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7. A detail from the proof of the mean value property of harmonic functions. Let
f : IRn → IR be a continuous function, x0 ∈ IRn, and ∂B(x0, r) := {x ∈ IRn

∣∣ ‖x− x0‖ = r } for
r > 0. The consider the function

Φ(r) :=
1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x) dσ(x) .

Show limr→0 Φ(r) = f(x0). (5 Points)

8. Fundamental solution of the Laplace equation.

Let n ≥ 2.

(a) Let u ∈ C2(IRn) be rotationally symmetric. This means that u(x) = v(‖x‖) for some twice
continuously differentiable function v : [0,∞)→ IR. Show then that

4u(x) = ‖x‖1−n · d

dr

∣∣∣∣
r=‖x‖

(rn−1 · v′(r)).

(4 Points)

(b) The volume of the unit ball in IRn is givn by ωn :=
∫
{x∈IRn | ‖x‖≤1 } 1 dnx. Show that the

function

Φ : IRn \ {0} → IR, x 7→

− 1
2π log(‖x‖) für n = 2

1
n (n−2)ωn

‖x‖2−n für n ≥ 3

is harmonic. Φ is called the Fundamental solution of the Laplace equation. Show also:

∇Φ = − 1

nωn

x

‖x‖n
. (6 Points)

9. Solution of the Poisson equation. Let n ≥ 2 and Φ the fundamental solution of the Laplace
equation as in Question 8. Further, let f : IRn → IR be a twice continuously differentiable
function with compact support. We will show that the convolution of f with Φ is a solution of
the Poisson equation −4u = f in IRn.

(a) Establish that the integral
∫

IRn f(x − y) Φ(y) dny is well-defined for every x ∈ IRn (even
though Φ is not defined at the origin 0 ∈ IRn). Then show that the function

u : IRn → IR, x 7→ (f ∗ Φ)(x) :=

∫
IRn

f(x− y) Φ(y) dny

is twice continuously differentiable and that

4u =

∫
IRn
4f(x− y) · Φ(y) dny (∗)

holds. (4 Points)
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(b) Fix now an ε > 0. We now sepearate the integral (∗) into one part that contains the
singularity from Φ and another part that is singularity free:

Iε :=

∫
B(0,ε)

4f(x− y) · Φ(y) dny ,

Jε :=

∫
IRn\B(0,ε)

4f(x− y) · Φ(y) dny .

Show that limε→0+ Iε = 0. (6 Points)

(c) For every Jε, prove that the following estimate holds:

Jε = −
∫
∂B(0,ε)

f(x− y) · ∇yΦ(y) ·Ndσ(y) + Lε ,

where Lε is some expression that converges to zero as ε→ 0. (6 Points)

[Hint. Use Question 2(b), then divergence theorem, then again Question 2(b). Also use
(from Question 8(b)) that Φ is harmonic on IRn \B(0, ε).]

(d) Finally, establish that
∫
∂B(0,ε) f(x−y) ·∇yΦ(y) ·Ndσ(y) is the mean value of f on ∂B(x, ε),

and therefore −4u = f . (4 Points)

[Hint. Recall the formula for ∇Φ from Question 8(b). The inward pointing unit normal field
on ∂B(0, ε) is given by N(x) = − x

‖x‖ and the volume σn of the unit sphere {x ∈ IRn | ‖x‖ =

1 } is σn = n · ωn. Combine these facts with Question 7 to reach the conclusion.]

10. Subharmonic Functions.

Let Ω ⊂ IRn be an open connected domain. A twice continuously differentiable function v : Ω→
IR is callled subharmonic, when −4v ≤ 0 on Ω.

(a) Let v : Ω → IRn be subharmonic. Show for all x ∈ Ω and r > 0 with B(x, r) ⊂ Ω that the
following holds:

v(x) ≤ 1

rn−1 nωn

∫
∂B(x,r)

u(y) dσ(y) .

[Hint: Adapt the proof of the mean value property] (5 Points)

(b) Following from (a): Assume that v has a maximum on Ω. That is, there is a point x0 ∈ Ω

such that v(x0) = supx∈Ω v(x). Prove that v constant. (4 Points)

(c) Now suppose that u : Ω→ IR is a harmonic function. Show:

(i) ‖∇u‖2 is subharmonic. (3 Points)

(ii) if f : IR→ IR is a smooth, convex function then f ◦ u is subharmonic. (3 Points)
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