proved). If U ⊂ Rn is L n-measurable with L n(U)< ∞, then

sup
x∈U

∫
U

1
|x− z|σ

dz≤ ω
σ/n
n

1−σ/n

[
L n(U)

]1−σ/n for all 0 < σ < n.

Proof. Given x ∈U write Ux := {x− z | z ∈U}. Then,∫
U

1
|x− z|σ

dz =
∫

Ux

1
|y|σ

dy =
∫
Rn

χUx(y)
1
|y|σ

dy

≤
∫
Rn

χ
?
Ux
(y)
( 1
|y|σ

)?
dy =

∫
Rn

χU?
x (y)

1
|y|σ

dy =
∫

U?
x

1
|y|σ

dy,

where we have used the Hardy-Littlewood inequality to pass to the second line. But U?
x is a

ball centered at 0 and volume equal to L n(Ux). Since the translation invariance of L n implies
L n(Ux) = L n(U), we obtain U?

x = BRU (0) where RU :=
(
L n(U)/ωn

)1/n. Therefore,∫
U

1
|x− z|σ

dz≤
∫

BRU (0)

1
|y|σ

dy =
∫ RU

0

∫
∂Br(0)

1
|y|σ

dSy dr = nωn

∫ RU

0
r−σ+n−1 dr =

nωn

n−σ
Rn−σ

U ,

and substituting RU by
(
L n(U)/ωn

)1/n gives the result.
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Theorem - Riesz rearrangement inequality. Suppose that f ,g,h : Rn → R vanish at infinity.
Then ∫

Rn

∫
Rn
| f (x)||g(x− y)||h(y)|dL n(x)dL n(y)≤

∫
Rn

∫
Rn

f ?(x)g?(x− y)h?(y)dL n(x)dL n(y).

Application #1 (proved). Among all homogeneous 3-dimensional bodies, whose volume and
density are fixed, the ball generates the gravitational field having the largest energy.

Application #2 Theorem - Hardy-Littlewood-Sobolev inequality (proved) Let f ∈ Lp(Rn) and
g ∈ Lq(Rn), n ∈ N, where p,q > 1 are such that 1 < 1/p+1/q < 2. Then∫

Rn

∫
Rn

| f (x)||g(y)|
|x− y|σ

dL n(x)dL n(y)≤C(n, p,q)‖ f‖p‖g‖q, where σ = n
( p−1

p
+

q−1
q

)
.

Remarks. Functions in Lp(Rn) necessarily vanish at infinity. Also the assumption 1 < 1/p+
1/q < 2 implies 0 < σ < n as required in Application 2 of the Hardy-Littlewood inequality.

Lemma (proved). For any u ∈C1
c (Rn) we have

u(y) =
1

nωn

∫
Rn

(y− x) ·∇u(x)
|y− x|n

dx ∀ y ∈ Rn.

Proof. Using polar coordinates around x and then changing variables by x = y+ rz, we have∫
Rn

(y− x) ·∇u(x)
|y− x|n

dx =
∫

∞

0

∫
∂Br(x)

(y− x) ·∇u(x)
|y− x|n

dSx dr

= −
∫

∞

0

∫
∂B1(0)

z ·∇u(y+ rz) dSz dr

= −
∫

∂B1(0)

∫
∞

0
z ·∇u(y+ rz) dr dSz

= −
∫

∂B1(0)

∫
∞

0

d
dr

[
u(y+ rz)

]
dr dSz =−

∫
∂B1(0)

−u(y) dSz = nωnu(y),

where we have also used Fubini’s Theorem.

Theorem (proved) - Lp-Sobolev inequality. The Hardy-Littlewood-Sobolev inequality implies
the Lp-Sobolev inequality; that is

‖u‖pS ≤ c(n, p)‖|∇u|‖p ∀ u ∈C1
c (Rn), where pS := np/(n− p), 1 < p < n.

Proof. From the above lemma we get

|u(y)| ≤ 1
nωn

∫
Rn

|∇u(x)|
|x− y|n−1 dx ∀ y ∈ Rn.

Hence, for any L n-measurable function g,∫
Rn
|u(y)||g(y)|dL n(y)≤ 1

nωn

∫
Rn

∫
Rn

|∇u(x)||g(y)|
|x− y|n−1 dx dL n(y).

Since |∇u| ∈Cc(Rn) ⊂ Lp(Rn) we can apply the H-L-S inequality with σ = n− 1, provided g ∈
Lq(Rn) with q := p′S = pS/(pS−1). Thus,∫

Rn
|u||g|dL n ≤ nωnC(n, p)‖|∇u|‖p‖g‖p′S

∀ g ∈ Lp′S(Rn),
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from which we further obtain

sup
g∈Lp′S (Rn)
‖g‖p′S

≤1

∣∣∣∫
Rn

ugdL n
∣∣∣≤ nωnC(n, p)‖|∇u|‖p.

Now notice that the left hand side of this is precisely ‖u‖pS . Indeed, since u ∈C1
c (Rn)⊂ LpS(Rn)

defines a bounded linear functional `u of Lp′S(Rn) through

`u(g) :=
∫
Rn

ugdL n g ∈ Lp′S(Rn),

we know from “the dual of Lp”-Theorem that ‖`u‖= ‖u‖pS , where

‖`u‖ := sup
g∈Lp′S (Rn)
‖g‖p′S

≤1

|`u(g)|

Monday, 14/12 (10:15-11:45)

Theorem - Logarithmic Sobolev inequality - L.L., Theorem 8.14. The L2-Sobolev inequality
implies the logarithmic Sobolev inequalty; that is, for all a > 0 there holds

a2

π

∫
Rn
|∇u|2dx≥

∫
Rn

log(u2)u2dx+n
(
1+ loga

)
∀ u ∈C1

c (Rn) with ‖u‖2 = 1.

Proof. Given u∈C1
c (Rn) with ‖u‖2 = 1, apply Jensen’s inequality with µ := u2L n for the concave

function f (t) = log t, t ≥ 0, as follows

2
n

∫
Rn

log(u2)u2dx =
2
2S

∫
Rn

log
(
(u2)2S/n)dµ ≤ 2

2S
log
(∫

Rn

(
(u2)2S/n)dµ

)
= log

(
‖u‖2

2S

)
From the L2-Sobolev inequality we further get

2
n

∫
Rn

log(u2)u2dx≤ log
(
κ(n)‖|∇u|‖2

2
)
. (3)

This is already a type of logarithmic Sobolev inequality. Its best constant is known4 to be

κ(n) =
2

neπ
.

Applying logB≤ B−A
A + logA for all A,B > 0, with

B := κ(n)‖|∇u|‖2
2 and A :=

nπκ(n)
2a2 , a > 0,

we deduce from (3) the logarithmic Sobolev inequality

a2

π

∫
Rn
|∇u|2dx≥

∫
Rn

log(u2)u2dx+n
(

1+ loga− 1
2

log
(
neπκ(n)/2

))
.

Note that to get the inequality as stated in the theorem we need to prove (3) with the best con-
stant.

We had an overview of what we have learned in this course.
4see WEISSLER, F. B. Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Amer Math. Soc.

237 (1978), 255-269.
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