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13. Preparing the Mean Value Theorem.

Let f : Rn → R be a continous function, x0 ∈ Rn and ∂B(x0, r) := {x ∈ Rn | ‖x− x0‖ = r} for

r > 0. Show that the function

Φ(r) :=
1

σ(∂B(x0, r))

∫
∂B(x0,r)

f(x)dσ(x).

converges in the limit r → 0 to f(x0). (5 points)

14. Fundamental solution of the Laplace-Equation.

Let n ≥ 2.

(a) Let u ∈ C2(Rn) be rotational symmetric, i.e. u(x) = v(‖x‖), where v : [0,∞)→ R is a two

times continously differentiable function. Show that

∆u(x) = ‖x‖1−n · d

dr

∣∣∣∣
r=‖x‖

(rn−1 · v′(r)).

(4 points)

(b) Let ωn :=
∫
{x∈Rn | ‖x‖≤1} 1 dnx be the volume of the unit ball in Rn. Show that the function

Φ : Rn \ {0} → R, x 7→

− 1
2π log(‖x‖) for n = 2

1
n(n−2)ωn

‖x‖2−n for n ≥ 3

is harmonic. Φ is called the fundamental solution of the Laplace-Equation.

Show also that

∇Φ = − 1

nωn

x

‖x‖n
.

(6 points)

15. Solution of the Poisson-Equation.

Let n ≥ 2 and Φ the fundamental solution of the Laplace-Equation from exercise 14. Consider

also a two times continously differentiable function f : Rn → R with compact support. In this

exercise we will show that the convolution of f with Φ is a solution of the Poisson-Equation

−∆u = f in Rn.

(a) Show that the integral
∫
Rn f(x− y)Φ(y)dny is well defined, although Φ is not defined in 0

and show that the convolution u : Rn → R with u(x) := (f ∗Φ)(x) is two times differentiable

and that

∆u =

∫
Rn

∆f(x− y) · Φ(y)dny.

(4 points)
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Let now ε > 0 We decompose the above integral ∆u into two parts:

Iε :=

∫
B(0,ε)

∆f(x− y) · Φ(y)dny,

Jε :=

∫
Rn\B(0,ε)

∆f(x− y) · Φ(y)dny.

(b) Show that limε→0+ Iε = 0. (6 points)

(c) Show that

Jε = −
∫
∂B(0,ε)

f(x− y) · ∇yΦ(y) ·Ndσ(y) + Lε,

where Lε is an expression which converges to 0 as ε converges to 0. (6 points)

(Hint: Use the divergence theorem, exercise 2(b) and 14(b).)

(d) Show that the expression
∫
∂B(0,ε) f(x − y) · ∇yΦ(y) · Ndσ(y) is the mean value of f in

∂B(x, ε) and conclude that −4u = f . (4 points)

(Hint: Use the expression for ∇Φ from exercise 14(b). Also use the fact that the inner

pointing normal unit vector field N at ∂B(0, ε) is given by N(x) = − x
‖x‖ and that the

volume σn of the unit sphere {x ∈ IRn | ‖x‖ = 1 } is given by σn = n · ωn . In order to

show the second part use exercise 13.)

16. Subharmonic Functions.

Let Ω ⊂ IRn be an open, connected region. A two times continously differentiable function

v : Ω→ IR is called subharmonic, if −4v ≤ 0 in Ω .

(a) Let v : Ω→ IR be subharmonic. Show that for all x ∈ Ω and r > 0 with B(x, r) ⊂ Ω :

v(x) ≤ 1

rn−1 nωn

∫
∂B(x,r)

v(y) dσ(y) .

(Hint: Look at the proof of the Mean Value Property 3.3.) (5 points)

(b) Conclude from (a) the Maximum Principle: If the maximum of v can be found inside Ω ,

then v is constant. (4 points)

(c) Let now u : Ω→ IR be a harmonic function. Show that:

(i) ‖∇u‖2 is subharmonic. (3 points)

(ii) If f : IR→ IR is a smooth and convex function then f ◦ u is subharmonic.

(3 points)
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